وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

25.Course Specification of Electrical Circuits (2)

	I.Course Identi	ification and General Information:							
.1	Course Title:	Electrical Circuits (2)							
.2	Course Code & Number:	MT							
			C.]	H.		TOTAL			
.3	Credit hours:	Th.	Seminar	Pr	Tu.	Cr.Hrs.			
		2	-	2	2	4			
.4	Study level/ semester at which this course is offered:	Second Year -Second Semester							
.5	Pre –requisite (if any):			Ele	ectrical C	ircuits (1).			
.6	Co –requisite (if any):					None.			
7.	Program (s) in which the course is offered:	Mechatronics Engineering Program.							
8.	Language of teaching the course:	English Language.							
.9	Location of teaching the course:	Mechatronics Engineering Department.							
10.	Prepared By:	Asst. Prof. Dr. Muhammad Al-Yadoumi.							
11.	Date of Approval:								

II.Course Description:

This course is a continuation of Electrical Circuits I. The course is intended to enhance students' knowledge and develop their skills in electrical circuit analysis with regard to Alternating current circuits (AC). The course topics focus on fundamentals, calculations and analysis of AC circuits that includes: complex numbers and phasors, impedance, admittance, voltage, current, powers in AC circuits and their components, power factor improvement, polyphase circuits, and passive and active filters. The application of the different theorems, laws, and techniques premeditated in electrical circuit (1) is also presented. The course includes lab experiments, computer simulation, and group-based term projects to reinforce topics covered in the course.

II	I.Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1.	Describe knowledge and understanding of wave form fundamentals:wave variables, instantaneous value, phasors and trigonometry used in electric circuit analysis.	A1
a2.	Explain the circuit principles, theorems, laws and techniques used in circuits analysis and implementation.	A2
b1.	Explore circuit analysis techniques and computer simulation to investigate the behavior of basic mechatronic systems.	B1

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

b2.	Compare between alternative technics used in DC and AC circuits analysis and select the appropriate one according to the needed specifications.	B4
c1.	Prescribe main electrical measuring devices and methods of electrical quantities measurements in AC circuits and conduct experiments safely to verify theoretical: concepts, rules, and theorems covered throughout the course.	C1
c2.	Apply knowledge acquired throughout the course to identify, formulate, simulate and solve different configurations of electrical circuits faced in mechatronics systems.	C2
d1.	Assess student's cooperative work though efficient team works.	D1
d2.	Review reports using commonly used applications.	D6

((A) A	lign	me	nt	Co	urs	e Ir	nten	ded L	.ea	rnin	g Oı	itcoi	mes of	f K	nowle	dge	e and	Unde	erst	andir	ng to
												Tea	achi	ng Str	ate	gies a	nd	Asses	smen	nt St	trate	gies:
-	_			_			-															

Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies
understanding a1. Describe knowledge and of wave form:fundamentals, variables, instantaneous value, phasors and trigonometry used in electric circuit analysis.	 Active Lectures. Tutorials. Self- Learning. Discussion. 	Written Exams.Homework.Class Activities.
a2. Explain the circuit principles, theorems, laws and techniques used in circuits analysis and implementation	 Active Lectures. Tutorials. Laboratory Works. Discussion. 	 Written Exams. Homework Class Activities. Lab. Reports.

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:									
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies							
b1. Explore circuit analysis techniques and computer simulation to investigate the behavior of basic mechatronic systems.	 Active Lectures. Tutorials. Brainstorming. Laboratory Works. Circuit Simulations. 	Written Exams.Homework.Class Activities.Lab. Reports.							

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

الجمهورية اليمنية وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

b2. Compare between alternative technics used in DC and AC circuits analysis and select the appropriate one according to the needed specifications.	Active Lectures.Tutorials.Laboratory Works.Discussion.	 Written Exams. Homework. Class Activities. Lab Reports.
--	---	--

© Alignment Course Intended Learning Outcomes of Professional and Practical Skill Teaching Strategies and Assessment Strateg								
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies						
c1. Prescribe main electrical measuring devices and methods used in electrical quantities measurements of AC circuits; and conduct experiments safely to verify theoretical: concepts, rules, and theorems covered throughout the course	 Analysis and Problem Solving. Laboratory Works. Circuit Simulations Shared Projects. 	 Written Exams. Homework Class Activities. Lab. Reports Project reports. 						
c2. Apply knowledge acquired throughout the course to identify, formulate, simulate and solve different configurations of electrical circuits faced in mechatronics systems.	 Analysis and Problem Solving. Laboratory Works. Circuit Simulations 	 Written Exams. Homework. Class Activities. Simulations Reports. 						

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:								
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies						
d1. Assess student's cooperative work though efficient team works.	Group Works.Projects.	 Project Reports. Presentation.						
d2. Review reports using commonly used applications.	Group Works.Projects.	 Homework and Lab. reports. Project Reports. 						

	IV.Course Content:									
	A – Theoretical Aspect:									
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours					
1.	Course Orientation. Time Dependent	a1, b1	• Course objectives, learning outcomes, requirements and guidelines to comply with the course.	1	2					

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

	Wave Forms and Signals.		 Introduction to time dependent wave forms. Difference between DC and AC signals. 		
2.	Sinusoidal Wave Forms of Alternating Voltage and Current.	a1, a2	 General format of the sinusoidal wave in: time-domain form, phasor form. Sinusoidal ac voltage characteristics and definitions: instantaneous, amplitude, maximum, peak-to- peak, average, and effective (r. m. s.) values. 	1	2
3.	Response of the Basic AC Elements.	a1, a2, b4	 Response of basic R, L, and C elements to a sinusoidal voltage or current Frequency response of the resistance, inductive and capacitive reactances (R, X_L, X_C) 	1	2
4.	Mathematical Aspect of AC Circuit Analysis.	a ₁ ,a ₂ ,b1,b ₂ ,c ₂	 Complex numbers: rectangular form, polar form. Conversion between forms. Mathematical operations with complex numbers: addition, subtraction, multiplication and division of complex quantities. 	1	2
5.	Series and Parallel AC Circuits.	a ₁ ,a ₂ ,b1,b ₂ ,c ₂	 Impedance resistance and inductance. Admittance, conductance and susceptance. Series configuration Kirchhoff's voltage law (KVL). voltage divider rule (VDR). Parallel circuits Kirchhoff's current law (KCL). current divider rule (CDR). 	1	2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

4.

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

			Series-parallel Combination		
6.	Methods of Analysis and Techniques used in AC Circuit Analysis.	a1,a2,b1,b2,c1	 Dependent (controlled) voltage and current sources. Current sources conversion between sources. Mesh analysis and nodal analysis of electric circuits. Lader networks Bridge networks Star delta transformations Y to Δ and Δ to Y 	1	2
7.	Network Theorems Application on AC Circuits.	a1,a2,b1, b2,c1.	 Super position theorem, Thevenin's theorem, Norton's theorem Theorem of maximum power. 	1	2
8.	Mid-Term Exam.	a1, a2, b1, b2, c1, c2.	• Topics covered in the previous lectures.	1	2
9.	Powers of AC Circuits.	a1, a2, b1, b2, c1, c2.	 Apparent power. active power, reactive power Power triangle. Power factor improvement. 	1	2
10.	Polyphase Systems.	a1, a2, b1, b2, c2.	 Unbalance three-phase system. Balance three-phase generator. Phase sequence. Three-phase system configurations: Y and Δ connected generator. Y and Δ connected load. Y - Y connected system. Y - Δ connected system. Δ-Y connected system. Δ-A connected system. Three-wattmeter method 1048. 23.12two-wattmeter Method 1049. Unbalanced phase systems. 	2	4

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

11.	Operational Amplifiers.	a1, a2, b1, b2, c2.	 Introduction to operational amplifiers op-amp input modes and parameter. Op-amps with negative feedback Effects of negative feedback on op-amp. Parameters. 	1	2
12.	Passive Filters.	a1, a2, b1, b2, c2.	 Filters classification Filter networks: low-pass, high pass, bandpass, band- reject. Decibels. Filter characteristic. Bandwidth and cut-off frequency. Bode plots of filter characteristic. 	2	4
13.	Active Filters.	a1, a2, b1, b2, c2.	 Configurations of active Filter: low-pass, high pass, bandpass, band-reject Filter response characteristics Role off Multi-stage active filters. 	1	2
14.	Final Exam.	a1, a2, b1, b2, c1, c2.	• All the Chapters.	1	2
	Number	16	32		

		В	- Tutoria	al Aspect:
Order	Tutorial	Learnin g Outcome s	Number of Weeks	Contact Hours
1.	Sinusoidal AC Voltage Characteristics and Definitions. Frequency Spectrum. General Format for the Sinusoidal Voltage or Current.	a1, b1	1	2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	The Sinusoidal Waveform Phase Relations instantaneous, amplitude, maximum, peak-to- peak, average, and effective (r. m. s.) values.			
2.	 Response of Basic <i>R</i>, <i>L</i>, and <i>C</i> Elements to a Sinusoidal Voltage or Current. Frequency Response of the R, X_L, X_C Elements. Average Power and Power Factor. Conversion between Polar and Rectangular Forms Mathematical Operations of Complex Numbers and Phasors 	a1, b1, c2	1	2
3.	 Impedance and the Phasor Diagram. Series Configuration. Voltage Divider Rule. Admittance and Susceptance. Parallel ac Networks. Current Divider Rule. Equivalent Circuits. 	a1, b2,	2	4
4.	 Independent versus Dependent. (Controlled) Sources. Source Conversions. Mesh Analysis. Nodal Analysis. Bridge Networks. Y-Δ and Δ-Y Conversions. 	a1, a2, b1, b2,,c1	1	2
5.	Network Theorems (AC). • Superposition Theorem. • Thévenin's Theorem. • Norton's Theorem. • Maximum Power Transfer Theorem.	a1, a2, b1, b2	2	4
6.	Powers of AC Circuits. • Apparent Power. • Active Power, Reactive Power. • Power Triangle. • Power Factor Improvement.	a1,a2,b1, b2,,c1	1	2
7.	Solutions of Mid-Term Exam.	a1, a2, b1, b2, c1	1	2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

8.	Operational Amplifiers. Introduction to Operational Amplifiers Op-Amp Input Modes and Parameters Op-Amps with Negative Feedback Effects of Negative Feedback on Op- Amp Parameters 	a1,a2,b1, b2,,c1, c2.	2	4
9.	Passive Filters. Classification of Filters. Filter Networks: Low-Pass, High Pass, Bandpass, Band-Reject. Decibels. Filter Characteristics. Bandwidth and Cut-off Frequency. Bode Plots of Filter characteristics. 	a1,a2,b1, b2,,c1., c2	1	2
10.	Active Filters: • Active Filter Configurations: Low- Pass, High Pass, Bandpass, band- Reject • Filter Response Characteristics. • Role off. • Multi-Stage Active Filters.	a1,a2,b1, b2,,c1, c2.	1	2
11.	General Review and Discussion.	a1,a2,b1, b2,,c1, c2.	1	2
Number of Weeks /and Units Per Semester1428				

				B - Practical Aspect:
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes
1.	<u>Lab 1</u> • Orientation • Oscilloscope and Function Generator Familirastion.	1	2	c1, c2, b2,d1,d2.
2.	Experiments No. 1 Average and RMS Values.	1	2	a2, b1, b2, c1, d1, d2.
3.	Experiments No. 2	1	2	a2, b1, b2, c1, d1, d2.

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

4. Experiments. 1 2 a2, b1, b2, c1, d1, d 4. Capacitive and Inductive Reactance. 1 2 a2, b1, b2, c1, d1, d 5. Experiments No. 4 1 2 a2, b1, b2, c1, c2, d1 6. Experiments No. 5 1 2 a2, b1, b2, c1, c2, d1 6. Experiments No. 5 1 2 a2, b1, b2, c1, c2, d1 7. Experiments No. 6 1 2 a2, b1, b2, c1, c2, d1 7. Experiments No. 6 1 2 a2, b1, b2, c1, c2, d1 7. Experiments No. 6 1 2 a2, b1, b2, c1, c2, d1 8. Experiments No. 6 1 2 a2, b1, b2, c1, c2, d1 8. Experiments No. 7 1 2 a2, b1, b2, c1, c2, d1 8. Experiments No. 7 1 2 a2, b1, b2, c1, c2, d1 8. Experiments No. 8 1 2 a2, b1, b2, c1, c2, d1 90wer Relationships, and Power 1 2 a2, b1, b2, c1, c2, d1	
4. Capacitive Experiments No. 3 and 1 2 a2, b1, b2, c1, d1, d 5. Experiments No. 4 Computer Simulation. 1 2 a2, b1, b2, c1, c2, d1 6. Experiments No. 5 Parallel RLC Circuits. 1 2 a2, b1, b2, c1, c2, d1 7. Experiments No.6 Computer Simulation. 1 2 a2, b1, b2, c1, c2, d1 7. Experiments No.6 Computer Simulation. 1 2 a2, b1, b2, c1, c2, d1 8. Experiments No.7 AC Superposition. 1 2 a2, b1, b2, c1, c2, d1 8. Experiments No.7 AC Thevenin's Theorem. AC Maximum Power Transfer. Computer Simulation. 1 2 a2, b1, b2, c1, c2, d1 9. Experiments No. 8 Power Relationships and Power 1 2 a2, b1, b2, c1, c2, d1	
5.Experiments No. 4 Series RLC Circuits. Computer Simulation.12a2, b1, b2, c1, c2, d16.Experiments No. 5 Parallel RLC Circuits. Computer Simulation.12a2, b1, b2, c1, c2, d17.Experiments No.6 Computer Simulation.12a2, b1, b2, c1, c2, d17.Experiments No.6 AC Superposition. Computer Simulation.12a2, b1, b2, c1, c2, d18.Experiments No.7 AC Thevenin's Theorem. AC Maximum Power Transfer. Computer Simulation.12a2, b1, b2, c1, c2, d18.Experiments No. 7 AC Thevenin's Theorem. Computer Simulation.12a2, b1, b2, c1, c2, d18.Experiments No. 8 AC Thevenin's Theorem. AC Maximum Power Transfer. Computer Simulation.12a2, b1, b2, c1, c2, d1	2.
Experiments No. 5 Parallel RLC Circuits.12a2, b1, b2, c1, c2, d1Computer Simulation.12a2, b1, b2, c1, c2, d17.Experiments No.6 AC Superposition.12a2, b1, b2, c1, c2, d18.Experiments No. 7 AC Thevenin's Theorem. AC Maximum Power Transfer. Computer Simulation.12a2, b1, b2, c1, c2, d18.Experiments No. 7 AC Thevenin's Theorem. Computer Simulation.12a2, b1, b2, c1, c2, d18.Experiments No. 7 AC Thevenin's Theorem. AC Maximum Power Transfer. Computer Simulation.12a2, b1, b2, c1, c2, d1	,d2.
Experiments No.6 AC Superposition. 1 2 a2, b1, b2, c1, c2, d1 7. AC Superposition. Computer Simulation. 1 2 a2, b1, b2, c1, c2, d1 8. Experiments No. 7 AC Thevenin's Theorem. AC Maximum Power Transfer. Computer Simulation. 1 2 a2, b1, b2, c1, c2, d1 8. Experiments No. 8 Experiments No. 8 Power Relationships and Power 1 2 a2, b1, b2, c1, c2, d1	,d2.
8.Experiments No. 7 AC Thevenin's Theorem. AC Maximum Power Transfer. Computer Simulation.12a2, b1, b2, c1, c2, d112Experiments No. 8 Power Relationships and Power12a2, b1, b2, c1, c2, d1	,d2.
Experiments No. 8 Power Relationships and Power	,d2.
9. Factor. 1 2 a2, b1, b2, c1, c2, d1 Computer Simulation.	,d2.
Experiments No. 9.10.Basic OP-AmP Circuits.12a2, b1, b2, c1, c2, d1Computer Simulation.	,d2.
Experiments No. 10 Active Filters.12a2, b1, b2, c1, c2, d1Computer Simulation.	,d2.
Experiment No. 11 Course Project: Preparing for the Design and Implementation of Electrical Network that can be used in the 12.A Report must be prepared Students Work in Groups.A Report must be prepared Bereford Students Work in Groups.	,d2.
13. Lab.Exam. 1 2 a1,a2,b1,b2,,c1, c2, d	
Number of Weeks /and Units Per Semester1428	1,d2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

V.Teaching strategies of the course:

- Active Lectures.
- Tutorials.
- The Use of Computer and Web-Based Learning.
- Directed Self Study.
- Group Learning and Problem Based Learning.
- Laboratory Works
- Self and Cooperative Learning.
- Dialogue, Discussion and Class Activities.
- Analysis and Problem solving.
- Project Work.
- Design Exercises.
- Simulation Tools.
- Brainstorming.

VI.Assignments:

No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Problem Set No. 1 Sinusoidal ac Voltage Characteristics.	a1, b2, d1,d2	2	1.67
2.	 Problem Set No. 2 Response of Basic <i>R</i>, <i>L</i>, and <i>C</i> Elements to a Sinusoidal Voltage or Current. Frequency Response of the R, X_L, X_C Elements. Average Power and Power Factor. Conversion between Polar and Rectangular Forms. Mathematical Operations of Complex Numbers and Phasors. 	a1, b1,b2, c1, d1,d2.	3	1.67
3.	Impedance and the Phasor Diagram. Resistance: Metric Units Temperature Effects Color Coding.	a1, b1,b2, c1, d1,d2.	4	1.67
4.	• Series AC Circuits.	a1, b1,b2, c1, c2, d1,d2.	5	1.67

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	• Parallel AC Networks.			
5.	<u>Problem Set No. 5</u> • Independent versus Dependent. (Controlled) Sources • Source Conversions. • Mesh Analysis.	a1, b1,b2, c1, c2, d1,d2.	6	1.67
6.	Problem Set No. 6 • Nodal Analysis. • Bridge Networks. Y-Δ and Δ-Y Conversions.	a1, b1,b2, c1, c2, d1,d2.	7,8	1.67
7.	Problem Set No. 7 Network Theorems (AC). • Superposition Theorem. • Thévenin's Theorem. • Norton's Theorem. • Maximum Power Transfer Theorem.	a1, b1,b2, c1, c2, d1,d2.	9	1.67
8.	Problem Set No. 8 Powers of AC Circuits. • Apparent Power. • Active Power, Reactive Power. • Power Triangle. • Power Factor Improvement.	a1, b1,b2, c1, c2, d1,d2.	10,11	1.67
9.	Problem Set No. 9 Operational Amplifiers Part 1 Theorem. Millman's Theorem. Substitution Theorem.	a1, b1,b2, c1, c2, d1,d2.	12	1.67
10.	Problem set No. 10 Operational Amplifiers Part 2	a1, b1,b2, c1, c2, d1,d2.	13	1.67
11.	Passive Filters.	a1, b1,b2, c1, c2, d1,d2.	14	1.67
12.	Active Filters:	a1, b1,b2, c1, c2, d1,d2.	15	1.67
	Total			20

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

11.

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالى والبحث العلمى مجلس الاعتماد الأكاديمي وضمان الجودة

	VII.Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Attendance.	Every Class	10	5%	a1, b1,b2, c1, d1,d2.	
2.	Assignments.	Weekly	20	10 %	a1, b1,b2, c1, d1,d2.	
3.	Lab Reports.	Weekly	20	10 %	a1, b1,b2, c1, d1,d2.	
4.	Course Project.	15	20	10%	a1, b1,b2, c1, c2, d1,d2.	
5.	Mid -Term Exam.	8	20	10%	a1, b1,b2, d1,d2.	
6.	Lab Exam.	15	10	5%	a1, b1,b2, c1, d1,d2.	
7.	Final Exam.	16	100	50%	a1, b1,b2, c1, c2 d1,d2.	
	Total		200	100		

	VIII.Learning Resources:
• pul	Written in the following order: (Author - Year of publication – Title – Edition – Place of blication – Publisher).
	1- Required Textbook(s) (maximum two).
	 Robert L. Boylestad, 2007, Introductory Circuit Analysis, 11 th Ed, Pearson Prentice. Hall, New Jersey, USA. Floyd TL, 2008, Electronic Devices, 8th Ed. Pearson/Prentice Hall.

2- Essential References.

Dorf, Richard C.& Svoboda, James A, 2010, Introduction to Electric Circuits, 8th Ed.

3- Electronic Materials and Web Sites etc.

All About Circuits : Free Electric Circuits Textbooks

www.allaboutcircuits.com/ http://www.uta.edu/ee/hw/pspice/

http://www.youtube.com/watch?feature=player_detailpage&v=dZUPBLNuaHk http://denethor.wlu.ca/PSpice/pspice_tutorial.html www.seas.upenn.edu/~jan/.../PSpice_LibraryguideOrCAD.pdf

IX.Course Policies:

Class	Attendance:
-------	-------------

.1	- The students should have more than 75% of attendance according to rules and regulations of the faculty.
	Tardy:
.2	- The students should respect the timing of attending the lectures. They should attend within 15 minutes from starting of the lecture.

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Exam Attendance/Punctuality:
.3	- The student should attend the exam on time. The punctuality should be implemented according
	to rules and regulations of the faculty for mid-term exam and final exam.
	Assignments & Projects:
.4	- The assignment is given to the students after each chapter; the student has to submit all the
	assignments for checking on time.
	Cheating:
.5	- If any cheating occurred during the examination, the student is not allowed to continue and he
	has to face the examination committee for enquiries.
	Plagiarism:
6.	- If one student attends the exam on another behalf; he will be dismissed from the faculty
	according to the policy, rules and regulations of the university.
	Other policies:
	- All the teaching materials should be kept out the examination hall and mobile phones are not
7	allowed.
7.	- Mutual respect should be maintained between the student and his teacher and also among
	students. Failing in keeping this respect is subject to the policy, rules and regulations of the
	university.

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.
By	Barakat.
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi.
	Head of Mechatronics Engineering Department: Assoc. Prof. Dr. Abdul-Malik Momin.
	Deputy Rector for Academic Affairs Assoc. Prof. Dr. Ibrahim AlMutaa.
	Assoc. Prof. Dr. Ahmed Mujahed.
	Asst. Prof. Dr. Munaser Alsubari.

Head of the	Quality Assurance	Dean of the	Academic Development	
Department	Unit	Faculty	Center & Quality Assurance	Rector of Sana'a University
Assoc. Prof.	Assoc. Prof. Dr.	Prof. Dr.	Assoc. Prof. Dr. Huda Al-	Prof. Dr. Al-Qassim
Dr. Abdul-	Mohammad	Mohammed AL-	Emad	Mohammed Abbas
Malik Momin	Algorafi	Bukhaiti		

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Template for Course Plan of Electrical Circuits (2)

I.Information about Faculty Member Responsible for the Course:								
Name of Faculty Member	Asst. Prof. 1	Dr. Muhammad Al-Yadoumi.	Office Hours					
Location& Telephone No.	Electrical	Engineering Department. 777811668.	SAT	SUN	MON	TUE	WED	THU
E-mail	Alyadoum	i@hotmail.com.						

	II.Course Identification and General Information:						
1.	Course Title:	Electrical Circuits (2).					
2.	Course Number & Code:	MT107					
			C.I	H		Total	
3.	Credit hours:	Th.	Seminar	Pr.	Tu.	Credit Hours	
		2	-	2	2	4	
4.	Study level/year at which this course is offered:		Se	cond Year	-Second	Semester.	
5.	Pre –requisite (if any):			Ele	ectrical C	ircuit <mark>s</mark> (1).	
6.	Co –requisite (if any):					None.	
7.	Program (s) in which the course is offered		Mecha	tronics En	gineering	g Program.	
8.	Language of teaching the course:	English Language.					
9.	System of Study:	Semesters.					
10.	Mode of delivery:		Lectures, Tutorials and Labs.				
11.	Location of teaching the course:		Mechatron	nics Engin	eering De	epartment.	

Head of the	Quality Assurance	Dean of the	Academic Development	
Department	Unit	Faculty	Center & Quality Assurance	Rector of Sana'a University
Assoc. Prof.	Assoc. Prof. Dr.	Prof. Dr.	Assoc. Prof. Dr. Huda Al-	Prof. Dr. Al-Qassim
Dr. Abdul-	Mohammad	Mohammed AL-	Emad	Mohammed Abbas
Malik Momin	Algorafi	Bukhaiti		

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

III.Course Description:

This course is a continuation of Electrical Circuits I. The course is intended to enhance students' knowledge and develop their skills in electrical circuit analysis with regard to Alternating current circuits (AC). The course topics focus on fundamentals, calculations and analysis of AC circuits that includes: complex numbers and phasors, impedance, admittance, voltage, current, powers in AC circuits and their components, power factor improvement, polyphase circuits, and passive and active filters. The application of the different theorems, laws, and techniques premeditated in electrical circuit (1) is also presented. The course includes lab experiments, computer simulation, and group-based term projects to reinforce topics covered in the course.

I	IV.Course Intended learning outcomes (CILOs) of the Referenced					
	se	PILOs				
a1.	Describe knowledge variables, instantane	and understanding of wave form fundamentals: w ous value, phasors and trigonometry used in elec circuit analy	ave tric sis.	A1		
a2.	Explain the circuit	principles, theorems, laws and techniques used circuits analysis and implementati	l in .on.	A2		
b1.	Explore circuit analy	sis techniques and computer simulation to investig the behavior of basic mechatronic system	gate ms.	B1		
b2.	Compare between al and select the ap	ternative technics used in DC and AC circuits analy propriate one according to the needed specification	ysis ns.	B4		
c1.	Prescribe main electrical measuring devices and methods of electrical quantities measurements in AC circuits and conduct experiments safely to verify theoretical: concepts, rules, and theorems covered throughout the course.					
c2.	Apply knowledge acquired throughout the course to identify, formulate, simulate and solve different configurations of electrical circuits faced in mechatronics systems.					
d1.	Assess stu	dent's cooperative work though efficient team wor	rks.	D1		
d2.		Review reports using commonly used application	ons.	D6		
V.Course Content:						
• [• Distribution of Semester Weekly Plan of Course Topics/Items and Activities.					
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
1.	Course Orientation.	• Course objectives, learning outcomes, requirements and guidelines to comply with	1	2		

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

the course.

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	Time Dependent Wave Forms and Signals.	Introduction to time dependent wave forms.Difference between DC and AC signals.		
2.	Sinusoidal Wave Forms of Alternating Voltage and Current.	 General format of the sinusoidal wave in: time-domain form, phasor form. Sinusoidal ac voltage characteristics and definitions: instantaneous, amplitude, maximum, peak-to- peak, average, and effective (r. m. s.) values. 	2	2
3.	Response of the Basic AC Elements.	 Response of basic R, L, and C elements to a sinusoidal voltage or current Frequency response of the resistance, inductive and capacitive reactances (R, X_L, X_C) 	3	2
4.	Mathematical Aspect of AC Circuit Analysis.	 Complex numbers: rectangular form, polar form. Conversion between forms. Mathematical operations with complex numbers: addition, subtraction, multiplication and division of complex quantities. 	4	2
5.	Series and Parallel AC Circuits.	 Impedance resistance and inductance. Admittance, conductance and susceptance. Series configuration Kirchhoff's voltage law (KVL). voltage divider rule (VDR). Parallel circuits Kirchhoff's current law (KCL). current divider rule (CDR). Series-parallel Combination 	5	2
6.	Methods of Analysis and Techniques used in AC Circuit Analysis.	 Dependent (controlled) voltage and current sources. Current sources conversion between sources. Mesh analysis and nodal analysis of electric circuits. Lader networks Bridge networks 	6	2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

الجمهورية اليمنية

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

		 Star delta transformations Y to Λ and Λ to Y 		
7.	Network Theorems Application on AC Circuits.	 Super position theorem, Thevenin's theorem, Norton's theorem Theorem of maximum power. 	7	2
8.	Mid-Term Exam.	• Topics covered in the previous lectures.	8	2
9.	Powers of AC Circuits.	 Apparent power. active power, reactive power Power triangle. Power factor improvement. 	9	2
10.	Polyphase Systems.	 Unbalance three-phase system. Balance three-phase generator. Phase sequence. Three-phase system configurations: Y and Δ connected generator. Y and Δ connected load. Y - Y connected system. Y - Δ connected system. Δ - Y connected system. Δ-Δ connected system. Three-wattmeter method 1048. 23.12two-wattmeter Method 1049. Unbalanced phase systems. 	10,11	4
11.	Operational Amplifiers.	 Introduction to operational amplifiers op- amp input modes and parameter. Op-amps with negative feedback Effects of negative feedback on op-amp. Parameters. 	12	2
12.	Passive Filters.	 Filters classification Filter networks: low-pass, high pass, bandpass, band-reject. Decibels. Filter characteristic. Bandwidth and cut-off frequency. Bode plots of filter characteristic. 	13,14	4
13.	Active Filters.	 Configurations of active Filter: low-pass, high pass, bandpass, band-reject Filter response characteristics 	15	2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research

Council for Accreditation & Quality Assurance

الجمهورية اليمنية وزارة التعليم العالي والبحث العلمي

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

		Role offMulti-stage active filters.		
14.	Final Exam.	All the Chapters.	16	2
	Number of Weeks /and Units Per Semester		16	32

	B - Tutorial Aspect:					
Order	Tutorial	Learning Outcomes	Number of Weeks	Contact Hours		
1.	Sinusoidal AC Voltage Characteristics and Definitions. Frequency Spectrum. General Format for the Sinusoidal Voltage or Current. The Sinusoidal Waveform Phase Relations instantaneous, amplitude, maximum, peak-to- peak, average, and effective (r. m. s.) values.	a1, b1	1	2		
2.	 Response of Basic <i>R</i>, <i>L</i>, and <i>C</i> Elements to a Sinusoidal Voltage or Current. Frequency Response of the R, X_L, X_C Elements. Average Power and Power Factor. Conversion between Polar and Rectangular Forms Mathematical Operations of Complex Numbers and Phasors 	a1, b1, c2	2	2		
3.	 Impedance and the Phasor Diagram. Series Configuration. Voltage Divider Rule. Admittance and Susceptance. Parallel ac Networks. Current Divider Rule. Equivalent Circuits. 	a1, b2,	3,4	4		
4.	 Independent versus Dependent. (Controlled) Sources. Source Conversions. Mesh Analysis. Nodal Analysis. 	a1, a2, b1, b2,,c1	5	2		

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	Bridge Networks.			
	• Y- Δ and Δ -Y Conversions.			
5.	Network Theorems (AC). • Superposition Theorem. • Thévenin's Theorem. • Norton's Theorem. • Maximum Power Transfer Theorem.	a1, a2, b1, b2	6,7	4
6.	Powers of AC Circuits. • Apparent Power. • Active Power, Reactive Power. • Power Triangle. • Power Factor Improvement.	a1,a2,b1,b 2,,c1	8	2
7.	Solutions of Mid-Term Exam.	a1, a2, b1, b2, c1	9	2
8.	Operational Amplifiers. Introduction to Operational Amplifiers Op-Amp Input Modes and Parameters Op-Amps with Negative Feedback Effects of Negative Feedback on Op-Amp Parameters 	a1,a2,b1,b 2,,c1, c2.	10,11	4
9.	Passive Filters. Classification of Filters. Filter Networks: Low-Pass, High Pass, Bandpass, Band-Reject. Decibels. Filter Characteristics. Bandwidth and Cut-off Frequency. Bode Plots of Filter characteristics. 	a1,a2,b1,b 2,,c1., c2	12	2
10.	Active Filters: • Active Filter Configurations: Low- Pass, High Pass, Bandpass, band- Reject • Filter Response Characteristics. • Role off. • Multi-Stage Active Filters.	a1,a2,b1,b 2,,c1, c2.	13	2
11.	General Review and Discussion.	a1,a2,b1,b 2,,c1, c2.	14	2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

الجمهورية اليمنية وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Number of Weeks /and Units Per Semester

28

14

B - Practical Aspe					
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes	
1.	Lab 1 • Orientation • Oscilloscope and Function Generator Familirastion.	1	2	c1, c2, b2,d1,d2.	
2.	Experiments No. 1 Average and RMS Values.	2	2	a2, b1, b2, c1, d1, d2.	
3.	Experiments No. 2 • Frequency Response of the R, X _L , X _C Elements.	3	2	a2, b1, b2, c1, d1, d2.	
4.	Experiments No. 3CapacitiveandInductiveReactance.	4	2	a2, b1, b2, c1, d1, d2.	
5.	<u>Experiments No. 4</u> Series RLC Circuits. Computer Simulation.	5	2	a2, b1, b2, c1, c2, d1,d2.	
6.	Experiments No. 5 Parallel RLC Circuits. Computer Simulation <u>.</u>	6	2	a2, b1, b2, c1, c2, d1,d2.	
7.	Experiments No.6 AC Superposition. Computer Simulation.	7	2	a2, b1, b2, c1, c2, d1,d2.	
8.	Experiments No. 7 AC Thevenin's Theorem. AC Maximum Power Transfer. Computer Simulation.	8	2	a2, b1, b2, c1, c2, d1,d2.	
9.	Experiments No. 8 Power Relationships and Power Factor. Computer Simulation.	9	2	a2, b1, b2, c1, c2, d1,d2.	
10.	<u>Experiments No. 9</u> . Basic OP-AmP Circuits. Computer Simulation.	10	2	a2, b1, b2, c1, c2, d1,d2.	
11.	Experiments No. 10 Active Filters.	11	2	a2, b1, b2, c1, c2, d1,d2.	

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Computer Simulation.			
12.	Experiment No. 11 Course Project: Preparing for the Design and Implementation of Electrical Network that can be used in the Verification of the Theoretical Aspects explained throughout the Course. A Report must be prepared Students Work in Groups.	12,13	4	a2, b1, b2, c1, c2, d1,d2.
13.	Lab.Exam.	14	2	a1,a2,b1,b2,,c1, c2, d1,d2
Number of Weeks /and Units Per Semester		14	28	

VI.Teaching strategies of the course:

- Active Lectures.
- Tutorials.
- The Use of Computer and Web-Based Learning.
- Directed Self Study.
- Group Learning and Problem Based Learning.
- Laboratory Works.
- Self and Cooperative Learning.
- Dialogue, Discussion and Class Activities.
- Analysis and Problem Solving.
- Project Work.
- Design Exercises.
- Simulation Tools.
- Brainstorming.

			VII.Assi	gnments:
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Problem Set No. 1 Sinusoidal AC Voltage Characteristics.	a1, b2, d1,d2	2	1.67
2.	 <u>Problem Set No. 2</u> Response of Basic <i>R</i>, <i>L</i>, and <i>C</i> Elements to a Sinusoidal Voltage or Current. 	a1, b1,b2, c1, d1,d2.	3	1.67

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	 Frequency Response of the R, X_L, X_C Elements. Average Power and Power Factor. Conversion between Polar and Rectangular Forms. Mathematical Operations of Complex Numbers and Phasors. 			
3.	Problem Set No. 3 Impedance and the Phasor Diagram. Resistance: Metric Units Temperature Effects Color Coding.	a1, b1,b2, c1, d1,d2.	4	1.67
4.	 <u>Problem Set No. 4</u> Series AC Circuits. Parallel AC Networks. 	a1, b1,b2, c1, c2, d1,d2.	5	1.67
5.	Problem Set No. 5 • Independent versus Dependent (Controlled) Sources • Source Conversions • Mesh Analysis.	a1, b1,b2, c1, c2, d1,d2.	6	1.67
6.	Problem Set No. 6 • Nodal Analysis. • Bridge Networks. Y-Δ and Δ-Y Conversions.	a1, b1,b2, c1, c2, d1,d2.	7,8	1.67
7.	Problem Set No. 7 Network Theorems (AC) • Superposition Theorem. • Thévenin's Theorem. • Norton's Theorem • Maximum Power Transfer Theorem.	a1, b1,b2, c1, c2, d1,d2.	9	1.67
8.	Problem Set No. 8 Powers of AC Circuits. • Apparent Power. • Active Power, Reactive Power. • Power Triangle.	a1, b1,b2, c1, c2, d1,d2.	10,11	1.67

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	• Power Factor Improvement.			
9.	Problem Set No. 9 Operational Amplifiers. Part 1 Theorem. Millman's Theorem. Substitution Theorem.	a1, b1,b2, c1, c2, d1,d2.	12	1.67
10.	<u>Problem Set No. 10</u> Operational Amplifiers Part 2	a1, b1,b2, c1, c2, d1,d2.	13	1.67
11	Passive Filters.	a1, b1,b2, c1, c2, d1,d2.	14	1.67
12	Active Filters.	a1, b1,b2, c1, c2, d1,d2.	15	1.67
Total				20

VIII.Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1.	Attendance.	Every Class	10	5%	a1, b1,b2, c1, d1,d2.
2.	Assignments.	Weekly	20	10 %	a1, b1,b2, c1, d1,d2.
3.	Lab. Reports.	Weekly	20	10 %	a1, b1,b2, c1, d1,d2.
4.	Course Project.	15	20	10%	a1, b1,b2, c1, c2, d1,d2.
5.	Mid -Term Exam.	8	20	10%	a1, b1,b2, c1, c2.
6.	Lab. Exam.	15	10	5%	a1, b1,b2, c1, d1,d2.
7	Final Exam.	16	100	50%	a1, b1,b2, c1, c2.
	Total		200	100	

	IX.Learning Resources:
• put	Written in the following order: (Author - Year of publication – Title – Edition – Place of polication – Publisher).
	1- Required Textbook(s) (maximum two).
	3- Robert L. Boylestad, 2007, Introductory Circuit Analysis, 11 th Ed, Pearson Prentice
	Hall, New Jersey, USA.
	1- Floyd TL, 2008, Electronic Devices, 8 th Ed. Pearson/Prentice Hall.

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

2- Essential References.

Dorf, Richard C.& Svoboda, James A, 2010, Introduction to Electric Circuits, Eight Ed.

3- Electronic Materials and Web Sites etc.

All About Circuits : Free Electric Circuits Textbooks

www.allaboutcircuits.com/

http://www.uta.edu/ee/hw/pspice/

http://www.youtube.com/watch?feature=player_detailpage&v=dZUPBLNuaHk

http://denethor.wlu.ca/PSpice/pspice_tutorial.html

www.seas.upenn.edu/~jan/.../PSpice_LibraryguideOrCAD.pdf

	X.Course Policies:
	Unless otherwise stated, the normal course administration policies and rules of the Faculty of
	Engineering apply. For the policy, see:
.1	- The students should have more than 75% of attendance according to rules and regulations of the faculty.
.2	Tardy: - The students should respect the timing of attending the lectures. They should attend within 15 minutes from starting of the lecture.
.3	Exam Attendance/Punctuality: - The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.
.4	Assignments & Projects: - The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.
.5	Cheating: - If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for <u>enquiries</u> .
6.	Plagiarism: - If one student attends the exam on another behalf; he will be dismissed from the faculty according to the policy, rules and regulations of the university.
7.	Other Policies: - All the teaching materials should be kept out the examination hall and mobile phones are not allowed. - Mutual respect should be maintained between the student and his teacher and also among students. Failing in keeping this respect is subject to the policy, rules and regulations of the university.

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad