

19. Course Specification of Logic Circuits I

	I. Course Identification and General Information:							
1.	Course Title:	Logic	Circuits I					
2.	Course Code & Number:	CCE111						
			C.	Н		TOTAL		
3.	Credit hours:	General Information:Logic Circuits ICCE111CCE111TOTAIT. T. TOTAITh. Tut. Pr. Tr. Tr.TOTAI2-2-3 2^{nd} Level/1 st Semester-3Computer skills (UR003)None.Computer skills (UR003)None.Computer Engineering and ControlEnglishFaculty of EngineeringAsst. Prof. Dr. Osama Al-Shibami	IUIAL					
		2	-	2 -		3		
4.	Study level/ semester at which this course is offered:	2 nd Level/1 st Semester						
5.	Pre –requisite (if any):	Computer skills (UR003)						
6.	Co –requisite (if any):	None.						
7.	Program (s) in which the course is offered:	Computer Engineering and Control			rol			
8.	Language of teaching the course:	English						
9.	Location of teaching the course:	Faculty of Engineering						
10.	Prepared By:	Asst.	Prof. Dr. (Dsama A	l-Shiban	ni		
11.	Date of Approval							

II. Course Description:

This course aims to provide students with logic-algebra and digital system principles related to logic design and its applications in digital integrated circuits and systems. Course topics **include**; Number systems, binary arithmetic and codes, logic gates, Boolean algebra and logic simplifications, systematic design and realization of combinational circuits, Functions of combinational circuits logic using NAND and NOR gates. Throughout hands on work on logic lab, computer lab using simulation tools and term-projects for solving some simple practical problems to markets and industries, students will develop their practical and problem-solving skills in the field of digital system design and implementation.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	III. Course Intended learning outcomes	Referenced
	(CILOs) of the course	PILOs
a1.	Define properties and characteristics of logic gates, laws and rules of Boolean Algebra, Boolean expressions, combinational circuits, and sequential circuits, K-Map, Truth Table and State Diagram.	A1
a2.	Explain digital system, components or process to meet desired needs within realistic constraints.	A3
b1.	Identify engineering problems in the area of digital logic circuit design.	B2
b2.	Analyze effectively digital logic circuit based on practical problem and implements the circuit design in lab.	B3, B4
c1.	Design of digital logic circuits using apply knowledge of number systems, codes and Boolean algebra.	C2
c2.	Use the techniques, skills, and modern engineering tools necessary for engineering practice.	C3
d1.	Function on teams through digital circuit experiments and projects Works.	D1

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
 a1- Define properties and characteristics of logic gates, laws and rules of Boolean Algebra, Boolean expressions, combinational circuits, and sequential circuits, K-Map, Truth Table and State Diagram. 	 Active Lectures, Hands on Lab Work, Presentation 	 Quizzes Homework Written Exam Lab Assessments. 		

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

a2- Explain digital system components or process t	, - Lecture	- Quizzes
meet desired needs withi realistic constraints.	- Class Discussion	- Written Exam.

(**B**) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1- Identify engineering problems in the area of digital logic circuit design.	 Active Lectures, Projects, Class Discussion Problem Solving 	 Quizzes Project Presentations, Homework Written Exam.
b2-Analyze effectively digital logic circuit based onpracticalproblemandimplements thecircuitdesign in lab.	 Active Lectures, Problem Solving Hands-on Laboratory Work 	 Quizzes Homework Written Exam, Lab Assessments.

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1-	Design digital logic circuits using apply knowledge of number systems, codes and Boolean algebra.	 Active Lectures, Presentation Class Discussion Problem Solving 	 Quizzes Homework Written Exam.
c2- and	Use the techniques, skills, modern engineering tools necessary for engineering practice.	 Hands on Lab Work, Computer-based Lab Works, Presentation Problem Solving 	 Quizzes Lab Assessments, Lab Reports Homework Written Exam.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning OutcomesTeaching strategiesAssessment Strategies				
d1- Function on teams throu digital circuit experime and projects works.	gh nts - Lab Work - Class Discussion	 Quizzes Homework Projects Presentations, Lab Reports. 		

I	IV. Course Content:					
	A – Theoreti	cal Aspect:				
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours	
1.	Introduction to Logic Circuits and its applications	a1, a2	 Analog and Digital Systems Binary Digits and Logic Levels Digital Waveforms Timing Diagrams Serial and Parallel Data Basic Logic Functions Programmable Logic Logic CAD system (VHDL) 	1	2	
2.	Number systems and Codes	a2, b1, b2, c1	 Binary, Octal and Hex Number Systems Number Systems Conversions. BCD, Gray and Alphanumeric Codes. 	1	2	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			• Error Detection.		
3.	Digital Arithmetic	a2, b1, b2, c1	 Un-Signed, Signed Numbers Representations, 1's & 2's Complements Number Representations, and Scientific Representations, Binary addition and Subtraction: effective of 2's Complements on subtraction operation, Binary Multiplication and Division. BCD Addition and Hex. Arithmetic 	3	6
4.	Logic Gates	a1, a2, b1, b2, c1,	 Boolean Constants and Variables. Truth Tables. OR, AND, and NOT Operations. Logic Algebra and Logic Implementation. NOR and NAND Gates 	2	4
5.	Boolean Algebra and Logic Simplification	a1, a2, b1, b2, c1	 Boolean and Demorgan's Theorems. Universality of NAND and NOR Gates. Alternative Representations. Labeling Logic Signals. SOP and POS Forms. 	2	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			• Simplifying Logic Circuits using algebra and K-maps.		
6.	Combinational Logic	a1, a2, b1, b2, c1	 Introduction Basic Circuits and Design Procedure. Using NAN and NOR gates in Design. Display Devices 	1	2
7.	Combinational Circuits	a1, a2, b1, b2, c1	 Introduction. Arithmetic Circuits and Comparators. Decoders, and Encoders. Multiplexers and Demultiplexers. 	2	4
8.	Combinational Logic Programming	a1, a2, b1, b2, c1, c2	 Introduction Describing Logic circuits Development Software Description languages and Programming Languages Implementing Logic Circuits using PLDs VHDL Format and Syntax Intermediate signals in VHDL Representing Data in VHDL Truth Tables using VHDL Decision Control Structures Implementing Adders, Decoders, Encoders, 	2	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Normalia	 Unite Der S	Converters.	14	20
		Comparators, Code		
		Demultiplexers, Magnitude		
		Multiplexers,		

B - Pı	B - Practical Aspect:						
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes			
1.	AND with 2 Inputs and 3 Inputs	1	2	b1, b2, c1, c2, d1			
2.	OR with 2 Inputs and 3 Inputs	1	2	b1, b2, c1, c2, d1			
3.	NAND with 2 Inputs and 3 Inputs	1	2	b1, b2, c1, c2, d1			
4.	NOR with 2 Inputs and 3 Inputs	1	2	b1, b2, c1, c2, d1			
5.	XOR and XNOR	1	2	b1, b2, c1, c2, d1			
6.	XOR by using NAND gates	1	2	b1, b2, c1, c2, d1			
7.	XOR by using NOR gates	1	2	b1, b2, c1, c2, d1			
8.	Decoder	1	2	b1, b2, c1, c2, d1			
9.	Decoder with 7 segments	1	2	b1, b2, c1, c2, d1			
10.	Encoder	1	2	b1, b2, c1, c2, d1			

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

11.	Multiplexer	1	2	b1, b2, c1, c2, d1
12.	Demultiplexer	1	2	b1, b2, c1, c2, d1
13.	Review	1	2	a1, a2, b1, b2, c1, c2, d1
14.	Final Submission of Projects Reports and Presentations: Students work in groups of 2 or 3 students to solve some practical problems	1 (Starting from Week No.4)	2	a1, a2, b1, b2, c1, c2, d1
Num	ber of Weeks /and Units Per Semester	14	28	

V. Teaching strategies of the course:

- Active Lectures,
- Hands on Lab Work,
- Computer-based Lab Work,
- Class Discussion
- Problem Solving
- Projects & Presentations

	VI. Assignments & Reports:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Number Systems and their Arithmetic	a1, a2, b1	3 rd & 4 th	3
2.	Boolean Algebra & K-Map Simplifications with lab Report.	a1, a2, b1, b2, d1	6^{th} & 9^{th}	6

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

3.	Combinational Logic Circuits Design (Adders, Sub, Multipliers, Divisions, Comparators, MUXs. & Decoders) with lab Reports.	a1, a2, b1, b2, c1, d1	10 th to 13 th	6
Tota	al Marks			15

VII. Schedule of Assessment Tasks for Students During the Semester:

	Semester							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1.	Assignments & Reports	3^{rd} to 13^{th}	15	10%	a1, a2, b1, b2, c1, d1			
2.	Quizzes	5^{th} , 10^{th} & 14^{th}	10	6.67%	a1, a2, b1, b2			
3.	Midterm Exam (Theory)	8 th	20	13.33%	a1, a2, b1, b2, c1			
4.	Final Lab. Exam (including Course Project Evaluation)	14 th & 15 th	30	20%	a1, a2, b1, b2, c1, d1			
5.	Final Exam (Theory)	16^{th}	75	50%	a1, a2, b1, b2, c1, c2			
Total Marks / Percentage			150	100%				

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1 -Thomas L. Floyd, 2009, Digital Fundamentals, 10th Edition, Pearson Education International

2- Ronald J. Tocci, Neal S.Widmer, Gregory L. Moss, 2007, Digital Systems : Principles and Applications, 10th Edition,. Pearson Prentice Hall

2- Essential References.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	1-Douglas L. Perry, 2002, VHDL Programming by Example, 4 th Edition, McGraw-F 2 -M. M. Mano, M. D. Ciletti, 2007, Digital Design, 4 th Edition, Prentice-Hall
3- E	Electronic Materials and Web Sites etc.
	1-Faculty Electronic Library

]	IX. Course Policies:
	Class Attendance:
1.	-A student should attend not less than 75 % of total hours of the subject; otherwise he
	will not be able to take the exam and will be considered as exam failure. If the student is
	absent due to illness, he/she should bring an approved statement from university Clinic
	Tardy:
2.	- For late in attending the class, the student will be initially notified. If he repeated
	lateness in attending class he will be considered as absent.
	Exam Attendance/Punctuality:
3	- A student should attend the exam on time. He is Permitted to attend an exam half one
5.	hour from exam beginning, after that he/she will not be permitted to take the exam and
	he/she will be considered as absent in exam.
	Assignments & Projects:
4.	- The assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time.
	Cheating:
5.	- For cheating in exam, a student will be considered as failure. In case the cheating is
	repeated three times during his/her study the student will be disengaged from the Faculty.
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
6.	If the examination committee proved a plagiarism of a student, he will be disengaged
	from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university.
7.	Other policies:

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room

- Mobile phones are not allowed in class during the examination.

Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.
By	<u>Barakat</u>
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi
	Name of Reviewer from the Department: Assoc. Prof. Dr. Farouk Al-Fuhaidy
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
	Assoc. Prof. Dr. Ahmed Mujahed
	Asst. Prof. Dr. Munasar Alsubri

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

19. Template for Course Plan of Logic Circuits 1

Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Dr. Osama Al- Shibami	Office Hours					
Location& Telephone No.	Electrical Eng. Dept.	SAT	SUN	MON	TUE	WED	THU
E-mail	Alshibami@yemen.net				10- 12		

	II. Course Identification and General Information:						
1.	Course Title:	Logic	Logic Circuits I				
2.	Course Number & Code:	CCE1	11				
			C.	Н		Total	
3.	Credit hours:	Th.	Tut.	Pr.	Tr.	Total	
			-	2	-	3	
4.	Study level/year at which this course is offered:	2 nd Level/1 st Semester					
5.	Pre –requisite (if any):	Computer skills (UR003)					
6.	Co –requisite (if any):	None.					
7.	Program (s) in which the course is offered	Computer Engineering and Control					
8.	Language of teaching the course:	English					
9.	System of Study:	Semester System					
10.	Mode of delivery:	Lecture					
11.	Location of teaching the course:	Classr	oom				

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description:

This course aims to provide students with logic-algebra and digital system principles related to logic design and its applications in digital integrated circuits and systems. Course topics **include**; Number systems, binary arithmetic and codes, logic gates, Boolean algebra and logic simplifications, systematic design and realization of combinational circuits, Functions of combinational circuits logic using NAND and NOR gates. Throughout hands on work on logic lab, computer lab using simulation tools and term-projects for solving some simple practical problems to markets and industries, students will develop their practical and problem-solving skills in the field of digital system design and implementation.

IV.Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - 1. Define properties and characteristics of logic gates, laws and rules of Boolean Algebra, Boolean expressions, combinational circuits, and sequential circuits, K-Map, Truth Table and State Diagram.
 - **2.** Explain digital system, components or process to meet desired needs within realistic constraints.
 - 3. Identify engineering problems in the area of digital logic circuit design.
 - **4.** Analyze effectively digital logic circuit based on practical problem and implements the circuit design in lab.
 - 5. Design digital logic circuits using and applying knowledge of number systems, codes and Boolean algebra.
 - **6.** Use the techniques, skills, and modern engineering tools necessary for engineering practice.
 - 7. Function on teams through digital circuit experiments and projects works.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V. Course Content:						
•	Distribution of Seme	ster Weekly Plan of Course Topics/Items and	Activitie	s.		
A – Tl	neoretical Aspect	:				
Order	Topics List	Sub Topics List	Week Due	Contact Hours		
1.	Introduction to Logic Circuits and its applications	 Analog and Digital Systems Binary Digits and Logic Levels Digital Waveforms Timing Diagrams Serial and Parallel Data Basic Logic Functions Programmable Logic Logic CAD system (VHDL) 	1 st	2		
2.	Number systems and Codes	 Binary, Octal and Hex Number Systems Number Systems Conversions. BCD, Gray and Alphanumeric Codes. Error Detection. 	2 nd	2		
3.	Digital Arithmetic	 Un-Signed, Signed Numbers Representations, 1's & 2's Complements Number Representations, and Scientific Representations, Binary addition and Subtraction: effective of 2's Complements on subtraction operation, Binary Multiplication and Division. BCD Addition and Hex. Arithmetic 	3 rd , 4 th , 5 th	6		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

4.	Logic Gates	 Boolean Constants and Variables. Truth Tables. OR, AND, and NOT Operations. Logic Algebra and Logic Implementation. NOR and NAND Gates 	6 th ,7 th	4
5.		Mid Term Exam	8 th	2
6.	Boolean Algebra and Logic Simplification	 Boolean and Demorgan's Theorems. Universality of NAND and NOR Gates. Alternative Representations. Labeling Logic Signals. SOP and POS Forms. Simplifying Logic Circuits using algebra and K-maps. 	9 th , 10 th	4
7.	Combinational Logic	 Introduction Basic Circuits and Design Procedure. Using NAN and NOR gates in Design. Display Devices 	11 th	2
8.	Combinational Circuits	 Introduction. Arithmetic Circuits and Comparators. Decoders, and Encoders. Multiplexers and Demultiplexers. 	12 th , 13 th	4
9.	Combinational Logic Programming	 Introduction Describing Logic circuits Development Software Description languages and Programming Languages Implementing Logic Circuits using PLDs 	14 th , 15 th	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		• VHDL Format and Syntax		
		• Intermediate signals in VHDL		
		Representing Data in VHDL		
		• Truth Tables using VHDL		
		Decision Control Structures		
		• Implementing Adders, Decoders,		
		Encoders, Multiplexers,		
		Demultiplexers, Magnitude		
		Comparators, Code Converters.		
10.		Final Exam	16 th	2
Number of Weeks /and Units Per Semester 16				

B – Practical Aspect:			
Order	Topics List	Week Due	Contact Hours
1.	AND with 2 Inputs and 3 Inputs	1 st	2
2.	OR with 2 Inputs and 3 Inputs	2^{nd}	2
3.	NAND with 2 Inputs and 3 Inputs	3 rd	2
4.	NOR with 2 Inputs and 3 Inputs	4 th	2
5.	XOR and XNOR	5 th	2
6.	XOR by using NAND gates	6 th	2
7.	XOR by using NOR gates	7 th	2
8.	Decoder	8 th	2
9.	Decoder with 7 segments	9 th	2
10.	Encoder	10 th	2
11.	Multiplexer	11 th	2
12.	Demultiplexer	12 th	2
13.	Review	13 th	
14.	Term Project Presentation	14 th	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

15.	Lab Exam	15 th	2
Number of Weeks /and Units Per Semester		15	30

VI. Teaching strategies of the course:

- Active Lectures,
- Hands on Lab Work,
- Computer-based Lab Work,
- Class Discussion
- Problem Solving
- Projects & Presentations

VII. Assignments & Reports:			
No	Assignments	Week Due	Mark
1.	Number Systems and their Arithmetic	3^{rd} & 4^{th}	3
2.	Boolean Algebra & K-Map Simplifications with lab Report.	$6^{th} \& 9^{th}$	6
3.	Combinational Logic Circuits Design (Adders, Sub, Multipliers, Divisions, Comparators, MUXs. & Decoders) 10 th to 13 th with lab Reports.		6
Total Marks			15

VIII.Schedule of Assessment Tasks for Students During the Semester:

	Semester.				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	
1.	Assignments & Reports	3^{rd} to 13^{th}	15	10%	
2.	Quizzes	5^{th} , 10^{th} & 14^{th}	10	6.67%	
3.	Midterm Exam (Theory)	8 th	20	13.33%	

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

4.	Final Lab. Exam (including Course Project Evaluation)	14^{th} & 15^{th}	30	20%
5.	Final Exam (Theory)	16 th	75	50%
Total Marks / Percentage		150	100%	

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1 -Thomas L. Floyd, 2009, Digital Fundamentals, 10th Edition, Pearson Education International
 2 Ronald L. Tocci, Neal S. Widmer, Gregory, L. Moss, 2007, Digital Systems :
 - 2- Ronald J. Tocci, Neal S.Widmer, Gregory L. Moss, 2007, Digital Systems : Principles and Applications, 10th Edition, Pearson Prentice Hall

2- Essential References.

1-Douglas L. Perry, 2002, VHDL Programming by Example, 4th Edition, McGraw-F 2 -M. M. Mano, M. D. Ciletti, 2007, Digital Design, 4th Edition, Prentice-Hall

3- Electronic Materials and Web Sites etc.

1-Faculty Electronic Library

	X. Course Policies:
1.	 Class Attendance: -A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic
2.	Tardy:For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	Exam Attendance/Punctuality:

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	- A student should attend the exam on time. He is Permitted to attend an exam half one hour from
	exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam.
	Assignments & Projects:
4.	- The assignment is given to the students after each chapter; the student has to submit all the
	assignments for checking on time.
	Cheating:
5.	- For cheating in exam, a student will be considered as failure. In case the cheating is repeated
	three times during his/her study the student will be disengaged from the Faculty.
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student. If the
6.	examination committee proved a plagiarism of a student, he will be disengaged from the Faculty.
	The final disengagement of the student from the Faculty should be confirmed from the Student
	Council Affair of the university.
	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the
7.	student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad