

16. Course Specification of Linear Algebra

1	I. Course Identification and General Information:						
1.	Course Title:	Linea	r Algebra				
2.	Course Code & Number:	BR12	1				
			C.	H		Total	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
		2	2	-	-	3	
4.	Study level/ semester at which this course is offered:	2 nd year / 1 st semester					
5.	Pre –requisite (if any):	None					
6.	Co –requisite (if any):	None					
7.	Program (s) in which the course is offered:	Electrical Engineering					
8.	Language of teaching the course:	Englis	sh and Ara	bic			
9.	Location of teaching the course:	Facul	ty of Engin	eering			
10.	Prepared By:	Asst. Odhar	Prof. Dr. A ri	del Moh	ammed	Al-	
11.	Date of Approval						

II. Course Description:

This is a course on linear algebra and its applications to Electrical Engineering's programs. Topics to be covered include: vectors; lines and planes; systems of linear equations; matrices; linear transformations and determinants; introduction to vector spaces; eigenvalues; eigenvectors; orthonormal bases; orthogonal decompositions of vectors; orthogonal matrices and Gram-Schmidt Algorithm.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	III. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Demonstrate knowledge and understanding of basic concepts of matrices, using matrices in application engendering problems; rank of matrix, complex matrices; matrix inverse; vectors in spaces; dot product, norm, cross product, lines and planes, projections; linear independence, basis and dimension; eigenvalue and eigenvectors; orthonormal bases and orthogonal projections.	A1, A2
a2	Understand knowledge Mathematical tools and analytical skills in solving problems relevant to Electrical Engineering.	A1, A2
b1	Solve mathematical and engineering problems in different contexts of topics.	B1, B2
b2	Practice mathematical reasoning skill in interpreting mathematical theories and linking them in the interpretation of electrical engineering applications.	B1, B2
c1	Use some software programing and calculators to solve system of linear equations and representations of matrices in software programing.	C1
c2	Explain engineering phenomena, network and nodal incidence matrix in team project, mesh incidence matrix and electrical networks in team project.	C1
d1	Work of group and individual reports about resources of electrical engineering problems depend on electrical networks, pipe and traffic flow, data fitting.	D1, D4

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Taashing stratagies	Assessment
Course Intended Learning Outcomes	reaching strategies	Strategies

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

a1- Demon underst matrice application matrix, inverse; norm, cross projections; lin dimension; orthonormal projections.	istrate anding of s, using ma engenderin complex vectors in product, lear inde eigenvalue bases	knowled basic co trices g problem matrice spaces; d lines ar ependence and ei and	ge a oncepts in ms; rank es; mat lot produ nd plan e, basis a igenvecto orthogoi	nd of rix ict, es, ind ors; nal	 Lectures, Tutorials laboratory, Seminars 	 Examinations, Laboratory reports, Homework presentations
 a2- Understand Knowledge Mathematical tools and analytical skills in solving problems relevant to Electrical Engineering. 			Lectures,TutorialsSelf-learning	 Examinations, Test, Course work, Assignments, Group and Individual Reports. 		

(B) Stra	(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:					
	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
b1-	Solve mathematical and engineering problems in different contexts of topics.		Examinations,Test,			
b2-	Practice mathematical reasoning skill in interpreting mathematical theories and linking them in the interpretation of electrical engineering applications.	Lectures,Tutorials	 Course work, Assignments, Group and Individual Reports. 			

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teoching Strategies and Assessment Strategies					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
 c1- Use some software programing and calculators to solve system of linear equations and representations of matrices in software programing. c2- Explain engineering phenomena, network and nodal incidence matrix in team project, mesh incidence matrix and electrical networks in team project. 	 Lectures, Laboratory, Seminars, Projects, Small group 	 Examinations, Laboratory reports, Presentations, Individual and Group Project Reports. 			

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes Teaching strategies Assessment Strategies					
d1- Work	of group and individual re	ports	tutorials,		
about	resources of elect	trical	 Laboratory, 	Dresentations	
engineering problems depend electrical			 Seminars, 	 Presentations, Deports 	
networks, pipe and traffic flow, data		 Projects, 	- Reports.		
fitting.			 Small group 		

IV. Course Content:					
	A – Theoretical Aspect:				
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours
1.	Matrices	a1, a2,	 Matrices. 	3	6

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		b1, b2	 Operations of Matrices. 		
			 Special Matrices. 		
			 Random Walks in Crystals. 		
			 Matrices for Engineering 		
			Applications: Electrical		
			networks in Team Project.		
			 Elementary Row operations of 		
			Matrices.		
			 Reduced Row Echelon Form 		
			of Matrices.		
			 Row and Column Space. 		
			 Rank of Matrix. 		
			• Complex Matrices and Forms.		
			 Homogeneous Linear Systems. 		
			 Solving Homogenous Linear 		
			Systems.		
			 Nonhomogeneous Linear 		
		a1 a2	Systems.		
2	Linear	$a_1, a_2,$	 Solving. Nonhomogeneous 	2	C
4.	Systems	01, 02, C1,	Linear Systems.	3	0
		ul	 Matrix Inverses. 		
			 Least Square vectors and data 		
			Fitting.		
			 LU Factorization. 		
			 Linear Transformations. 		
			 Vectors in the plane and 3- 		
		01 07	Space.		
3.	Vectors	$a_1, a_2,$ b1 b2	 Dot Product, Norm, Cross 	3	6
		D1, D2,	Product, Lines and Planes,		
			Projections.		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 Geometric Transformations, 		
			Inverse Mappings, Vector		
			Spaces, Subspaces and		
			Spanning Sets Subspace.		
			 Linear Independence, Basis 		
			and Dimension.		
		o1 o7	 Evaluation of Determents. 		
4.	Determinates	$a_1, a_2,$ b1 b2 c2	 Cramer's Rule. 	2	4
	Determinates	01, 02, 02	 Matrix Inverse. 		
			 Definitions and Some 		
	Eigenvalues	a1, a2,	examples		
5.	and	b1, b2, c1,	 Computation of eigenvalues 	1	2
	Eigenvectors	d1	and eigenvectors Problems.		
			 Diagonalizable matrices. 		
			 Orthogonality and 		
	Orthonormal		normalization.		
	bases and	a1, a2,	 Orthogonal Bases. 		
6.	Orthogonal	b1, b2, c1,	 Orthogonal decompositions of 	2	4
	projections	c2	vectors.		
	projections.		 Orthogonal matrices. 		
			 Gram-Schmidt Algorithm 		
Numbe	r of Weeks /an	d Units Per	Semester	14	28

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

B – Tutorial Aspect:						
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes		
1.	 Solving problems of matrices by different operations. Solving problems of random walks in crystals and electrical networks in team project Computations of matrices by elementary row operations. Computations of matrices by elementary row operations. Computations of matrices by reduced row echelon form. Computations of rank of matrix. Describe complex matrices. 	3	6	a1, a2, b1, b2, c1, d1		
2.	 Solving homogenous linear systems. Solving nonhomogeneous linear systems. Computations of inverse matrix. Computations of least square vectors and data fitting. Computation LU Factorization. Computation of linear transformations 	3	6	a1, a2, b1, b2, c1, d1		
3.	 Computations of Dot Product, Norm, Cross Product, Computation Linear independence and dependence; Basis and Dimension. Geometric representation of lines and planes, projections and transformations. 	3	6	a1, a2, b1, b2, c1,c2 d1		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	 Computation determinates. 			a1, a2, b1
4.	 Solving by Cramer's Rule. 	2	4	, b2, c1,c2
	 Finding inverse matrix by determinates. 			d1
	 Computation of eigenvalues and eigenvectors 			a1, a2, b1
5.	Problems.	1	2	, b2, c1,c2
	 Computation of diagonalizable matrices. 			d1
	 Computation of orthogonal bases. 			a1 a2 h1
	 Computation of orthogonal decompositions of 	2	1	$a_1, a_2, b_1, b_2, c_1, c_2$
6.	vectors.	2	+	02, 01,02 d1
	 Computation of orthogonal matrices and 			uı
	 Gram-Schmidt Algorithm 			
N	Sumber of Weeks /and Units Per Semester	14	28	

V. Teaching strategies of the course:

1- Lectures, Tutorials and self-learning

2- Examinations, test, course work, assignments, group and individual reports.

•	VI. Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Oral presentations explaining the following essential mathematical concepts: random walks in crystals; matrices for engineering applications: electrical networks in team project. vector spaces and properties of vectors; systems of linear systems; eigenvalues and eigenvectors; in additions, orthonormal bases and orthogonal projection.	a1, a2, b1 , b2, c1, c2 d1	2^{nd} 4^{th} 6^{th} 8^{th} 10^{th} 12^{th}	3

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Total			10
3.	Show solutions to selected problems from engineering applications related to the mathematical aspect.	a1, a2, b1 , b2, c1, c2 d1	4 th 8 th 12 th	3
2.	Individual written assignments or in groups to solve Problems of: matrices, electrical networks, computation Linear Independence and dependence; Basis and Dimension, Gram-Schmidt Algorithm.	a1, a2, b1 , b2, c1, c2 d1	3 rd 5 th 7 th 9 th 11 th 13 th	4

VII. Schedule of Assessment Tasks for Students During the Semester:

	Semester				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1.	Oral presentations of students	3, 5,8,10,12	7.5%	5	a1, a2, b1, b2, c1, c2 d1
2.	Individual written assignments or in groups	$3^{rd}, 5^{th}, 7^{th}$ $9^{th}, 11^{th}, 13^{th}$	7.5%	5	a1, a2, b1, b2, c1, c2 d1
3.	Mid-term Exam	7 th	30%	20	a1, a2, b1, b2, c1, c2 d1
4.	Final Exam	16 th	105%	70	a1, a2, b1, b2, c1, c2 d1
	Total		150%	100 %	

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	1. David Cherney, Tom Denton, Rohit Thomas and Andrew Waldron- 2013-					
		Linear Algebra- 1 st - Edition- Davis California.				
	2.	Dennis G. Zill- 2018- Advance Engineering Mathematics-6th -Edition- Jones				
		& Bartlett Learning, LLC.				
2- Ess	ential I	References.				
	1.	Peter V. O' Neil-2011- Advance Engineering Mathematics-7th -Edition-				
		Cengage.com.				
	2.	Erwin Kreyszig - 2011- Advance Engineering Mathematics-10th -Edition-				
		John Wiley & Sons, Inc.				
3- E	lectron	ic Materials and Web Sites etc.				
	1.	http://joshua.smcvt.edu/linearalgebra				
	2.	https://www.khanacademy.org/math/linear-algebra				
		https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/				

IX.	Course Policies:	
		-

Class Attendance:

1.	A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic
	Tardy:
2.	For late in attending the class, the student will be initially notified. If he repeated
	lateness in attending class he will be considered as absent.
	Exam Attendance/Punctuality:
2	A student should attend the exam on time. He is Permitted to attend an exam half one
5.	hour from exam beginning, after that he/she will not be permitted to take the exam and
	he/she will be considered as absent in exam-
	Assignments & Projects:
4.	The assignment is given to the students after each chapter; the student has to submit all
	the assignments for checking on time-

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Cheating:
5.	For cheating in exam, a student will be considered as failure. In case the cheating is
	repeated three times during his/her study the student will be disengaged from the
	Faculty-
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
6.	If the examination committee proved a plagiarism of a student, he will be disengaged
	from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university.
	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed,
7.	otherwise the student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek
By	<u>A. Barakat</u>
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi
	Name of Reviewer from the Department: Assoc. Prof. Dr. Riyad A. Muharram.
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
	Assoc. Prof. Dr. Ahmed Mujahed
	<u>Asst. Prof. Dr. Munasar Alsubri</u>

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

16. Template for Course Plan of Linear Algebra

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Dr. Adel Mohammed Alodhari	hammed office Hours					
Location& Telephone No.	777654885	SAT SUN MON TUE WED		THU			
E-mail	ass.prof.adel@gmail.com						

II. Course Identification and General Information:							
1.	Course Title:	Linear	Algebra.				
2.	Course Number & Code:	BR121					
			C.I	H		Total	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
		2	2	-	Tr. Total - 3		
4.	Study level/year at which this course is offered:	2 nd year / 1 st semester					
5.	Pre –requisite (if any):	None					
6.	Co –requisite (if any):	None.					
7.	Program (s) in which the course is offered	Electri	cal Enginee	ring			
8.	Language of teaching the course:	English and Arabic					
9.	System of Study:	semester					
10.	Mode of delivery:	Lecture					
11.	Location of teaching the course:	Classe	s at the Facu	ulty of E	ngineerin	g	

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description:

This is a course on linear algebra and its applications to Electrical Engineering's programs. Topics to be covered include: vectors; lines and planes; systems of linear equations; matrices; linear transformations and determinants; introduction to vector spaces; eigenvalues; eigenvectors; orthonormal bases; orthogonal decompositions of vectors; orthogonal matrices and Gram-Schmidt Algorithm.

IV.Intended learning outcomes (ILOs) of the course:

Ð	Brief summary of the	knowledge or skill	the course is intended	to develop:
---	----------------------	--------------------	------------------------	-------------

- 1. Demonstrate knowledge and understanding of basic concepts of matrices, using matrices in application engendering problems; rank of matrix, complex matrices; matrix inverse; vectors in spaces; dot product, norm, cross product, lines and planes, projections; linear independence, basis and dimension; eigenvalue and eigenvectors; orthonormal bases and orthogonal projections .
- **2.** Understand knowledge Mathematical tools and analytical skills in solving problems relevant to Electrical Engineering.
- 3. Solve mathematical and engineering problems in different contexts of topics.
- **4.** Practice mathematical reasoning skill in interpreting mathematical theories and linking them in the interpretation of electrical engineering applications.
- **5.** Use some software programing and calculators to solve system of linear equations and representations of matrices in software programing.
- **6.** Explain engineering phenomena, network and nodal incidence matrix in team project, mesh incidence matrix and electrical networks in team project.
- **7.** Work of group and individual reports about resources of electrical engineering problems depend on electrical networks, pipe and traffic flow, data fitting.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V. Course Content:								
•]	• Distribution of Semester Weekly Plan Of course Topics/Items and Activities.							
A – Th	eoretical Aspe	ect:						
Order	Topics List	Sub topicsWeekComDueHo						
1.	Matrices	 Matrices. Operations of Matrices. Special Matrices. Random Walks in Crystals. Matrices for Engineering Applications: Electrical networks in Team Project. Elementary Row operations of Matrices. Reduced Row Echelon Form of Matrices. Row and Column Space. Rank of Matrix. Complex Matrices and Forms 	1 st , 2 nd & 3 rd	6				
2.	Linear Systems	 Homogeneous Linear Systems. Solving Homogenous Linear Systems. Nonhomogeneous Linear Systems. Solving. Nonhomogeneous Linear Systems. Matrix Inverses. Least Square vectors and data Fitting. LU Factorization. Linear Transformations. 	4 th , 5 th & 6 th	6				
3.	Mid Term Exam	•	7 th	2				
4.	Vectors	• Vectors in the plane and 3-Space.	8 th ,9 th &	6				

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Sana'a University Faculty of Engineering Electrical Engineering Department B.Sc. of Computer and Control Engineering

		 Dot Product, Norm, Cross Product, Lines 	10	
		 and Planes, Projections. Geometric Transformations, Inverse Mappings, Vector Spaces, Subspaces and Spanning Sets Subspace. Linear Independence, Basis and Dimension. 		
5.	Determinates	Evaluation of Determents.Cramer's Rule.Matrix Inverse.	11 th & 12 th	4
6.	Eigenvalues and Eigenvectors	 Definitions and Some examples Computation of eigenvalues and eigenvectors Problems. Diagonalizable matrices. 	13 th	2
7.	Orthonormal bases and Orthogonal projections.	 Orthogonally and normalization. Orthogonal Bases. Orthogonal decompositions of vectors. Orthogonal matrices. Gram-Schmidt Algorithm 	14 th & 15 th	4
8.	Final Exam		16	2
	Number of	16	32	

B – Tutorial Aspect:					
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes	
1.	 Solving problems of matrices by different operations. Solving problems of random walks in crystals and electrical networks in team project 	1 st ,2 nd ,3 rd	6	a1, a2, b1, b2, c1, d1	

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	• Computations of matrices by elementary row			
	operations.Computations of matrices by elementary row			
	operations.			
	 Computations of matrices by reduced row 			
	echelon form.			
	 Computations of rank of matrix. Describe complex metrices 			
	 Describe complex matrices. Solving homogenous linear systems 			
	 Solving nonhomogeneous linear systems. 			
	 Solving holmomogeneous linear systems. Computations of inverse matrix 			a1 a2
2	 Computations of least square vectors and data 	4 th ,5 th	6	$a_1, a_2,$ b1 b2 c1
2.	fitting	,6 th		d1
	 Computation LU Factorization 			uı
	 Computation of linear transformations 			
	 Computations of Dot Product, Norm, Cross 			
	Product.			
	 Computation Linear independence and 	$7^{th}, 8^{th}$	_	a1, a2, b1,
3.	dependence; Basis and Dimension.	,9 th	6	b2, c1,c2
	• Geometric representation of lines and planes,			dl
	projections and transformations.			
	 Computation determinates. 			a1, a2, b1
4.	 Solving by Cramer's Rule. 	10^{th} , 11^{th}	4	, b2, c1,c2
	 Finding inverse matrix by determinates. 			d1
	 Computation of eigenvalues and eigenvectors 			a1, a2, b1
5.	Problems.	12^{th}	2	, b2, c1,c2
	 Computation of diagonalizable matrices. 			d1
	 Computation of orthogonal bases. 			a1, a2, b1,
6	 Computation of orthogonal decompositions of 	13 th ,14 th	4	b2, c1,c2
0.	vectors.			d1
	 Computation of orthogonal matrices and 			

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	 Gram-Schmidt Algorithm 			
Number of Weeks /and Units Per Semester		14	28	

VI. Teaching strategies of the course:

1. Lectures, Tutorials and self-learning

2. Examinations, test, course work, assignments, group and individual reports.

	VII.Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Oral presentations explaining the following essential mathematical concepts: random walks in crystals; matrices for engineering applications: electrical networks in team project. vector spaces and properties of vectors; systems of linear systems; eigenvalues and eigenvectors; in additions, orthonormal bases and orthogonal projection.	a1, a2, b1 , b2, c1, c2 d1	2^{nd} 4^{th} 6^{th} 8^{th} 10^{th} 12^{th}	3		
2.	Individual written assignments or in groups to solve Problems of: matrices, electrical networks, computation Linear Independence and dependence; Basis and Dimension, Gram-Schmidt Algorithm.	a1, a2, b1 , b2, c1, c2 d1	3 rd 5 th 7 th 9 th 11 th 13 th	4		
3.	Show solutions to selected problems from engineering applications related to the mathematical aspect.	a1, a2, b1 , b2, c1, c2 d1	4 th 8 th 12 th	3		
	Total			10		

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VII	VIII.Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Oral presentations of students	3, 5,8,10,12	7.5	5%	a1, a2, b1, b2, c1, c2 d1	
2.	Individual written assignments or in groups	$3^{rd}, 5^{th}, 7^{th}$ $9^{th}, 11^{th}, 13^{th}$	7.5	5%	a1, a2, b1, b2, c1, c2 d1	
3.	Mid-term Exam	7 th	30	20%	a1, a2, b1, b2, c1, c2 d1	
4.	Final Exam	16 th	105	70%	a1, a2, b1, b2, c1, c2 d1	
	Total		150	100 %		

IX	K. L	earning Resources:			
• Write Pub	• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication –				
1- Req	uired [Fextbook(s) (maximum two).			
	1.	David Cherney, Tom Denton, Rohit Thomas and Andrew Waldron- 2013-			
		Linear Algebra- 1 st - Edition- Davis California.			
	2.	Dennis G. Zill- 2018- Advance Engineering Mathematics-6th -Edition- Jones			
		& Bartlett Learning, LLC.			
2- Esse	ential H	References.			
	1.	Peter V. O' Neil-2011- Advance Engineering Mathematics-7th -Edition-			
		Cengage.com.			
	2.	Erwin Kreyszig - 2011- Advance Engineering Mathematics-10th -Edition-			
		John Wiley & Sons, Inc.			
3- El	3- Electronic Materials and Web Sites etc.				

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

1.

http://joshua.smcvt.edu/linearalgebra

	2. <u>https://www.khanacademy.org/math/linear-algebra</u> https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/
	https://oew.init.odu/courses/muticinatics/10/00/micur algeora spring 2010/
	X. Course Policies:
1.	Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic
2.	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	Exam Attendance/Punctuality: A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam-
4.	Assignments & Projects: The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time-
5.	Cheating: For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty-
6.	Plagiarism: Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university.

Other policies:

7. - Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room

Prepared byHead of Department
Asst. Prof. Dr. AdelQuality Assurance Unit
Assoc. Prof. Dr.Dean of the Faculty
Prof. Dr. MohammedAcademic Development
Center & Quality AssuranceAhmed Al-ShakiriMohammad AlgorafiAL-BukhaitiAssoc. Prof. Dr. Huda Al-Emad

Mobile phones are not allowed in class during the examination.
 Lecture notes and assignments my given directly to students using soft or hard copy

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad