

23. Course Specification of Logic Circuits 2

	I. Course Identification and General Information:					
1.	Course Title:	Logic C	ircuits 2			
2.	Course Code & Number:	CCE112	2			
			C.H	H		TOTAL
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	IUIAL
		2	-	2	-	3
4.	Study level/ semester at which this course is offered:	2 nd Level/2 nd Semester				
5.	Pre –requisite (if any):	Logic Circuits 1 (CCE111)				
6.	Co –requisite (if any):	None				
7.	Program (s) in which the course is offered:	Computer Engineering and Control			ol	
8.	Language of teaching the course:	All materials are in English; Lectures / discussions are in English and Arabic			ures / abic	
9.	Location of teaching the course:	Class ro	om + lab			
10.	Prepared By:	Asst. Pro	of. Dr. O	sama H.	Alshiba	ımi
11.	Date of Approval					

II. Course Description:

This course aims to develop engineering base knowledge for computer-based systems main components. Therefore, the principles and operations of sequential circuits, starting from Flip flops till complete synchronous sequential circuits will be covered. It will also cover the analysis design and realization of counters, analysis and realization of shift registers, design of main memory and Computer aided design tool for logic circuits and digital systems. Through Lab works, by hands-on & computer-based works, students develop their practical and problem-solving skills as well as throughout term project for solving industrial and marketing problems related to the digital system design.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	III. Course Intended learning outcomes	Referenced	I, E, A
	(CILOs) of the course	PILOs	
a1.	Recognize the principles and operations of sequential circuits, starting from Flip flops till complete sequential circuits.	A1	Е
a2.	Acquire knowledge on digital system sequential elements such as counters & registers to meet desired needs within realistic constraints.	A2, A3	Ι
b1.	Analyze the requirements of a range of computer-based systems and examine the design alternatives based on the constraints imposed by society, organizations, and technology	B2, B4	E
b2.	Design synchronous and asynchronous sequential digital circuits using basic logic gates, flip-flops, counters, registers and main memory.	B3, B4	E
c1.	Use appropriate computer-based design support tools	C1	Е
c2.	Appreciate the features of complex computing hardware and software and operate on effectively	C2,C4	Ι
d1.	Strike the balance between self-reliance and seeking help when necessary in new situations.	D2	Ι
d2.	Demonstrate significantly enhanced group working abilities.	D1	Е

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
a1- Recognize the principles and operations of sequential circuits, starting from Flip flops till complete sequential circuits.	 Active lectures sessions, Interactive class discussion, 	 Written Exam Quizzes Assignment Test 		
a2- Acquire knowledge on digital system sequential elements such as counters & registers to meet desired needs within realistic constraints.	 Active lecture sessions, Interactive class discussion, 	- Quizzes - Assignment - Test		

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

C	ourse Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
b1- using	Analyze combinational and sequential circuits VHDL systems	 Active lectures sessions, Individual and Group, Hands on Lab Work, Computer-based Lab Work, Interactive class discussion, 	 Quizzes Assignment Lab Assessments & Reports Test 	
b2- of a on	Analyze the requirements range of computer-based systems and examine the design alternatives based the constraints imposed by society, organizations, and technology.	 Active lectures sessions, Individual and group work, Computer-based Lab Work, Lab and projects. 	 Quizzes Assignment Lab Reports Project Reports Test 	

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Sana'a University Faculty of Engineering Electrical Engineering Department B.Sc. of Computer and Control Engineering

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Test

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies: Assessment **Course Intended Learning Outcomes** Teaching strategies Strategies Ouizzes Individual and group _ Assignment work. _ c1-Use appropriate computer-Computer-based Lab - Lab Reports based design support tools - Project Reports Work, Lab and projects. - Test Individual and group - Quizzes c2-Appreciate the features of work, - Assignment complex computing hardware Computer-based Lab Lab Reports _ software and operate and on Works, **Project Reports** effectively

Lab and projects.

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
d1- Strike the balance between self- reliance and seeking help when necessary in new situations.	Individual and group work,Lab and projects.	 Quizzes Lab Reports Project Reports				
d2- Demonstrate significantly enhanced group working abilities.	 Individual and group assignments, Class exercises, Labs and projects. 	 Quizzes Lab Reports Project Reports				

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

IV. Course Content:					
	A – Theoret	ical Aspect	t:		
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours
1.	Introduction	a1, a2, b1, b2	 Combinational and Sequential Circuits. Synchronous and asynchronous Sequential Circuits. State Diagram and State Variables 	2	4
2.	Flip Flops	a1, a2, b1, b2	 Introduction The Bitable Element The SR Flip-Flop The Clocked SR Latch The D-Type Latch The JK Flip-Flop Triggering the Flip-flops 	2	4
3.	Counters	a1, a2, b1, b2	 Introduction Asynchronous Ripple Counters Arbitrary Count Asynchronous Counters Synchronous Counters Arbitrary Count Synchronous Counters IC Synchronous Counters Up/Down Synchronous Counters Cascaded Counters Counter Decoding Counter Applications 	2	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

4.	Registers	a1, a2, b1, b2	 Introduction Shift Register Bidirectional Shift Registers The Universal Shifts Counters The use of Shift Registers as Counters 	1	2
5.	Registers (Cont.)	a1, a2, b1, b2	 Sequence Generators The Ring Counter The Johnson Counter MLS Shift Registers 	1	2
6.	Synchronous Sequential Circuits	b1, b2, c2	IntroductionAnalysis ProcedureDesign ExamplesDesign Procedure	2	4
7.	The Main Memory	b1, b2, c2	 Introduction Read Only Memory Programmable ROMs ROM Applications Read Write Memories Dynamic RAMs Memory Expansion 	2	4
8.	Sequential Logic Programming	b1, b2, c2	 Introduction The FPGA and sequential programming Implementing counters and registers Using the VHDL language to implement a general sequential circuit. 	2	4
Numbe	er of Weeks /an	d Units Per S	Semester	14	28

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Sana'a University Faculty of Engineering Electrical Engineering Department B.Sc. of Computer and Control Engineering

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

B - Practical Aspect:						
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes		
1.	S-R Laches(Active Low and Active High	1	2	a1, b.1, b.2, c.1, c.2, d.1		
2.	S-R Laches with ENABLE	1	2	a1, b.1, b.2, c.1, c.2, d.1		
3.	S-R, J-K, D, and T Flip Flop	1	2	a1, b.1, b.2, c.1, c.2, d.1		
4.	J-K Flip Flop with SET and CLEAR	1	2	a1, b.1, b.2, c.1, c.2, d.1		
5.	Asynchronous Counter	1	2	a2, b.1, b.2, c.1, c.2, d.1		
6.	Decade Asynchronous Counter	1	2	a2, b.1, b.2, c.1, c.2, d.1		
7.	Synchronous Counter	1	2	a2, b.1, b.2, c.1, c.2, d.1		
8.	Decade Synchronous Counter	1	2	a2, b.1, b.2, c.1, c.2, d.1		
9.	Counter with count enable & Up- Down counter	1	2	a2, b.1, b.2, c.1, c.2, d.1		
10.	Johnson & Ring counters	1	2	a2, b.1, b.2, c.1, c.2, d.1		
11.	Counters design by using Karnaugh Map	1	2	a2, b.1, b.2, c.1, c.2, d.1		
12.	Shift Registers	1	2	a2, b.1, b.2, c.1, c.2, d.1		
13.	Review	1	2	a1, a2, b.1, b.2, c.1, c.2, d.1, d2		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

14.	Final Submission and Presentation of Term Project Report	1 (started from the 4 th week)	2	a1, a2, b.1, b.2, c.1, c.2, d.1, d2
Numb	er of Weeks /and Units Per Semester	14	28	

V. Teaching strategies of the course:

The knowledge and skills are delivered to students through:

- Active lecture sessions,
- Interactive Class Discussion,
- individual and group assignments,
- Lab and projects.
- Computer-based Lab Work,

	VI. Assignments & Reports:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Latches & Flip-Flops Lab Reports	a.1, a.2, b.1, b.2, c.2, d.2	3 rd	1
2.	Counters Repots	a.1, a.2, b.1, b.2, c.2, d.2	5 th	2
3.	Registers Repots	b.1, b.2, c.2, d.2	7 th & 9 th	2
4.	Sequential Logic Circuits Design Assignments & Repots.	b.1, b.2, c.1, c.2, d.1, d.2	11^{th}	4
5.	Memory & VHDL Programming Search Web and prepare short reports to solve problems related to digital	b.1, b.2, c.1, c.2, d.1, d.2	12 th & 14 th	6

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

system design as suggested by the		
lecturer		
Total		15

VII	VII. Schedule of Assessment Tasks for Students During the							
	Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1.	Assignments & Reports	3^{rd} to 14^{th}	15	10%	a.1, a.2, b.1, b.2, c1, c.2, d.2			
2.	Quizzes	5 th , 10 th & 14 th	10	6.67%	a.1, a.2, b.1, c.1			
3.	Midterm Exam (Theory)	8 th	20	13.33%	a.1, a.2, b.1, b.2			
4.	Final Lab. Exam (including Course Project Evaluation)	14 th & 15 th	30	20%	a1, a2, b.1, b.2, c.1, c.2, d.1, d2			
5.	Final Exam (Theory)	16 th	75	50%	a1, a2, b.1, b.2, c.2			
	Total Marks/ Percentage	9	150	100%				

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1 -Thomas L. Floyd, 2009, Digital Fundamentals, 10th Edition, Pearson Education International

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	2- Ronald J. Tocci, Neal S.Widmer, Gregory L. Moss, 2007, Digital Systems :				
	Principles and Applications, 10 th Edition,. Pearson Prentice Hall				
2- F	2- Essential References.				
	1-Douglas L. Perry, 2002, VHDL Programming by Example, 4th Edition, McGraw-H				
	2 -M. M. Mano, M. D. Ciletti, 2007, Digital Design, 4th Edition, Prentice-Hall				
3- E	Clectronic Materials and Web Sites etc.				

]	IX. Course Policies:
1.	Class Attendance: -A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic
2.	Tardy:For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	 Exam Attendance/Punctuality: A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam.
4.	Assignments & Projects:The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.
5.	Cheating:For cheating in exam, a student will be considered as failure. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.
6.	Plagiarism : Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proved a plagiarism of a student, he will be disengaged

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

-							
	from the Faculty. The final disengagement of the student from the Faculty should be						
confirmed from the Student Council Affair of the university.							
	Other policies:						
	- Mobile phones are not allowed to use during a class lecture. It must be closed,						
7.	otherwise the student will be asked to leave the lecture room						
	- Mobile phones are not allowed in class during the examination.						
	Lecture notes and assignments my given directly to students using soft or hard copy						

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.					
By	Barakat					
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi					
	Name of Reviewer from the Department: Assoc. Prof. Dr. Farouk Al-Fuhaidy					
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa					
	Assoc. Prof. Dr. Ahmed Mujahed					
	Asst. Prof. Dr. Munasar Alsubri					

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

23. Template for Course Plan of Logic Circuits 2

I. Information about Faculty Member Responsible for the							
Name of Faculty Member	Name of Faculty AssDr. Osama H. Office Hours Member Alshibami Office Hours						
Location& Telephone No.	Faculty of Engineering	SAT	SUN	MON	TUE	WED	THU
E-mail	Alshibami@yemen.net				10-2		

	II. Course Identification and General Information:							
1.	Course Title:	Logic (Circuits 2					
2.	Course Number & Code:	CCE112						
			C.	H		Total		
3.	Credit hours:	Th.	Tu.	Pr	Tr.	Total		
		2	-	2	-	3		
4.	Study level/year at which this course is offered:	2 nd Level/ 2 nd Semester						
5.	Pre –requisite (if any):	Logic (Circuits 1 (CCE111))			
6.	Co –requisite (if any):	None.						
7.	Program (s) in which the course is offered	Computer Engineering and Control						
8.	Language of teaching the course:	All materials are in English; teaching and lectures/discussions are in English and Arabic						
9.	System of Study:	Regula	r					
10.	Mode of delivery:	Lecture						
11.	Location of teaching the course:	Class +	- Lab					

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description:

This course aims to develop engineering base knowledge for computer-based systems main components. Therefore, the principles and operations of sequential circuits, starting from Flip flops till complete synchronous sequential circuits will be covered. It will also cover the analysis design and realization of counters, analysis and realization of shift registers, design of main memory and Computer aided design tool for logic circuits and digital systems. Through Lab works, by hands-on & computer-based works, students develop their practical and problem-solving skills as well as throughout term project for solving industrial and marketing problems related to the digital system design.

IV.Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - **1.** Recognize the principles and operations of sequential circuits, starting from Flip flops till complete sequential circuits.
 - **2.** Acquire knowledge on digital system sequential elements such as counters & registers to meet desired needs within realistic constraints.
 - **3.** Analyze the requirements of a range of computer-based systems and examine the design alternatives based on the constraints imposed by society, organizations, and technology
 - **4.** Design synchronous and asynchronous sequential digital circuits using basic logic gates, flip-flops, counters, registers and main memory.
 - 5. Use appropriate computer-based design support tools
 - **6.** Appreciate the features of complex computing hardware and software and operate on effectively
 - **7.** Strike the balance between self-reliance and seeking help when necessary in new situations.
 - 8. Demonstrate significantly enhanced group working abilities.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V. Course Content:						
Distribution of Semester Weekly Plan Of course Topics/Items and Activities.						
A – Tl	neoretical Asp	ect:				
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact hours		
1	Introduction	 Combinational and Sequential Circuits. Synchronous and asynchronous Sequential Circuits. State Diagram and State Variables 	1 st , 2 nd	4		
2	Flip Flops	 Introduction The Bitable Element The SR Flip-Flop The Clocked SR Latch The D-Type Latch The JK Flip-Flop Triggering the Flip-flops 	3 rd ,4 th	4		
3	Counters	 Introduction Asynchronous Ripple Counters Arbitrary Count Asynchronous Counters Synchronous Counters Arbitrary Count Synchronous Counters IC Synchronous Counters Up/Down Synchronous Counters Cascaded Counters Counter Decoding Counter Applications 	5 th ,6 th	4		
4	Registers	 Introduction Shift Register Bidirectional Shift Registers The Universal Shifts Counters The use of Shift Registers as Counters 	7 th	2		
5	Mid Term Exan	1	8 th	2		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Sana'a University Faculty of Engineering Electrical Engineering Department B.Sc. of Computer and Control Engineering

6	Registers (Cont.)	 Sequence Generators The Ring Counter The Johnson Counter MLS Shift Registers 	9 th	2
7	Synchronous Sequential Circuits	 Introduction Analysis Procedure Design Examples Design Procedure 	$10^{ m th}, 11^{ m th}$	4
8	The Main Memory	 Introduction Read Only Memory Programmable ROMs ROM Applications Read Write Memories Dynamic RAMs Memory Expansion 	12 th ,13 th	4
9	Sequential Logic Programming	 Introduction The FPGA and sequential programming Implementing counters and registers Using the VHDL language to implement a general sequential circuit. 	14 th ,15 th	4
10	Final Exam		16 th	2
	Number of Weeks /and Units Per Semester			32

B – Practical Aspect:					
Order	Topics List	Week Due	Contact Hours		
1.	S-R Laches(Active Low and Active High	1 st	2		
2.	S-R Laches with ENABLE	2^{nd}	2		
3.	S-R, J-K, D, and T Flip Flop	3 rd	2		
4.	J-K Flip Flop with SET and CLEAR	4 th	2		

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

5.	Asynchronous Counter	5 th	2
6.	Decade Asynchronous Counter	6 th	2
7.	Synchronous Counter	7 th	2
8.	Decade Synchronous Counter	8 th	2
9.	Counter with count enable & Up-Down counter	9 th	2
10.	Johnson & Ring counters	10 th	2
11.	Counters design by using Karnaugh Map	11 th	2
12.	Shift Registers	12 th	2
13.	Review	13 th	2
14.	Final Submission and Presentation of Term Project Report	14 th (started from the 4 th week)	2
15.	Lab Exam	15 th	2
	Number of Weeks /and Units Per Semester	15	30

VI. Teaching strategies of the course:

The knowledge and skills are delivered to students through:

- Active lectures sessions,
- Interactive Class Discussion,
- individual and group assignments,
- Lab and projects
- Computer-based Lab Work

VII. Assignments & Reports:					
No	Assignments	Week Due	Mark		
1.	Latches & Flip-Flops Lab Reports	3 rd	1		

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2.	Counters Repots	5 th	2
3.	Registers Repots	$7^{th} \& 9^{th}$	2
4.	Sequential Logic Circuits Design Assignments & Repots.	11 th	4
5.	Memory & VHDL Programming Search Web and prepare short reports to solve problems related to digital system design as suggested by the lecturer	12 th - 14 th	6
	Total		15

VIII.Schedule of Assessment Tasks for Students During the Semester:

No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment
1.	Assignments & Reports	3^{rd} to 14^{th}	15	10%
2.	Quizzes	5 th , 10 th & 14 th	10	6.67%
3.	Midterm Exam (Theory)	8 th	20	13.33%
4.	Final Lab. Exam (including Course Project Evaluation)	14 th & 15 th	30	20%
5.	Final Exam (Theory)	16 th	75	50%
	Total		150	100%

IX.Learning Resources:

• Written in the following order: (Author – Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. Thomas L. Floyd, 2009, Digital Fundamentals, 10th Edition, Pearson Education
- 2. International Ronald J. Tocci, Neal S.Widmer, Gregory L. Moss, 2007, Digital Systems : Principles and Applications, 10th Edition,. Pearson Prentice Hall

Prepared by

Head of Department Q Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2- Essential References.

- Douglas L. Perry, 2002, VHDL Programming by Example, 4th Edition, McGraw-Hill
- 2. M. M. Mano, M. D. Ciletti, 2007, Digital Design, 4th Edition, Prentice-Hall

3- Electronic Materials and Web Sites *etc*.

1-

	X. Course Policies:
1.	 Class Attendance: -A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic
2.	Tardy:For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	 Exam Attendance/Punctuality: A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam.
4.	Assignments & Projects:The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.
5.	Cheating:For cheating in exam, a student will be considered as failure. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.
6.	Plagiarism : Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proved a plagiarism of a student, he will be disengaged

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university.
Other policies:

Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room
Mobile phones are not allowed in class during the examination. Lecture notes and assignments my given directly to students using soft or hard copy

24. Course Specification of Electrical Circuits 2

	I. Course Identification and General Information:						
1.	Course Title:	Electr	Electrical circuits 2				
2.	Course Code &Number:	PME112					
			C.	Н		Total	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
		2	2	2	-	4	
4.	Study level/ semester at which this course is offered:	Second year /Second term					
5.	Pre –requisite (if any):	Electrical circuits 1 (PME111)					
6.	Co –requisite (if any):	None.					
7.	Program (s) in which the course is offered:	Electrical Programs (All Three Programs)				ograms)	
8.	Language of teaching the course:	English					
9.	Location of teaching the course:	Faculty of Engineering, Sana'a University, Electrical Engineering Department					
10.	Prepared By:	Asst. Prof. Dr. Eng. Mohammad Ali Nasr Saif					
11.	Date of Approval						

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

II. Course Description:

This course is the second basic course on electrical circuits and it is also essential in the department. It is intended to enhance the knowledge of students with regard to electrical AC circuits and to develop their skills.

The course topics focus on fundamentals, calculations and analysis of AC circuits, and it inclu impedance, admittance, voltage, current and powers of AC circuits and their components also the use of different techniques, laws, and theorems to analyze the simple and complex types of the AC circuits. This course enables students to:

- Perform the calculation techniques of the AC circuits using time-domain forms of AC quantities.
- Understand the effect of the frequency on the AC circuit impedance.
- Draw the diagrams (triangles) of impedance and admittance of an AC circuit
- Perform the calculation techniques of the AC circuits using phasor-domain (complex) forms of AC quantities.
- Calculate the powers of an AC circuit.
- Know the importance of power factor in AC circuits.
- Draw the phasor diagram of powers of an AC circuit.
- Understand the magnetically coupled circuits, applications and their calculation techniques.
- Understand the poly-phase circuits, their importance and calculation techniques.
- Understand the tow-port circuits, their rules and calculation techniques.

Ι	II. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Define the difference between the DC and AC quantities and circuits.	A1
a2	Acquire knowledge of the impedance, admittance and the parameters of the pure (ideal) and normal elements in the AC circuit.	A1
a3	Acquire knowledge of representing an AC quantity on the time- domain plane (as a waveform) and/or on the (complex) plane (as a phasor diagram) and the difference between the two representations.	A1

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

a4	Recognize the poly-phase circuits, their importance and calculation techniques.	A2
b1	Analyze the AC simple circuits by the use of phasor, non-sinusoidal and sinusoidal time-domain AC quantities.	B2
b2	Solve the complex and tow-port AC circuits using different circuit analyzing techniques.	B1
c1	Apply the time-domain sinusoidal, non-sinusoidal and phasor AC quantities to solve AC circuits.	C2
c2	Practice related computer software to design simple AC circuits.	C4
d1	Enhance the self-learning activities using faculty library and computer and internet resources.	D5

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
a1- Define the difference between the DC and AC quantities and circuits. a2- Acquire knowledge of the the parameters of the pure (ideal) normal elements in the AC circuit.	 Lecture, Tutorials, Interactive class discussion, Laboratory experimental work 	 Assignments, Written exams, Quizzes, Laboratory exams Written report
 a3- Acquire knowledge of representing an AC quantity on the time-domain plane (as a waveform) and/or on the (complex) plane (as a phasor diagram) and the difference between the two representations. 	 Lecture, Tutorials, Interactive class discussion, Laboratory experimental work 	 Assignments, Written exams, Quizzes, Laboratory exams Written report

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

a4- Recognize the poly-phase circuits, their importance and calculation techniques.	 Lecture, Tutorials, Interactive class discussion, Laboratory experimental work 	 Assignments, Written exams, Quizzes, Laboratory exams Written report
--	---	--

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes			Teaching strategies	Assessment Strategies		
b1-	Analyze the AC simple circuits by	-	Lectures,			
the	use of phasor, non-sinusoidal	•	Tutorials,			
and	nd sinusoidal time-domain AC		sinusoidal time-domain AC • Interactive clas		Interactive class	- TT
	quantities.		discussion,	 Home works Assignments 		
b2-	Solve the complex and tow-port	•	Exercises,	- Assignments.		
AC	circuits using different circuit	•	Series of laboratory			
	analyzing techniques.		Experiment coursework.			

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
c1- Apply the time-domain sinusoidal, non-sinusoidal and phasor AC quantities to solve AC circuits.	 Lectures, Tutorials, Interactive class discussion, Exercises, Series of laboratory Experiment coursework. 	 Laboratory assignments Reports, Homework, Midterm Final exam. 				

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

c2- Practice related computer software to design simple AC circuits.	 Lectures, Tutorials, Interactive class discussion, Exercises, Series of laboratory Experiment coursework 	 Laboratory assignments Reports, Homework, Midterm Final exam.
---	--	---

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes		Teaching strategies	Assess Strate	ment gies	
d1- Enhance the self-learning activities using faculty library and computer and internet resources.		 Lectures, Tutorials, Interactive class discussion, Exercises, Series of laboratory Experiment coursework. 	 Homewo assignme presentat: written te 	rk nts, ion, ests.	
Γ	V. Course (Content:			
	A – Theoret	ical Aspect:			
Order	Units/Topics List	Learning Outcomes	Sub Topics List	NumberofWeeks	Contact hours
1.	General Introduction to the course. AC Circuit elements	a1,a2,d1	 Introduction to electrical AC circuits. The objectives, requirements and 	1	2

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 guidelines to comply with the course. Impedance, admittance, parameters and AC quantities of a pure element in AC Circuits. Representing the pure element quantities in time- domain and complex planes. 		
2.	AC Circuit elements	a1,a2,d1	 admittance, parameters and AC quantities of a normal element in AC Circuits. Waveform, phasor diagram or/and triangle of the normal element quantities in an AC circuit. Frequency effect on the impedance and parameters of an element in AC circuit. 	1	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 Calculations of ac 		
			circuits using non-		
			sinusoidal time-		
			domain quantities:		
			- With a simple-		
			pure element		
			circuit.		
			- With a simple-		
			normal element		
			circuit.		
			 Calculations of ac 		
			circuits using		
			sinusoidal phasor-		
			domain (complex)		
	Calculations		quantities:		
3.	of AC	a1,a2,a3,b1,d1	- Complex	2	4
	Networks:		numbers		
			- Complex		
			numbers forms.		
			- Mathematical		
			operations of		
			complex		
			numbers.		
			- Conversion		
			between time-		
			domain and		
			phasor - domain		
			(complex)		
			quantities.		
			 Representation of 		
			time-domain and		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			phasor-domain		
			quantities of an AC		
			circuit:		
			- waveform		
			representation of		
			the time-domain		
			sinusoidal and		
			non- sinusoidal		
			quantities.		
			- Phasor diagram		
			(or triangle)		
			representation of		
			the phasor -		
			domain		
			(complex)		
			quantities.		
			 Input impedance, 		
			admittance,		
			parameters, voltage,		
			current and power of		
			series AC circuits.		
	Series and		Division of the input		
4	Parallel AC	a1 a2 a3 b1 c1 d1	current and power on	2	1
-10	Circuits:	u1,u2,u3, 01,01,u1	the elements of series	2	-
	eneurus.		AC circuit:		
			- Kirchhoff's		
			voltage law		
			(KVL).		
			- Voltage divider		
			rule (VDR).		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 Input admittance, 		
		impedance,			
			parameters, voltage,		
			current and power of		
			parallel AC circuits.		
			Division of the input		
			voltage and power on		
			the elements of		
			parallel AC circuit:		
			- Kirchhoff's		
			current law		
			(KCL).		
			- Current divider		
		rule (CDR).			
		Single- and double-			
			subscripts voltages		
			notations in AC		
			circuits.		
			Input and output		
			powers of series or		
			parallel AC circuits:		
			- Complex powers		
			rules.		
			 Techniques used in 		
			analyzing the circuit:		
	Series-		- Reduce and		
5.	Parallel AC	a1,a2,a3,b1,c1,d1	return approach.	1	2
	Circuits:		- Block diagram		
			approach.		
			- Ladder circuits.		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

6.	Advanced analysis methods in AC Circuits:	a1,a2,a3,b1,c1,d1	 Branch current analysis method in AC circuits. Mesh analysis method in AC circuits. Nodal analysis method in AC circuits. 	1	2
7.	Network theorems in AC Circuits:	a1,a2,a3,b1,c1,d1	 Superposition theorem. Millman's theorem. Thevenin's theorem. Norton's theorem. Maximum power transfer theorem. 	1	2
8.	Poly-phase systems:	a1,a2,a3,,a4,b1,c1,d1	 ABC sequence. ACB sequence. Y-connected three-phase balanced system. -connected Three-phase balanced system. Voltage, current and power of Y-and -connected three-phase balanced systems. Y- Y three-phase balanced systems. 	2	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 □- □ three-phase balanced systems. Y- □ three-phase balanced systems. Calculations in a three-phase balanced circuit. 		
9.	Magnetically coupled circuits:	a1,a2,a3,b1,c1,d1	 Air-core and iron-core magnetic (coil) circuits. Self and mutual inductances of coil circuits. Series connection of the magnetically coupled coils. Electrical networks with the magnetically coupled coils. 	1	2
10.	Tow-port networks:	a1,a2,a3,b1,c1,d1	 Types of two-port networks. Input and output impedance and admittance of two- port networks. Two-port cascade networks. Input and transfer parameters of the impedance and 	1	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Number of Weeks /and Units Per Semester			14	28	
11.	General Review and consultancy		All main subjects by requirement.	1	2
			 admittance of two- port network. Hybrid parameters of two-port network. Hybrid input and output impedance of two-port network. 		

B- Tutorials Aspect:						
Order	Tutorial Skills List	№ of Weeks	C.H.	CILOs		
1.	 Features of different types of pure and normal impedances. Responses of AC quantities applied to different types of pure and normal impedances. Waveforms and phasor diagrams of the responses of different types of pure and normal impedances with applying different AC quantities. Power phasor diagrams and power factors of different types of pure and normal impedances. 	2	4	a1,a2,d1		
2.	 Calculations of series and parallel AC circuits by the use of sinusoidal, non sinusoïdal and phasor quantities. Analysis of different types of series and parallel AC circuits. Phasor diagrams of the input and output of voltage, current and power of series and parallel AC circuits. 	2	4	a1,a2,a3, b1,d1		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Number of Weeks /and Units Per Semester	14	28	
8.	 Analaysis of tow-port networks 	1	2	a1,a2,a3,b1, c1,d1
7.	 Calculations of different Magnetically coupled circuits 	2	4	a1,a2,a3,b1, c1,d1
6.	 Analaysis Poly-phase networks using abc and cba sequences. 	1	2	a1,a2,a3,,a4, b1,c1,d1
5.	 Applying network theorems to a complex AC circuit. Analaysis of different complex AC circuits using different network theorems. 	2	4	a1,a2,a3,b1, c1,d1
4.	 Applying mesh and nodal analyses to a complex AC circuit. Analaysis of different complex AC circuits using mesh and nodal analyses. 	2	4	a1,a2,a3,b1, c1,d1
3.	 Calculations of different series-parallel AC circuits by the use of sinusoidal and phasor quantities. Analysis of different types of series-parallel AC circuits. 	2	4	a1,a2,a3,b1 ,c1,d1

B - Practical Aspect:						
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes		
1.	Orientation	1	2	all		
2.	Average and RMS values	1	2	all		
3.	Response of RLC circuits	1	2	all		
4.	Phasor relationships for simple circuits	1	2	all		
5.	Input impedance and active circuits	1	2	all		
6.	Capacitors and series RC circuits	1	2	all		
7.	Inductors and series RL circuits	1	2	all		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

8.	Parallel RC and LC circuits	1	2	all
9.	Power relationships and power factor	1	2	all
10.	Analysis of some AC circuits by MATLAB computer software	5	10	all
Number of Weeks /and Units Per Semester		14	28	

V. Teaching strategies of the course:

- Lectures
- Dialogue and discussion
- Brainstorming
- Problem Solving
- Practical application
- Assignments and Reports

VI. Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Exercises & Homework	a1, a2, a3, b1, c1, d1	2, 5, 8, 11,13	20		
2.	Written Test (1)	a1, a2, a3, a4, b1, c1, d1	8	15		
3.	Written Test (2)	a1, a2, a3, a4, b1, c1, d1	12	15		
4.	Laboratory reports	a1, a2, a3, a4, b1, c1, c2, d1	Weekly from week 3 to 10	20		
5.	Laboratory mini project.	a1, a2, a3, a4, b1, c1, c2, d1	14	20		
6.	Laboratory exam.	a1, a2, a3, a4, b1, c1, c2, d1	15	10		
7.	Final Exam (theoretical)	a1, a2, a3, a4, b1, c1, d1	To be arranged by the examination board of faculty at the End of the term	100		

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Total grades

200

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VI	VII. Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1.	Exercises & Homework	2, 5, 8, 11,13	20	10%	a1,a2,a3,b1,c1,d1			
2.	Written Test (1)	8	15	7.5%	a1,a2,a3,,a4,b1,c1,d1			
3.	Written Test (2)	12	15	7.5%	a1,a2,a3,,a4,b1,c1,d1			
4.	Laboratory reports	Weekly from week 3 to 10	20	10%	a1,a2,a3,,a4,b1,c1,c2,d1			
5.	Laboratory mini project.	14	20	10%	a1,a2,a3,,a4,b1,c1, c2,d1			
6.	Laboratory exam.	15	10	5%	a1,a2,a3,,a4,b1,c1, c2,d1			
7.	Final Exam (theoretical)	To be arranged by the examination board of faculty at the End of the term	100	50%	a1,a2,a3,,a4,b1,c1,d1			
	Total g	ades	200	100%				

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. Robert L. Boylestad, 2007, Introductory circuit analysis,11Ed, Pearson Prentice Ha New Jersey, USA.
- 2. Mahmood Nahvi & Joseph A. Edminister, 2003, Electric circuits, 4th Ed, Schaum' Outline Series, McGRAW-HILL, New York, USA.

2- Essential References.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	1. Charles K. Alexander & Matthew N. O. Sadiku, 2001, Fundamentals of			
	Electric circuits,			
	2. 3 rd Ed McGRAW-HILL, New York, USA. McGRAW-HILL, New York, USA.			
	3. Charles A. Desoer, Ernest S. Kuh, 2009, Basic Circuit Theory, McGraw-Hill			
	Education (India).			
	4. <u>Allan H. Robbins</u> , <u>Wilhelm C. Miller</u> , 2012, Circuit Analysis: Theory And			
	Practice, Fifth Edition, Cengage Learning.			
3	3- Electronic Materials and Web Sites etc.			
	1. <u>All About Circuits: Free Electric Circuits Textbooks</u>			
	2. <u>www.allaboutcircuits.com/</u>			
	3. <u>http://www.uta.edu/ee/hw/pspice/</u>			
	4. <u>http://www.youtube.com/watch?feature=player_detailpage&v=dZUPBLNuaHk</u>			
	5. <u>http://denethor.wlu.ca/PSpice/pspice_tutorial.html</u>			
	6. <u>www.seas.upenn.edu/~jan//PSpice_LibraryguideOrCAD.pdf</u>			
	7. www.ladyada.net/learn/soldering How to Do It: Basic Soldering - YouTube			
	8. http://www.youtube.com/watch?v=BLfXXRfRIzY			

IX. Course Policies:

Class Attendance:

A student should attend not less than 75 % of total hours of the subject; otherwise he

1. will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic

Tardy:

2. For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.

Exam Attendance/Punctuality:

3. A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam-

Prepared by Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

4.	Assignments & Projects:
	The assignment is given to the students after each chapter; the student has to submit all
	the assignments for checking on time-
5.	Cheating:
	For cheating in exam, a student will be considered as failure. In case the cheating is
	repeated three times during his/her study the student will be disengaged from the
	Faculty-
6.	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
	If the examination committee proved a plagiarism of a student, he will be disengaged
	from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university.
	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed,
7.	otherwise the student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek
By	A. Barakat
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi
	Name of Reviewer from the Department: Asst. Prof. Dr. Adel Ahmed Al-Shakiri
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
	Assoc. Prof. Dr. Ahmed Mujahed
	Asst. Prof. Dr. Munasar Alsubri

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad