

25. Course Specification of Electronics 1

]	I. Course Identification and General Information:						
1.	Course Title:	Electroni	es 1				
2.	Course Code & Number:	PME113					
			C.H	[Total	
3.	3. Credit hours:		Tu.	Pr.	Tr.	Total	
			2	2	-	4	
4.	Study level/ semester at which this course is offered:	Level 2- Semester 2					
5.	Pre –requisite (if any):	Electrical Circuits 1(PME111)					
6.	Co –requisite (if any):	Electrical	Circuits	2(PME1	12)		
7.	Program (s) in which the course is offered:	Electrical Eng. Dept					
8.	Language of teaching the course:	English & Arabic					
0	9. Location of teaching the course:		Inside the University, Faculty of Engineering				
9.			Electrical Engineering Department				
10.	Prepared By:	Asst. Prot	f. Dr. Abd	lulkafi A	l-Eriany	7	
11.	Date of Approval	December 2020					

II. Course Description:

This course introduces fundamental principles and concepts of atomic structure, energy bands, semiconductor types and how to form deferent types of electronic devices. The first electronic device to be introduced is the diode, which is the simplest of semiconductor device but it plays a very vital role in electronic systems such as voltage rectifiers, clippers, clampers, voltage multiplier circuits and so on. Furthermore, we will study in details the two main types of transistors (BJTs and FETs) starting with construction, operation, parameters and characteristics,

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

modeling, DC and AC analysis of each type with strong emphasis on the Metal Oxide Semiconductor FETs (MOSFETs).

	III. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Demonstrate knowledge of history and developed characteristics, operations, fundamental laws and analysis, and engineering applications related to electronic materials and devices.	A1
a2	Describe principles and basic concepts of electronic devices, fabrication, characteristics, operations.	A2
b1	Solve electronics systems using appropriate methods and modeling techniques.	B1
b2	Analyze the electronics engineering in the field of industrial products.	В3
c1	Employ the international standards and technical specifications of analog electronics components while designing and integrating electronic systems.	C2
c2	Conduct laboratory experiments safely to verify theoretical concepts related to electronics components and devices.	C3
d1	Assess personal commitment to electronics engineering tasks and effectively manage time and resources.	D3

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
-----------------------------------	------------------------	-----------------------

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

a1- Demonstrate knowledge and understanding of history of development, characteristics, operations, fundamental laws and analysis, and engineering applications related to electronic materials and devices.	 Active lectures Tutorials Exercises and Homework 	 Written tests (Mid and final Terms) Written assessments such as multiple- choice questions and Quizzes Short Essays
a2- Describe principles and basic concepts of electronic devices, fabrication, characteristics, operations.	 Active lectures Hands-on Laboratory work Exercises and Homework 	 Written tests (Mid and final Terms) Practical Assessment Simulation

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

	8 8		
Cou	arse Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1-	Solve electronics systems using appropriate methods and modeling techniques.	 Active lectures Design Work and Project Case Studies 	 Written tests (Mid and final Terms) Practical Assessment Simulation Reports
b2- engine produc	Analyze the electronics eering in the field of industrial cts.	 Active lectures Hands-on Laboratory Work Case Studies 	 Written tests (Mid and final Terms) Written assessments Project Reports

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Co	ourse Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1- while	Employ the international standards and technical specifications of analog electronics components designing and integrating electronic systems.	 Active lectures Hands-on Laboratory Work Design Work 	 Written assessments such as multiple- choice questions and Quizzes Short Essays
c2-	Conduct laboratory experiments safely to verify theoretical concepts related to electronics components and devices.	 Active lectures Hands-on Laboratory Work Case Studies 	Practical AssessmentSimulationLaboratory Reports

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes Teaching strategies Assessment Strategies						
d1- Assess personal commitment to electronics engineering tasks and effectively manage time and resources.	Active lecturesCase Studies	Reports Short Essays.Presentations				

IV. Course Content:					
A – The	eoretical Aspect:				
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours
1.	Solid state principles	a1, a2	Course orientations.Atomic structure.Energy bands.	1	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2.	Semiconductor	a1, a2	 Silicon and Germanium atomic structure. Intrinsic and extrinsic semiconductor. Diffusion current. N-type and P-type semiconductors. 	1	2
3.	Diode	a1, a2	 Operation and biasing. Forward biasing of the diode. Reversed biasing of the diode. 	1	2
4.	Diode	a1, a2	 Diode V-I Characteristics. Temperature Effect. Basic and complicated diode circuits. 	1	2
5.	Diode applications	a1, a2	 Half- Wave and Full- Wave rectification circuits. Center tapped transformer. Clippers. Clampers. 	1	2
6.	Zener diode and LEDS	a1, a2, b1	 Zener Characteristics and application. Voltage regulation. Light Emitting Diode LED – Construction and operation. 	1	2
7.	Bipolar junction transistor (BJT)	a1, a2, b1	Types, construction and configurations.Operation and biasing.	1	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

8.	Bipolar junction transistor (BJT)	a1, a2, b1, b2	Load line and Q-Point determination.BJT as an Electronic Switch.	1	2
9.	Bipolar junction transistor (BJT)	a1, a2, b1, b2, c2, d1	 BJT Modeling. re Model. Hybrid equivalent model (h-Parameters) AC analysis. Voltage amplification. 	1	2
10.	Field effect transistors (FETS)	a1, a2, b1, b2, d1	 Classification. Construction. Operation. DC analysis. Output and transfer characteristics. 	1	2
11.	Junction field effect transistor (JFET)	a1, a2, b1, b2, c2, d1	Modeling.AC analysis.	1	2
12.	Depletion mosfet (D- MOS)	a1, a2, b1, b2, c2, d1	 Classification. Construction. Operation. DC analysis. Output and transfer characteristics. 	1	2
13.	Enhancement mosfet (E- MOS)	a1, a2, b1, b2, c2, d1	 Construction. Operation. DC analysis. Output and transfer characteristics. 	1	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

14.	Overview	a1, a2, b1, b2, c1, c2, d1	All Topics	1	2
Number of Weeks /and Units Per Semester			14	28	

B – Tutorial Aspect:						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours	
1.	Solid state principles	a1, a2	Course orientations.Atomic structure.Energy bands.	1	2	
2.	Semiconductor	a1, a2	 Silicon and Germanium atomic structure. Intrinsic and extrinsic semiconductor. Diffusion current. N-type and P-type semiconductors. 	1	2	
3.	Diode	a1, a2	 Operation and biasing. Forward biasing of the diode. Reversed biasing of the diode. 	1	2	
4.	Diode	a1, a2	 Diode V-I Characteristics. Temperature Effect. Basic and complicated diode circuits. 	1	2	
5.	Diode applications	a1, a2	• Half- Wave and Full- Wave rectification circuits.	1	2	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		1		1	1
			• Center tapped transformer.		
			• Clippers.		
			• Clampers.		
			• Zener Characteristics and		
	Zener diode and		application.		
6.	LEDS	a1, a2, b1	• Voltage regulation.	1	2
			• Light Emitting Diode LED –		
			Construction and operation.		
	Bipolar junction		• Types, construction and		
7.	transistor	a1, a2, b1	configurations.	1	2
	(BJT)		• Operation and biasing.		
	Bipolar junction	1 0 1 1	• Load line and Q-Point		
8.	transistor	al, a2, b1,	determination.	1	2
	(BJT)	02	• BJT as an Electronic Switch.		
			• BJT Modeling.		
			• r _e Model.		
0	Bipolar junction	a1, a2, b1,	• Hybrid equivalent model (h-		
9.	transistor	b2, c2, d1	Parameters)	1	2
	(DJ1)		• AC analysis.		
			• Voltage amplification.		
			Classification.		
	Field Effect		Construction.		
	Transistors	a1. a2. b1.	• Operation.		
10.	(FETS)	b2, d1	• DC analysis.	1	2
			• Output and transfer		
			characteristics.		
	Junction field	-1 -0 11	• Modeling		
11.	effect transistor	$a_1, a_2, b_1, b_2, c_2, d_1$	• AC analysis	1	2
	(JFET)	02, 02, u1	• AC allalysis.		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

12.	Depletion MOSFET (D- MOS)	a1, a2, b1, b2, c2, d1	 Classification. Construction. Operation. DC analysis. Output and transfer characteristics. 	1	2
13.	Enhancement MOSFET (E- MOS)	a1, a2, b1, b2, c2, d1	 Construction. Operation. DC analysis. Output and transfer characteristics. 	1	2
14.	Overview	a1, a2, b1, b2, c1, c2, d1	• All Topics	1	2
	Number of V	14	28		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

C – Pra	C – Practical Aspect:							
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes				
1.	 An Experiment to be familiarize with Measuring Instruments and Tools. 	1	2	a1, b1, b2, c2				
2.	Errors of measurement.Types of errors.Mathematical expression of errors	1	2	a1, b1, b2, c2				
3.	 Forward biasing of the P-N Junction diode, verification of I-V Characteristics of P-N Junction Diodes. 	1	2	b1, b2, c1, c2, d1				
4.	 Half- Wave and Full-Wave Rectifiers, Center tapped transformer, output waveforms and filtration 	1	2	b1, b2, c1, c2, d1				
5.	 Measurement of Zener Diode Characteristics 	1	2	b1, b2, c1, c2, d1				
6.	 Measurement the output waveform of Clamper circuit 	1	2	b1, b2, c1, c2, d1				
7.	 Determination of the Q-Point of the collector characteristics 	1	2	b1, b2, c1, c2, d1				
8.	 Verification of DC parameters and variables of BJTs and FETs in different configurations 	1	2	b1, b2, c1, c2, d1				
9.	 BJT as an Electronic Switch 	1	2	b1, b2, c1, c2, d1				
10.	 Verification of AC parameters and variables of BJTs and FETs in different configurations 	1	2	b1, b2, c1, c2, d1				

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

11.	 Output characteristics of BJT 	1	2	b1, b2, c1, c2, d1
12.	 Transfer characteristics of FETs 	1	2	a1, a2, b1, b2, c1, c2, d1
13.	 Project Presentation 	1	2	a1, a2, b1, b2, c1, c2, d1
14.	 Review 	1	2	a1, b1, b2, c1, c2, d1
Number of Weeks /and Units Per Semester		14	28	

V. Teaching strategies of the course:

- Active lectures
- Tutorials
- Projects and Report Presentations
- Laboratory hands-on work
- Design Work
- Case Studies

VI. Assignments:						
No	Assignments	Aligned CILOs (symbols)	Week Due	Mark		
1.	P-N Junction Diode	a1, a2	2^{nd} & 3^{rd}	2		
2.	Half-waves and Full-waves Rectifiers	a1, a2, b1, b2, c2, d1	4 th	4		
3.	Zener Diode	a1, a2, b1, c2	5 th	2		
4.	BJT Transistor DC &AC Analysis.	a1, a2, b1, b2, c2, d1	6 th to 9 th	6		
5.	FET Transistors DC & Ac Analysis	a1, a2, b1, b2, c2, d1	10^{th} to 13^{th}	6		
Total						

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VII. Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1.	Assignments& Homework	2^{nd} to 15^{th}	20	10%	a1, a2, b1, b2, c2, d1		
2.	Lab work and experiments reports	4 th to 13 th	20	10%	a1, b1, b2, c1, c2, d1		
3.	Practical Term-Project and Presentation	$3^{\rm rd}$ to $14^{\rm th}$	20	10%	a1, a2, b1, b2, c1, c2, d1		
4.	Mid-Term Exam (Theoretically)	8 th	20	10%	a1, a2, b1, b2, c2		
5.	Final-Term Exam (Practically)	15 th	20	10%	a1, b1, b2, c1, c2, d1		
6.	Final-Term Exam (Theoretically)	16 th	100	50%	a1, a2, b1, b2, c2, d1		
Te	otal Assessments Mark/Perc	entage	200	100%			

VIII. Learning Resources:

Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- **1.** Robert L. Boylestad, Louis Nashelsky, 2013, Electronic Devices and Circuit Theory, Prentice Hall, 11th Edition.
- 2. Thomas L. Floyd, 2012, Electronic devices, 9th Ed, USA, Pearson Prentice Hall.

2- Essential References.

- **1.** Robert T. Paynter, 2006, Introductory to Electronic Devices and Circuits, Printice Hall.
- 2. J. Millman & A. Garbel -1978 "Microelectronics", McGraw Hill.
- **3.** S. H. Grove 1997 "Semiconductor physics and devices", John Wiley.
- 4. Sedra & K. Smith 1998 "Microelectronic Circuits", Holt, Rinehart and Winston.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Design – 4/Edition – McGraw Hill Companies, USA – New York.
3- E	lectronic Materials and Web Sites etc.
1	http://www.ocw.mit.edu/courses.
2	2. <u>https://www.youtube.com/playlist?list=PLww54WQ2wa5rOJ7FcXxi-</u>
	CMNgmpybv7ei
	3. Lectures will be prepared by lecturer.
2	4. Faculty Electronic Library.
D	K. Course Policies:
	Class Attendance:
1.	A student should attend not less than 75 % of total hours of the subject; otherwise he will
	not be able to take the exam and will be considered as exam failure. If the student is
	absent due to illness, he/she should bring an approved statement from university Clinic
	Tardy:
2.	For late in attending the class, the student will be initially notified. If he repeated lateness
	in attending class he will be considered as absent.
	Exam Attendance/Punctuality:
3	A student should attend the exam on time. He is Permitted to attend an exam half one
5.	hour from exam beginning, after that he/she will not be permitted to take the exam and
	he/she will be considered as absent in exam-
	Assignments & Projects:
4.	The assignment is given to the students after each chapter; the student has to submit all
	the assignments for checking on time-
	Cheating:
5.	For cheating in exam, a student will be considered as failure. In case the cheating is
	repeated three times during his/her study the student will be disengaged from the Faculty-
	Plagiarism:
6.	Plagiarism is the attending of a student the exam of a course instead of another student.
	If the examination committee proved a plagiarism of a student, he will be disengaged

5. Richard C. Jaeger and Travis N. Blalock – 2011 – Microelectronic – 1 NIC circuit

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university.
	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise
7.	the student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek				
By	<u>A. Barakat</u>				
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi				
	Name of Reviewer from the Department: Assoc. Prof. Dr. Yahya Al-Naggar				
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa				
	Assoc. Prof. Dr. Ahmed Mujahed				
	<u>Asst. Prof. Dr. Munasar Alsubri</u>				

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

25. Template for Course Plan of Electronics 1

I. Information about Faculty Member Responsible for the							
Course:							
Name of Faculty Member	Asst. Prof. Dr. Abdulkafi Al-Eriany	st. Prof. Dr. Ikafi Al-Eriany Office Hours					
Location & Telephone No.		SAT	SUN	MON	TUE	WED	THU
E-mail							

-	II. Course Identification and General Information:						
1.	Course Title:	Elec	tronics 1				
2.	Course Number & Code:	PME	E113				
			C	.H		Total	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
			2	2	-	4	
4.	Study level/year at which this course is offered:	Level 2- Semester 2					
5.	Pre –requisite (if any):	Electrical Circuits 1(PME111)					
6.	Co –requisite (if any):	Electrical Circuits 2(PME112)					
7.	Program (s) in which the course is offered	Electrical Engineering Department					
8.	Language of teaching the course:	English & Arabic					
9.	System of Study:	Regular					
10.	Mode of delivery:	Semesters					
11.	Location of teaching the course:	Insic Engi Elec	le the Univ neering trical Engi	versity, F	aculty of Departm	f ent	

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description:

This course introduces fundamental principles and concepts of atomic structure, energy bands, semiconductor types and how to form deferent types of electronic devices. The first electronic device to be introduced is the diode, which is the simplest of semiconductor device but it plays a very vital role in electronic systems such as voltage rectifiers, clippers, clampers, voltage multiplier circuits and so on. Furthermore, we will study in details the two main types of transistors (BJTs and FETs) starting with construction, operation, parameters and characteristics, modeling, DC and AC analysis of each type with strong emphasis on the Metal Oxide Semiconductor FETs (MOSFETs).

IV.Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - **1.** Demonstrate knowledge of history and developed characteristics, operations, fundamental laws and analysis, and engineering applications related to electronic materials and devices.
 - **2.** Describe principles and basic concepts of electronic devices, fabrication, characteristics, operations.
 - 3. Solve electronics systems using appropriate methods and modeling techniques.
 - 4. Analyze the electronics engineering in the field of industrial products.
 - **5.** Employ the international standards and technical specifications of analog electronics components while designing and integrating electronic systems.
 - **6.** Conduct laboratory experiments safely to verify theoretical concepts related to electronics components and devices.
 - **7.** Assess personal commitment to electronics engineering tasks and effectively manage time and resources.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V. Course Content:									
A – The	A – Theoretical Aspect:								
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact hours					
1.	Solid state principles	Course orientations.Atomic structure.Energy bands.	1 st	2					
2.	Semiconductor	 Silicon and Germanium atomic structure. Intrinsic and extrinsic semiconductor. Diffusion current. N-type and P-type semiconductors. 	2 nd	2					
3.	Diode	 Operation and biasing. Forward biasing of the diode. Reversed biasing of the diode. 	3 rd	2					
4.	Diode	 Diode V-I Characteristics. Temperature Effect. Basic and complicated diode circuits. 	4 th	2					
5.	Diode applications	 Half- Wave and Full- Wave rectification circuits. Center tapped transformer. Clippers. Clampers. 	5 th	2					
6.	Zener diode and LEDS	 Zener Characteristics and application. 	6 th	2					

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		 Voltage regulation. Light Emitting Diode LED – Construction and operation. 		
7.	Bipolar junction transistor (BJT)	Types, construction and configurations.Operation and biasing.	7^{th}	2
8.	Midterm exam	 All previous topics 	8 th	2
9.	Bipolar junction transistor (BJT)	Load line and Q-Point determination.BJT as an Electronic Switch.	9 th	2
10.	Bipolar junction transistor (BJT)	 BJT Modeling. re Model. Hybrid equivalent model (h-Parameters) AC analysis. Voltage amplification. 	10 th	2
11.	Field effect transistors (FETS)	 Classification. Construction. Operation. DC analysis. Output and transfer characteristics. 	11 th	2
12.	Junction field effect transistor (JFET)	Modeling.AC analysis.	12 th	2
13.	Depletion MOSFET (D-MOS)	 Classification. Construction. Operation. DC analysis. Output and transfer characteristics. 	13 th	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

14.	Enhancement MOSFET (E-MOS)	 Construction. Operation. DC analysis. Output and transfer characteristics. 	14 th	2
15.	Overview	 All Topics 	15 th	2
16.	Final exam	All Topics	16 th	2
Number of Weeks /and Units Per Semester		16	32	

B – Tu	B – Tutorial Aspect:				
Order	Units/Topics List	Sub Topics ListNumber of Weeks		Contact hours	
1.	Solid state principles	Course orientations.Atomic structure.Energy bands.	1 st	2	
2.	Semiconductor	 Silicon and Germanium atomic structure. Intrinsic and extrinsic semiconductor. Diffusion current. N-type and P-type semiconductors. 	2 nd	2	
3.	Diode	 Operation and biasing. Forward biasing of the diode. Reversed biasing of the diode. 	3 rd	2	
4.	Diode	 Diode V-I Characteristics. Temperature Effect. Basic and complicated diode circuits. 	4 th	2	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

5.	Diode applications	 Half- Wave and Full- Wave rectification circuits. Center tapped transformer. 5th Clippers. Clampers. 		2
6.	Zener diode and LEDS	 Zener Characteristics and application. Voltage regulation. Light Emitting Diode LED – Construction and operation. 		2
7.	Bipolar junction transistor (BJT)	Types, construction and configurations.Operation and biasing.	7 th	2
8.	Midterm exam	• All previous topics	8 th	2
9.	Bipolar junction transistor (BJT)	 Load line and Q-Point determination. BJT as an Electronic Switch. 		2
10.	Bipolar junction transistor (BJT)	 BJT Modeling. r_e Model. Hybrid equivalent model (h- Parameters) AC analysis. Voltage amplification. 		2
11.	FIELD EFFECT TRANSISTORS (FETS)	 Classification. Construction. Operation. DC analysis. Output and transfer characteristics. 		2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

12.	Junction field effect transistor (JFET)	Modeling.AC analysis.	12 th	2
13.	Depletion MOSFET (D-MOS)	 Classification. Construction. Operation. DC analysis. Output and transfer characteristics. 	13 th	2
14.	Enhancement MOSFET (E-MOS)	 Construction. Operation. DC analysis. Output and transfer characteristics. 	14 th	2
15.	Overview	• All Topics	15 th	2
16.	Final exam	• All Topics	16 th	2
	Number of Weeks /and Units Per Semester1632			

C – Pra	C – Practical Aspect:			
Order	Tasks/ Experiments	Number of Weeks	Contact hours	
1.	 An Experiment to be familiarize with Measuring Instruments and Tools. 	1^{st}	2	
2.	Errors of measurement.Types of errors.Mathematical expression of errors	2 nd	2	
3.	 Forward biasing of the P-N Junction diode, verification of I-V Characteristics of P-N Junction Diodes. 	3 rd	2	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

4.	 Half- Wave and Full-Wave Rectifiers, Center tapped transformer, output waveforms and filtration 	4 th	2
5.	 Measurement of Zener Diode Characteristics 	5 th	2
6.	 Measurement the output waveform of Clamper circuit 	6 th	2
7.	 Determination of the Q-Point of the collector characteristics 	7 th	2
8.	 Verification of DC parameters and variables of BJTs and FETs in different configurations 	8 th	2
9.	 BJT as an Electronic Switch 	9 th	2
10.	 Verification of AC parameters and variables of BJTs and FETs in different configurations 	10 th	2
11.	 Output characteristics of BJT 	11^{th}	2
12.	 Transfer characteristics of FETs 	12 th	2
13.	 Project Presentation 	13 th	2
14.	 Review 	14^{th}	2
15.	 Final Practical Exam 	15 th	2
	Number of Weeks /and Units Per Semester	15	30

VI. Teaching strategies of the course:

Active lectures

Tutorials

- **Projects and Report Presentations**
- Laboratory hands-on work
- Design Work
- **Case Studies**

	VII.Assignments:			
No	Assignments	Aligned CILOs (symbols)	Week Due	Mark

Prepared by Head of Department Quality Assurance Unit Dean of the Faculty Academic Development Asst. Prof. Dr. Adel Assoc. Prof. Dr. Prof. Dr. Mohammed Ahmed Al-Shakiri Mohammad Algorafi AL-Bukhaiti

Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

1.	P-N Junction Diode	a1, a2	2^{nd} & 3^{rd}	2
2.	Half-waves and Full-waves Rectifiers	a1, a2, b1, b2, c2, d1	4 th	4
3.	Zener Diode	a1, a2, b1, c2	5 th	2
4.	BJT Transistor DC &AC Analysis.	a1, a2, b1, b2, c2, d1	6 th to 9 th	6
5.	FET Transistors DC & Ac Analysis	a1, a2, b1, b2, c2, d1	10^{th} to 13^{th}	6
Total			20	

VIII. Schedule of Assessment Tasks for Students During the Semester:

No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	
1.	Assignments& Homework	2 nd to 15 th	20	10%	
2.	Lab work and experiments reports	4^{th} to 13^{th}	20	10%	
3.	Practical Term-Project and Presentation	3 rd to 14 th	20	10%	
4.	Mid-Term Exam (Theoretically)	8 th	20	10%	
5.	Final-Term Exam (Practically)	15^{th}	20	10%	
6.	Final-Term Exam (Theoretically)	16 th	100	50%	
	Total Assessments Mark/Percentage200100%				

IX. Learning Resources:

Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1. Robert L. Boylestad, Louis Nashelsky, 2013, Electronic Devices and Circuit Theory, Prentice Hall, 11th Edition.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Thomas L. Floyd, 2012, Electronic devices, 9th Ed, USA, Pearson Prentice Hall.

2- Essential References.

- **1.** Robert T. Paynter, 2006, Introductory to Electronic Devices and Circuits, Printice Hall.
- 2. J. Millman & A. Garbel -1978 "Microelectronics", McGraw Hill.
- 3. S. H. Grove 1997 "Semiconductor physics and devices", John Wiley.
- 4. Sedra & K. Smith 1998 "Microelectronic Circuits", Holt, Rinehart and Winston.
- **5.** Richard C. Jaeger and Travis N. Blalock 2011 Microelectronic 1 NIC circuit Design 4/Edition McGraw Hill Companies, USA New York.

3- Electronic Materials and Web Sites etc.

- 1. <u>http://www.ocw.mit.edu/courses</u>.
- 2. <u>https://www.youtube.com/playlist?list=PLww54WQ2wa5rOJ7FcXxi-</u>CMNgmpybv7ei
- **3.** Lectures will be prepared by lecturer.
- **4.** Faculty Electronic Library.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

X	. Course Policies:
	Class Attendance:
1	A student should attend not less than 75 % of total hours of the subject; otherwise he will
1.	not be able to take the exam and will be considered as exam failure. If the student is
	absent due to illness, he/she should bring an approved statement from university Clinic
	Tardy:
2.	For late in attending the class, the student will be initially notified. If he repeated lateness
	in attending class he will be considered as absent.
	Exam Attendance/Punctuality:
3	A student should attend the exam on time. He is Permitted to attend an exam half one
	hour from exam beginning, after that he/she will not be permitted to take the exam and
	he/she will be considered as absent in exam-
	Assignments & Projects:
4.	The assignment is given to the students after each chapter; the student has to submit all
	the assignments for checking on time-
_	Cheating:
5.	For cheating in exam, a student will be considered as failure. In case the cheating is
	repeated three times during his/her study the student will be disengaged from the Faculty-
	Plagiarism:
-	Plagiarism is the attending of a student the exam of a course instead of another student.
6.	If the examination committee proved a plagiarism of a student, he will be disengaged
	from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university.
	Other policies:
-	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise
/.	- Mobile phones are not allowed in class during the examination
	I esture notes and essignments my siven directly to students using soft on hand early

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad