

18. Course Specification of Linear Algebra

	I. Course Identification and General Information:							
1.	Course Title:	Linear Algebra.						
2.	Course Code & Number:	BR1	21.					
		C.H TOT				TOTAL		
3.	Credit hours:	Th.	Seminar/Tu	Pr	Tr.	CR HRS		
		2	2	-	-	3		
4.	Study level/ semester at which this course is offered:	First Year- First Semester.						
5.	Pre –requisite (if any):	None.						
6.	Co –requisite (if any):	None.						
7.	Program (s) in which the course is offered:		Mechanical Engineering Program.					
8.	Language of teaching the course:	English Language.						
9.	Location of teaching the course:	Mechanical Engineering Department.			ent.			
10.	Prepared By:	Asst. Prof. Dr. Adel Mohammed Al-Odhari.			Al-			
11.	Date of Approval:					-		

II. Course Description:

This is a course of linear algebra and its applications to Mechanical Engineering programs. Topics to be covered include: vectors; lines and planes; systems of linear equations; matrices; linear transformations and determinants; introduction to vector spaces; eigenvalues; eigenvectors; orthonormal bases; orthogonal decompositions of vectors; orthogonal matrices and Gram-Schmidt Algorithm.

	III. Alignment course intended learning outcomes (CILOs) of the course			
a1	Recognize the basic concepts of matrices and its applications in solving engendering problems.	A1		
a2	Identify mathematical tools and analytical skills in solving problems relevant to Mechanical Engineering.	A4		
b1	Examine mathematical and engineering problems in different contexts of topics.	B1		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

b2	Analyze mathematical reasoning skill in interpreting mathematical theories and linking them in the interpretation of Mechanical engineering applications.	В3
c1	Apply some software programing and calculators to solve system of linear equations and representations of matrices in software programing.	, C2
c2	Prescribe engineering phenomena, network and nodal incidence matrix in team project, mesh incidence matrix and electrical networks in team project.	C1
d1	Assess tasks, time, processes and resources of mechanical engineering problems depend electrical networks, pipe and traffic flow, data fitting.	D2

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
a1- Recognize the basic concepts of matrices and its applications in solving engendering problems.	Lectures, Tutorials	Examinations, Homework Presentations				
a2- Identify Mathematical tools and	Lectures, Tutorials	Examinations, Test,				
analytical skills in solving problems	and Self-Learning	Course Work,				
relevant to Electrical Engineering.	Problems	Assignments,				
(B) Alignment Course Intended Learning Ou Strategies and Assessment Strategies:	itcomes of Intellect	ual Skills to Teaching				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
b1- Examine mathematical and engineering						
problems in different contexts of topics.		Examinations Test				
b2- Analyze mathematical reasoning skill in	Lectures and	Examinations, Test,				
interpreting mathematical theories and	Tutorials	Course Work,				
linking them in the interpretation of		Assignments,				
electrical engineering applications.						

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1- Apply some software programing and calculators to solve system of linear equations and representations of matrices in software programing.	Lectures, Case	Examinations, Test, Course Work,
c2- Prescribe engineering phenomena, network and nodal incidence matrix in team project, mesh incidence matrix and electrical networks in team project.	Study	Assignments

	(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:					
	Assessment Strategies					
d1-	Assess to tasks, time, processes and resources of mechanical engineering problems depend electrical networks, and traffic flow, data fitting.	Tutorials, Case Study	Presentations, Reports.			

IV. Course Content:							
	A – Theoretical Aspect:						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours		
1	Matrices	a1, a2, b1, b2	 Matrices. Operations of Matrices. Special Matrices. Random Walks in Crystals. Matrices for Engineering Applications: Electrical networks in Team Project. Elementary Row operations of Matrices. Reduced Row Echelon Form of Matrices. Row and Column Space. Rank of Matrix. Complex Matrices and Forms. 	3	6		
2	Linear Systems	a1, a2, b1, b2, c1,d1	Homogeneous Linear Systems.Solving Homogenous Linear Systems.	3	6		

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 Nonhomogeneous Linear Systems. Solving. Nonhomogeneous Linear Systems. Matrix Inverses. Least Square vectors and data Fitting. LU Factorization. Linear Transformations. 		
3	Vectors	a1, a2, b1, b2,	 Vectors in the plane and 3-Space. Dot Product, Norm, Cross Product, Lines and Planes, Projections. Geometric Transformations, Inverse Mappings, Vector Spaces, Subspaces and Spanning Sets Subspace. Linear Independence, Basis and Dimension. 	1	2
4	Mid Term Exam	a1, a2, b1, b2, d1	The First 3 Lectures	1	2
5	Vectors	a1, a2, b1, b2,	 Vectors in the plane and 3-Space. Dot Product, Norm, Cross Product, Lines and Planes, Projections. Geometric Transformations, Inverse Mappings, Vector Spaces, Subspaces and Spanning Sets Subspace. Linear Independence, Basis and Dimension. 	2	4

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

9	Final Exam r of Weeks /an	a1, a2, b1, b2, c1,c2,d1	All Topics	1 16	2 32
8	Orthonormal Bases and Orthogonal Projections.	a1, a2, b1, b2, .c1,c2	 Orthogonality and normalization. Orthogonal Bases. Orthogonal decompositions of vectors. Orthogonal matrices. Gram-Schmidt Algorithm 	2	4
7	Eigenvalues and Eigenvectors	a1, a2, b1, b2,c1,d1	 Definitions and Some examples Computation of eigenvalues and eigenvectors Problems. Diagonalizable matrices. 	1	2
6	Determinates	a1, a2, b1, b2, c2	Evaluation of Determents.Cramer's Rule.Matrix Inverse.	2	4

B - Tutorial Aspect:							
Order	Tasks/ Experiments	Number of Weeks Contact hours		Learning Outcomes			
1	 Solving problems of matrices by different operations. Solving problems of random walks in crystals and electrical networks in team project Computations of matrices by elementary row operations. Computations of matrices by elementary row operations. Computations of matrices by reduced row echelon form. 	3	6	a1, a2, b1, b2, c1, d1			

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Computations of rank of matrix.			
	 Describe complex matrices. 			
2	 Solving homogenous linear systems. Solving nonhomogeneous linear systems. Computations of inverse matrix. Computations of least square vectors and data fitting. Computation LU Factorization. Computation of linear transformations 	3	6	a1, a2, b1, b2, c1, d1
3	 Computations of Dot Product, Norm, Cross Product, Computation Linear independence and dependence; Basis and Dimension. Geometric representation of lines and planes, projections and transformations. 	3	6	a1, a2, b1, b2, c1,c2 d1
4	 Computation determinates. Solving by Cramer's Rule. Finding inverse matrix by determinates. 	2	4	a1, a2, b1 , b2, c1,c2 d1
5	Computation of eigenvalues and eigenvectors Problems.Computation of diagonalizable matrices.	1	2	a1, a2, b1 , b2, c1,c2 d1
6	 Computation of orthogonal bases. Computation of orthogonal decompositions of vectors. Computation of orthogonal matrices and Gram-Schmidt Algorithm 	2	4	a1, a2, b1, b2, c1,c2 d1
Numb	er of Weeks /and Units Per Semester:	14	28	

V. Teaching strategies of the course:

- Lectures, Tutorials, Self-Learning Problems and Case Study
- Examinations, test, course work, assignments, group and individual reports.

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VI. Assignments:							
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark			
1	Oral presentations explaining the following essential mathematical concepts: random walks in crystals; matrices for engineering applications: electrical networks in team project. vector spaces and properties of vectors; systems of linear systems; eigenvalues and eigenvectors; in additions, orthonormal bases and orthogonal projection.	a1, a2, b1 , b2, c1, c2 d1	2 nd , 4 th , 6 th 8 th 10 th 12 th weeks	10			
2	Individual written assignments or in groups to solve Problems of: matrices, electrical networks, computation Linear Independence and dependence; Basis and Dimension, Gram-Schmidt Algorithm.	a1, a2, b1 , b2, c1, c2 d1	3 rd 5 th 7 th 9 th 11 th 13 th weeks	10			
3	Show solutions to selected problems from engineering applications related to the mathematical aspect.	a1, a2, b1 , b2, c1, c2 d1	4 th 8 th 12 th weeks	10			
	Total			30			

Schedule of Assessment Tasks for Students During the Semester:

No.	Assessment Method	Week Due	Mark	of Final Assessment	Aligned Course Learning Outcomes
1	Assignments	weekly	30	20 %	a1, a2, b1, b2, c1, c2 d1
2	Mid-Term Exam	8 th	30	20 %	a1, a2, b1, b2, c1, c2 d1
3	Final Exam	16 th	90	60 %	a1, a2, b1, b2, c1, c2 d1
Total			150	100 %	

VIII. Learning Resources:

Written in the following order: (Author - Year of publication - Title - Edition - Place of publication -Publisher).

1- Required Textbook(s) (maximum two).

- David Cherney, Tom Denton, Rohit Thomas and Andrew Waldron, 2013, Linear Algebra, 1st – Edition, Davis California.
- Dennis G. Zill- 2018- Advance Engineering Mathematics-6th -Edition- Jones & Bartlett Learning, LLC.

2- Essential References.

- Peter V. O' Neil, 2011, Advance Engineering Mathematics, 7th -Edition-
- Erwin Kreyszig, 2011, Advance Engineering Mathematics, 10th –Edition, John 2. Wiley & Sons, Inc.

1- Electronic Materials and Web Sites etc.

- http://joshua.smcvt.edu/linearalgebra 1.
- 2. https://www.khanacademy.org/math/linear-algebra
- 3. https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/

IX. **Course Policies:**

Class Attendance:

-A student should attend not less than 75 % of total hours of the subject; otherwise he will not be 1. able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Tardy:
2.	- For late in attending the class, the student will be initially notified. If he repeated lateness in
	attending class he will be considered as absent.
	Exam Attendance/Punctuality:
3.	- A student should attend the exam on time. He is Permitted to attend an exam half one hour from
3.	exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam.
	Assignments & Projects:
4.	- The assignment is given to the students after each chapter; the student has to submit all the
	assignments for checking on time.
	Cheating:
5.	- For cheating in exam, a student will be considered as failure. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student. If the
6.	examination committee proved a plagiarism of a student, he will be disengaged from the Faculty.
	The final disengagement of the student from the Faculty should be confirmed from the Student
	Council Affair of the university.
	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the
7.	student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.							
$\mathbf{B}\mathbf{y}$	<u>Barakat</u>							
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi							
	Name of Reviewer from the Department: Assoc.Prof. Dr. Khalil Al-Hatab							
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa							
	Assoc. Prof. Dr. Ahmed Mujahed							
	Asst. Prof. Dr. Munasar Alsubri							

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

18. Template for Course Plan of Linear Algebra

I. Information about Faculty Member Responsible for the							
Course:							
Name of Faculty Member	Asst. Prof. Dr. Adel Mohammed Alodhari	Office Hours					
Location& Telephone No.	777654885	SAT	SUN	MON	TUE	WED	THU
E-mail	ass.prof.adel@gmail.com						

II.	II. Course Identification and General Information:							
1.	Course Title:	Linear Algebra.						
2.	Course Number & Code:	BR121.						
	Credit hours:		C.H			TOTAL		
3.		Th.	Seminar/Tu	Pr	Tr.	CR HRS		
		2	2	-	-	3		
4.	Study level/year at which this course is offered:	First Year- First Semester.						
5.	Pre –requisite (if any):	None						
6.	Co –requisite (if any):	None						

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

7.	Program (s) in which the course is offered	Mechanical Engineering Program		
8.	Language of teaching the course:	English Language		
9.	System of Study:	Semesters.		
10	Mode of delivery:	Lectures and Tutorials.		
11	Location of teaching the course:	Mechanical Engineering Department.		

III. Course Description:

This is a course of linear algebra and its applications to Mechanical Engineering programs. Topics to be covered include: vectors; lines and planes; systems of linear equations; matrices; linear transformations and determinants; introduction to vector spaces; eigenvalues; eigenvectors; orthonormal bases; orthogonal decompositions of vectors; orthogonal matrices and Gram-Schmidt Algorithm.

IV. Intended learning outcomes (ILOs) of the course:

Brief summary of the knowledge or skill the course is intended to develop:

- 1. Recognize the basic concepts of matrices and its applications in solving engendering problems.
- **2.** Identify mathematical tools and analytical skills in solving problems relevant to Mechanical Engineering.
- **3.** Examine mathematical and engineering problems in different contexts of topics.
- **4.** Analyze mathematical reasoning skill in interpreting mathematical theories and linking them in the interpretation of Mechanical engineering applications.
- **5.** Apply some software programing and calculators to solve system of linear equations and representations of matrices in software programing.
- **6.** Prescribe engineering phenomena, network and nodal incidence matrix in team project, mesh incidence matrix and electrical networks in team project.
- **7.** Assess to tasks, time, processes and resources of mechanical engineering problems depend electrical networks, pipe and traffic flow, data fitting.

V. Course Content:

Distribution of Semester Weekly Plan of Course Topics/Items and Activities.

A – Theoretical Aspect:

Order	Topics List	Sub –topics	Week Due	Contact Hours
1	Matrices	 Matrices. Operations of Matrices. Special Matrices. Random Walks in Crystals. Matrices for Engineering Applications: Electrical networks in Team Project. Elementary Row operations of Matrices. Reduced Row Echelon Form of Matrices. Row and Column Space. Rank of Matrix. Complex Matrices and Forms 	1 st , 2 nd & 3 rd weeks	6
2	Linear Systems	 Homogeneous Linear Systems. Solving Homogenous Linear Systems. Nonhomogeneous Linear Systems. Solving. Nonhomogeneous Linear Systems. Matrix Inverses. Least Square vectors and data Fitting. LU Factorization. Linear Transformations. 	4 th , 5 th & 6 th weeks	6
3	Vectors	 Vectors in the plane and 3-Space. Dot Product, Norm, Cross Product, Lines and Planes, Projections. Geometric Transformations, Inverse Mappings, Vector Spaces, Subspaces and Spanning Sets Subspace. 	7 th	2

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		 Linear Independence, Basis and Dimension. 		
4	Mid Term Exam	• The First 3 Lectures	8 th week	2
5	Vectors	 Vectors in the plane and 3-Space. Dot Product, Norm, Cross Product, Lines and Planes, Projections. Geometric Transformations, Inverse Mappings, Vector Spaces, Subspaces and Spanning Sets Subspace. Linear Independence, Basis and Dimension. 	9 th ,10 th weeks	6
6	Determinates	Evaluation of Determents.Cramer's Rule.Matrix Inverse.	11 th & 12 th weeks	4
7	Eigenvalues and Eigenvectors	 Definitions and Some examples Computation of eigenvalues and eigenvectors Problems. Diagonalizable matrices. 	13 th week	2
8	Orthonormal Bases and Orthogonal Projections.	 Orthogonally and normalization. Orthogonal Bases. Orthogonal decompositions of vectors. Orthogonal matrices. Gram-Schmidt Algorithm 	14 th and 15 th weeks	4
9	Final Exam	All Topics	16 th week	2
Number	r of Weeks /and	Units Per Semester	16	32

B – Tutorial Aspect:

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Order	Topics List	Week Due	Contact Hours
1	 Solving problems of matrices by different operations. Solving problems of random walks in crystals and electrical networks in team project Computations of matrices by elementary row operations. Computations of matrices by elementary row operations. Computations of matrices by reduced row echelon form. Computations of rank of matrix. Describe complex matrices. 	1 st , 2 nd & 3 rd weeks	6
2	 Solving homogenous linear systems. Solving nonhomogeneous linear systems. Computations of inverse matrix. Computations of least square vectors and data fitting. Computation LU Factorization. Computation of linear transformations 	4 th , 5 th & 6 th weeks	6
3	 Computations of Dot Product, Norm, Cross Product, Computation Linear independence and dependence; Basis and Dimension. Geometric representation of lines and planes, projections and transformations. 	7 th , 8 th & 9 th weeks	6
4	 Computation determinates. Solving by Cramer's Rule. Finding inverse matrix by determinates. 	10 th & 11 th weeks	4
5	 Computation of eigenvalues and eigenvectors Problems. Computation of diagonalizable matrices. 	12 th week	2

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

VI. Teaching strategies of the course:

- Lectures, Tutorials, Self-Learning Problems and Case Study
- Examinations, test, course work, assignments, group and individual reports.

VII	. Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1	Oral presentations explaining the following essential mathematical concepts: random walks in crystals; matrices for engineering applications: electrical networks in team project. vector spaces and properties of vectors; systems of linear systems; eigenvalues and eigenvectors; in additions, orthonormal bases and orthogonal projection.	a1, a2, b1 , b2, c1,c2 d1	2 nd 4 th 6 th 8 th 10 th 12 th weeks	10
2	Individual written assignments or in groups to solve Problems of: matrices, electrical networks, computation Linear Independence and dependence; Basis and Dimension, Gram-Schmidt Algorithm.	a1, a2, b1 , b2, c1,c2 d1	3 rd 5 th 7 th 9 th 11 th 13 th weeks	10
3	Show solutions to selected problems from engineering applications related to the mathematical aspect.	a1, a2, b1 , b2, c1,c2 d1	4 th 8 th 12 th weeks	10
Total			30	

VIII. Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment
1	Assignments	weekly	30	20 %
2	Mid-Term Exam	8 th week	30	20%
3	Final Exam	16 th week	90	70%
Total		150	100%	

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

IX. Learning Resources:

 Written in the following order: (Author – Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- **1.** David Cherney, Tom Denton, Rohit Thomas and Andrew Waldron, 2013, Linear Algebra, 1st Edition, Davis California.
- **2.** Dennis G. Zill- 2018- Advance Engineering Mathematics-6th -Edition- Jones & Bartlett Learning, LLC.

2- Essential References.

- **1.** Peter V. O' Neil, 2011, Advance Engineering Mathematics, 7th -Edition-Cengage.com.
- **2.** Erwin Kreyszig, 2011, Advance Engineering Mathematics, 10th –Edition, John Wiley & Sons, Inc.

3- Electronic Materials and Web Sites etc.

- 1. http://joshua.smcvt.edu/linearalgebra
- 2. https://www.khanacademy.org/math/linear-algebra
- 3. https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/

X. Course Policies:

Class Attendance:

1. A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic

Tardy:

2. - For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.

Exam Attendance/Punctuality:

3. - A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam.

Assignments & Projects:

4. - The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.

5. Cheating:

Head of Quality Assurance Dean of the Faculty Academic Rector of Sana'a Department Unit Prof. Dr. Mohammed Development University AL-Bukhaiti Asst. Prof. Dr. Assoc. Prof. Dr. Center & Quality Prof. Dr. Al-Qassim Adel Ahmed Mohammad Assurance Mohammed Abbas Al-Shakiri Algorafi Assoc. Prof. Dr. Huda Al-Emad

- For cheating in exam, a student will be considered as failure. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.

Plagiarism:

Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university.

Other policies:

7.

- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room
 - Mobile phones are not allowed in class during the examination.

Lecture notes and assignments my given directly to students using soft or hard copy