

22. Course Specification of Differential Equations

]	I. Course Identification and General Information:							
1.	Course Title:	Differ	ential Equ	ations				
2.	Course Code & Number:	BR12	2					
			C.	Η		Total		
3.	Credit hours:	Th. Tu. Pr. Tr. 2 - 2 - 3	Total					
			-	2	-	3		
4.	Study level/ semester at which this course is offered:	Second Year - Second Semester						
5.	Pre –requisite (if any):	Linear	r Algebra ((BR121)				
6.	Co –requisite (if any):	None.						
7.	Program (s) in which the course is offered:	Electr	ical Engin	eering				
8.	Language of teaching the course:	English/Arabic						
9.	Location of teaching the course:	Classes at the Faculty of Engineering				ring		
10.	Prepared By:	Asst. Prof. Dr. Adnan Al-Salihi						
11.	Date of Approval	March	n 2020					

II. Course Description:

This course introduces the student to differential equations that will be used for solving mathematical problems that arise in science and engineering. Students will develop the methods to formulate basic engineering problems. In addition, topics to be covered include: Basic concepts, classification and formation of differential equations (ODEs and PDEs), general and particular solutions. Solutions of ordinary differential equations (first order, second order and higher orders) by various methods, geometric and physical applications, Laplace transform; properties and applications; solutions of differential equations using Laplace transform; Introduction to Partial differential equations.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	III. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Recognize the definitions, basic properties and theorems of the Laplace Transforms, and differential equations including their solutions and applications.	A1
a2	Identify the most important and appropriate techniques for solving various types of differential equations.	A2
b1	Classify the differential equations according to their types, order, degree, linearity and homogeneity and suggest the suitable method for solving every kind.	B1
b2	Demonstrate proficiency in choose appropriate mathematical methods for solve a Electrical engineering problems governing by the ordinary and partial differential equations, as well as analyze, interpret the results and predict behavior.	B2, B3
c1	Apply the theorems and techniques for solving differential equations to solve practical problems in field of electoral engineering.	C1
c2	Build a mathematics models and solve problems in electoral engineering applications using Laplace transforms.	CI
c3	Solve the different types of DEs analytically (e.g. exact, homogeneous, linear, systems of linear DEs and linear higher order, etc.) that describe models occurring in Electrical engineering.	C4
d1	Effectively manage tasks, time, and resources.	D1
d2	Communicate and work effectively in group and individually.	D4

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment
Course Intended Learning Outcomes	reaching strategies	Strategies

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

 a1- Recognize the definitions, basic properties and theorems of the Laplace Transforms, and differential equations including their solutions and applications. 		Written testsHomeworkpresentations
a2- Identify the most important and appropriate techniques for solving various types of differential equations.	- Active lectures	Written testsHomeworkpresentations

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1- Classify the differential equations according to their types, order, degree, linearity and homogeneity and suggest the suitable method for solving every kind.	- Active lectures - Tutorials	Written testsHomeworkPresentations
 b2- Demonstrate proficiency in choose appropriate mathematical methods for solve an Electrical engineering problem governing by the ordinary and partial differential equations, as well as analyze, interpret the results and predict behavior. 	- Active lectures - Tutorials	Written testsHomeworkpresentations

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes		Teaching strategies	Assessment Strategies
c1-	Apply the theorems and techniques for solving differential equations to solve		Written testsHomework

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	practical problems in field of electoral	- Team work	- presentations
	engineering.	(group learning)	
c2-	Build a mathematics models and solve	- Active lectures	- Written tests
	problems in engineering applications	- Team work	- Homework
	using Laplace transforms.	(group learning)	- presentations
c3-	Solve the different types of DEs		
	analytically (e.g. exact,		
homog	geneous, linear, systems of	- Active lectures	- Written tests
	linear differential equations and	- Team work	- Homework
linear	higher order, etc.) that describe	(group learning)	- presentations
model	s occurring in Electrical	-	
engine	ering.		

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

Co	urse Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d1-	Effectively manage tasks, time, and resources.	Team work (group learning)	Presentations,Reports
d2-	Communicate and work effectively in group and individually.		Presentations,Reports

IV	IV. Course Content:						
	A – Theoretical Aspect:						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours		
1.	Introduction, Formulation and solutions	a1, b1	 Basic concepts and definitions. 	2	4		

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	of differential equations.		 Classification of differential equations, types, order and degree, linearity and homogeneous. Formulation of Des. Solution of D.Es Boundary and initial conditions. 		
2.	First order ordinary differential equations.	a1, a2, b2, c3,	 Separable equations and equations reducible to Separable. Exact equations and equations reducible to exact. Linear equations and equations reducible to linear (Bernoull's and Riccati equation). 	2	4
3.	Modeling with First- Order Differential Equations	a1, b2, c1,	 Growth and Decay Newton's Law of Cooling / Warming Mixtures Series Circuits Population Dynamics Logistic Equation Chemical Reactions. 	1	2
4.	Higher order ODEs	a1, a2, b1, b2, c3	 Linear independence and linear dependence Homogenous equations with constant coefficients. NonHomogenous equations with constant coefficients 	2	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 Operator method. Undetermined coefficients method. Method of variations of parameter. equations with variable coefficients Cauchy-Euler Equation. Lagrange Equation. Applications on nth order differential equations. 		
5.	Modeling with Higher- Order Differential Equations	a1, b2, c1,	 Spring/Mass Systems: Free Undamped Motion Double Spring Systems Spring/Mass Systems: Free Damped Motion Spring/Mass Systems: Driven Motion Series Circuit Analogue Deflection of a Beam Eigenvalues and Eigenfunctions Buckling of a Thin Vertical Column Rotating String 	1	2
6.	Systems of Differential Equations and modeling with Systems	a1,b2, c3	 Radioactive Series Mixtures A Predator–Prey Model Competition Models Networks. 	1	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	of First-				
	Order DEs				
7.	Introduction to Laplace Transform (Definitions and Properties)	a1, c2, d1	 Definition of Laplace transforms. Laplace transform of elementary functions. Properties and theorem of Laplace transform. Laplace transform of special functions: unit step function, Dirac-delta function and periodic functions. Generalization of Laplace Transforms by means of Gamma functions. 	2	4
8.	Inverse Laplace Transform	a1, c2, d1	 Basic concepts and definitions. Properties and theorems of Inverse Laplace transform. Inverse Laplace transform by partial fraction and convolution theorem. 	1	2
9.	Solving Initial Value Problems and Linear Systems with Laplace Transforms and Applications	a1, c1, c2,d2	 Solving Initial Value Problems and Linear Systems of ODEs with Laplace Transforms Coupled Springs Networks 	1	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

10.	Introduction of Partial Differential Equations	a1, a2, b1, c2,	 Introduction and classification of PDEs. PDEs in Physics and Engineering (heat, wave and Laplace equations) 	1	2
Number of Weeks /and Units Per Semester		14	28		

B - Pr	actical Aspect:			
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes
1.	Introduction, Formulation and solutions.	2	4	a1, a2, b1, b2, c1, c2, c3, d1
2.	First order ordinary differential equations.	2	4	a1, a2, b1, b2, c1, c2, c3, d1
3.	Modeling with First-Order Differential Equations	1	2	a1, a2, b1, b2, c1, c2, c3, d1
4.	Higher order ODEs	2	4	a1, a2, b1, b2, c1, c2, c3, d1,d2
5.	Modeling with Higher-Order Differential Equations	1	2	a1, a2, b1, b2, c1, c2, c3, d1,d2
6.	Systems of Differential Equations and modeling with Systems of First-Order DEs	1	2	a1, a2, b1, b2, c1, c2, c3, d1,d2
7.	Introduction to Laplace Transform (Definitions and Properties)	2	4	a1, a2, b1, b2, c1, c2, c3, d1,d2
8.	Inverse Laplace Transform	1	2	a1, a2, b1, b2, c1, c2, c3, d1,d2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

9.	Solving Initial Value Problems and Linear Systems with Laplace Transforms and Applications	1	2	a1, a2, b1, b2, c1, c2, c3, d1,d2
10.	Introduction of Partial Differential Equations	1	2	a1, a2, b1, b2, c1, c2, c3, d1
Number of Weeks /and Units Per Semester		14	28	

V. Teaching strategies of the course:

- Active lectures
- Tutorials
- Interactive class discussions and Presentations
- Exercises and home works
- Case studies ,and The use of communication and information technology

	VI. Assignments:								
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark					
1.	Assignments on solving first order differential equations.	a1, a2, b1, b2, c1, c3, d1,d2	2 nd	2					
2.	Assignments on solving higher order differential equations.	a1, a2, b2, c1,c3 d1,d2	4 th	2					
3.	Assignments on Modeling with First- Order and higher order differential equations.	a1, a2, b2, c1, c3, d1,d2	6 th	2					
4.	Assignments on using Laplace Transform	a1, c2, d1,d2	9 th	2					
5.	Assignments on solving PDEs .	a1, a2, b1, c1,c3	11 th	2					
	Total			10					

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VII	VII. Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1.	Assignments	3 rd , 5 th , 9 th , 11 th	7.5	5%	a1, a2, b1, b2, c1, c2, c3,d2			
2.	Quizzes	2^{nd} , 4^{th} , 6^{th} , 8^{th} , 10^{th}	7.5	5%	a1, a2, b1, b2, c1, c2, c3,d1			
3.	Mid-Term Exam	8 th	30	20 %	a1, a2, b1, b2, c1, c3,d2			
4.	Final Exam	16 th	105	70 %	a1, a2, b1, b2, c1, c2, c3,d2			
	Total		150%	100%				

V	VIII. Learning Resources:					
	 Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher). 					
1- Re	quired	Textbook(s) (maximum two).				
	1.	Dennis G. Zill, 2017, Advanced Engineering Mathematics, 6 th Edition, USA,				
		Jones & Bartlett Learning.				
	2.	Rajesh Pandey, 2010, A Text Book Of Engineering Mathematics, Vol (II),,				
		word press, First edition.				
2- Es	sential	References.				
	1.	Erwin Kreyszig, 2011, Advanced Engineering Mathematics, 10 th Edition,				
		USA, John Wiley & Sons, Inc.				
	2.	Alan Jeffrey, 2002, Advanced Engineering Mathematics, USA,				
		Harcourt/Academic Press.				
	3.	Higher Engineering Mathematics, Fifth Edition by John Bird, Elsevier Ltd.				
		2006.				

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	4.	Frank Ayres, Jr, 1981, Schaum's Outline of Theory and problems of				
		Differential Equations in SI Metric Units, First Edition, McGRAW-HILL				
		BOOKCOMPANY.				
3- Ele	3- Electronic Materials and Web Sites etc.					
	1.	wolframMathworld				
	2.	http://mathworld.wolfram.com/topics/CalculusandAnalysis.html				
IX	K. C	ourse Policies:				

Class Attendance:

	Class Attendance:
1	A student should attend not less than 75 % of total hours of the subject; otherwise he will
1.	not be able to take the exam and will be considered as exam failure. If the student is absent
	due to illness, he/she should bring an approved statement from university Clinic
	Tardy:
2.	For late in attending the class, the student will be initially notified. If he repeated lateness
	in attending class he will be considered as absent.
	Exam Attendance/Punctuality:
3.	A student should attend the exam on time. He is Permitted to attend an exam half one hour
5.	from exam beginning, after that he/she will not be permitted to take the exam and he/she
	will be considered as absent in exam-
	Assignments & Projects:
4.	The assignment is given to the students after each chapter; the student has to submit all the
	assignments for checking on time-
	Cheating:
5.	For cheating in exam, a student will be considered as failure. In case the cheating is
	repeated three times during his/her study the student will be disengaged from the Faculty-
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student. If
6.	
υ.	the examination committee proved a plagiarism of a student, he will be disengaged from
0.	the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed
0.	

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room

- Mobile phones are not allowed in class during the examination.

Lecture notes and assignments my given directly to students using soft or hard copy

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof.
By	Dr. Tarek A. Barakat
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed
	Algorafi
	Name of Reviewer from the Department: Assoc. Prof. Dr. Riyad A.
	Muharram.
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
	Assoc. Prof. Dr. Ahmed Mujahed
	Asst. Prof. Dr. Munasar Alsubri

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

22. Template for Course Plan of Differential equations

I. Information about Faculty Member Responsible for the Course:								
Name of Faculty Member	Dr. Adnan Alsalihi Office Hours							
Location& Telephone No.	Sana'a university 770499879	SAT SUN MON TUE WED THU				THU		
E-mail								

]	II. Course Identification and General Information:								
1.	Course Title:	Differ	ential equat	ions					
2.	Course Number & Code:	BR122	2						
	С.Н				Total				
3.	Credit hours:		Tu.	Pr.	Tr.	Total			
			-	2	-	3			
4.	Study level/year at which this course is offered:	Second Year - Second Semester							
5.	Pre –requisite (if any):	Linear Algebra(BR121)							
6.	Co –requisite (if any):	None							
7.	Program (s) in which the course is offered	Electrical Engineering							
8.	Language of teaching the course: English/Arabic								
9.	System of Study:	Credit Hours							
10.	Mode of delivery:	Full Time							
11.	Location of teaching the course:	Classe	s at the Fac	ulty of Ei	ngineerin	g			

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description:

This course introduces the student to differential equations that will be used for solving mathematical problems that arise in science and engineering. Students will develop the methods to formulate basic engineering problems. In addition, topics to be covered include: Basic concepts, classification and formation of differential equations (ODEs and PDEs), general and particular solutions. Solutions of ordinary differential equations (first order, second order and higher orders) by various methods, geometric and physical applications, Laplace transform; properties and applications; solutions of differential equations using Laplace transform; Introduction to Partial differential equations.

IV.Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - **1.** Recognize the definitions, basic properties and theorems of the Laplace Transforms, and differential equations including their solutions and applications.
 - **2.** Identify the most important and appropriate techniques for solving various types of differential equations.
 - **3.** Classify the differential equations according to their types, order, degree, linearity and homogeneity and suggest the suitable method for solving every kind.
 - **4.** Demonstrate proficiency in choose appropriate mathematical methods for solve an Electrical engineering problem governing by the ordinary and partial differential equations, as well as analyze, interpret the results and predict behavior.
 - **5.** Apply the theorems and techniques for solving differential equations to solve practical problems in field of electoral engineering.
 - **6.** Build a mathematics models and solve problems in electoral engineering applications using Laplace transforms.
 - 7. Solve the different types of DEs analytically (e.g. exact, homogeneous, linear, systems of linear DEs and linear higher order, etc.) that describe models occurring in Electrical engineering.
 - 8. Effectively manage tasks, time, and resources.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

9. Communicate and work effectively in group and individually.

V. Course Content:								
	A – Theoretical As	spect:						
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact hours				
1.	Introduction, Formulation and solutions of differential equations.	 Basic concepts and definitions. Classification of differential equations, types, order and degree, linearity and homogeneous. Formulation of Des. Solution of D.Es Boundary and initial conditions. 	1 st ,2 nd	4				
2.	First order ordinary differential equations.	 Separable equations and equations reducible to Separable. Exact equations and equations reducible to exact. Linear equations and equations reducible to linear (Bernoull's and Riccati equation). 	3 rd ,4 th	4				
3.	Modeling with First- Order Differential Equations	 Growth and Decay Newton's Law of Cooling / Warming Mixtures Series Circuits Population Dynamics Logistic Equation Chemical Reactions. 	5 th	2				
4.	Higher order ODEs	 Linear independence and linear dependence Homogenous equations with constant coefficients. 	6 th ,7 th	4				

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		 NonHomogenous equations with constant coefficients Operator method. Undetermined coefficients method. Method of variations of parameter. equations with variable coefficients Cauchy-Euler Equation. Lagrange Equation. Applications on nth order differential equations. 		
5.	Mid-Term Exam		8 th	2
6.	Modeling with Higher-Order Differential Equations	 Spring/Mass Systems: Free Undamped Motion Double Spring Systems Spring/Mass Systems: Free Damped Motion Spring/Mass Systems: Driven Motion Series Circuit Analogue Deflection of a Beam Eigenvalues and Eigenfunctions Buckling of a Thin Vertical Column Rotating String 	9 th	2
7.	Systems of Differential Equations and modeling with Systems of First- Order DEs	 Radioactive Series Mixtures A Predator–Prey Model Competition Models Networks. 	10 th	2
8.	Introduction to Laplace Transform	 Definition of Laplace transforms. Laplace transform of elementary functions. 	11 th ,12 th	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	(Definitions and Properties)	 Properties and theorem of Laplace transform. Laplace transform of special functions: unit step function, Dirac-delta function and periodic functions. Generalization of Laplace Transforms by means of Gamma functions. 		
9.	Inverse Laplace Transform	 Basic concepts and definitions. Properties and theorems of Inverse Laplace transform. Inverse Laplace transform by partial fraction and convolution theorem. 	13 th	2
10.	Solving Initial Value Problems and Linear Systems with Laplace Transforms and Applications	 Solving Initial Value Problems and Linear Systems of ODEs with Laplace Transforms Coupled Springs Networks 	14 th	2
11.	Introduction of Partial Differential Equations	 Introduction and classification of PDEs. PDEs in Physics and Engineering (heat, wave and Laplace equations) 	15 th	2
12.	Final Exam		16 th	2
Numbe	er of Weeks /and Units	Per Semester	16	32

B - Pı	B - Practical Aspect:		
Order	Tasks/ Experiments	Number of Weeks	Contact hours
1.	Introduction, Formulation and solutions.	$1^{st}, 2^{nd}$	4
2.	First order ordinary differential equations.	3^{rd} , 4^{th}	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

3.	Modeling with First-Order Differential Equations	5 th	2
4.	Higher order ODEs	6 th ,7 th	4
5.	Modeling with Higher-Order Differential Equations	8^{th}	2
6.	Systems of Differential Equations and modeling with Systems of First-Order Des	9 th	2
7.	Introduction to Laplace Transform (Definitions and Properties)	10 th ,11 th	4
8.	Inverse Laplace Transform	12 th	2
9.	Solving Initial Value Problems and Linear Systems with Laplace Transforms and Applications	13 th	2
10.	Introduction of Partial Differential Equations	14 th	2
	Number of Weeks /and Units Per Semester	14	28

VI. Teaching strategies of the course:

- Active lectures
- Tutorials
- Interactive class discussions and Presentations
- Exercises and home works
- Case studies ,and The use of communication and information technology

	VII.Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Assignments on solving first order differential equations.	a1, a2, b1, b2, c1, c3, d1,d2	2 nd	2
2.	Assignments on solving higher order differential equations.	a1, a2, b2, c1,c3 d1,d2	4 th	2
3.	Assignments on Modeling with First- Order and higher order differential equations.	a1, a2, b2, c1, c3, d1,d2	6 th	2

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	4.	Assignments on using Laplace Transform	a1, c2, d1,d2	9 th	2
I	5.	Assignments on solving PDEs .	a1, a2, b1, c1,c3	11 th	2
I		Total			10

VII	VIII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment					
1.	Assignments	$3^{\rm rd}, 5^{\rm th}, 9^{\rm th}, 11^{\rm th}$	7.5	5%		
2. Quizzes $2^{nd}, 4^{th}, 6^{th}, 8^{th}$ 7.5		5%				
3. Mid-Term Exam		8 th	30	20 %		
4.	Final Exam	16 th	105	70 %		
	Total		150%	100%		

Ľ	X. L	earning Resources:
	ritten in tl ıblisher).	ne following order: (Author - Year of publication – Title – Edition – Place of publication –
1- Re	equired	Textbook(s) (maximum two).
	1.	Dennis G. Zill, 2017, Advanced Engineering Mathematics, 6th Edition, USA,
		Jones & Bartlett Learning.
	2.	Rajesh Pandey, 2010, A Text Book Of Engineering Mathematics, Vol (II),,
		word press, First edition.
2- Es	sential	References.
	1.	Erwin Kreyszig, 2011, Advanced Engineering Mathematics, 10th Edition,
		USA, John Wiley & Sons, Inc.
	2.	Alan Jeffrey, 2002, Advanced Engineering Mathematics, USA,
		Harcourt/Academic Press.
	3.	Higher Engineering Mathematics, Fifth Edition by John Bird, Elsevier Ltd.
		2006.

Prepared byHead of Department
Asst. Prof. Dr. AdelQuality Assurance Unit
Assoc. Prof. Dr.Dean of the Faculty
Prof. Dr. MohammedAcademic Development
Center & Quality AssuranceAhmed Al-ShakiriMohammad AlgorafiAL-BukhaitiAssoc. Prof. Dr. Huda Al-Emad

	4.	Frank Ayres, Jr, 1981, Schaum's Outline of Theory and problems of
		Differential Equations in SI Metric Units, First Edition, McGRAW-HILL
		BOOKCOMPANY.
3- Ele	ectronio	e Materials and Web Sites etc.
	1.	WolframMathworld
	2.	http://mathworld.wolfram.com/topics/CalculusandAnalysis.html

X. Course Policies:

Class Attendance:

1.	A student should attend not less than 75 % of total hours of the subject; otherwise he will
1.	not be able to take the exam and will be considered as exam failure. If the student is absent
	due to illness, he/she should bring an approved statement from university Clinic
	Tardy:
2.	For late in attending the class, the student will be initially notified. If he repeated lateness
	in attending class he will be considered as absent.
	Exam Attendance/Punctuality:
3.	A student should attend the exam on time. He is Permitted to attend an exam half one hour
э.	from exam beginning, after that he/she will not be permitted to take the exam and he/she
	will be considered as absent in exam-
	Assignments & Projects:
4.	The assignment is given to the students after each chapter; the student has to submit all the
	assignments for checking on time-
	Cheating:
5.	For cheating in exam, a student will be considered as failure. In case the cheating is
	repeated three times during his/her study the student will be disengaged from the Faculty-
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student. If
6.	the examination committee proved a plagiarism of a student, he will be disengaged from
	the Faculty. The final disengagement of the student from the Faculty should be confirmed
	from the Student Council Affair of the university.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Other policies:

- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise
- **7.** the student will be asked to leave the lecture room
 - Mobile phones are not allowed in class during the examination.

Lecture notes and assignments my given directly to students using soft or hard copy

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad