

26. Course Specification of Electromagnetic Field Theory I

I.	Course Identification and Gener	al In	formati	on:		
1.	Course Title:	Electromagnetic Field Theory I				
2.	Course Code & Number:	CNE211				
			C.I	H.		Total
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	C.H.
		2	2	-	-	3
4.	Study level/ semester at which this course is offered:	3 rd Level/ 1 st Semester				
5.	Pre –requisite (if any):	Engineering Mathematics (BR223) Engineering Physics (FR002)				23)
6.	Co –requisite (if any):	None				
7.	Program (s) in which the course is offered:	Communication Engineering and Networks				
8.	Language of teaching the course:	English + Arabic				
9.	Location of teaching the course:	Faculty of Engineering, Sana'a University				
10.	Prepared By:	Assoc. Prof. Dr. Mohammed A. Saeed Al-Mekhlafi				
11.	Date of Approval	2020				

II. Course Description:

This course introduces the fundamental concepts of electromagnetic theory. Topics include: Vector Analysis; vector algebra and calculus, coordinate systems and transformations. Electrostatic Fields; Coulomb's law, electric field intensity due to different charge configurations, electric flux density, Gauss's law and its applications, divergence and Maxwell's first equation, divergence theorem, energy and potential, conductors and dielectrics, electric fields in dielectric materials, electric boundary conditions, resistance and capacitance, Poisson's and Laplace equations are discussed. Magnetostatic Fields; Biot–Savart's law, Ampere's circuital laws and its applications, magnetic flux density and Maxwell's second equation, curl and Stoke's theorem, magnetic potentials, magnetic forces and torque, magnetic materials, magnetic boundary conditions, inductors and inductances, magnetic circuits, force on magnetic materials, magnetic energy, and Maxwell's equations for static fields are also emphasized.

Head of Q Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

]	III. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Demonstrate the fundamental concepts of electrostatic and magnetostatics fields, and applied mathematical tools.	A1, A2
a2	Classify the properties of conductors, dielectrics and magnetic materials.	A1, A2,
b1	Analyze the behavior of static electric and magnetic fields in the presence of dielectric and magnetic materials and at the boundary between different materials.	В3
b2	Formulate static Maxwell's equations in integral and differential forms, and apply them to solve practical electromagnetic engineering problems.	B1
c1	Use Coulomb's law, Gauss' Law, Biot-Savart's law, Ampere's circuital law, to find the electrostatic and magnetostatics fields.	C1
c2	Design electromagnetic energy storage devices like capacitors and inductors and choose suitable materials required to assemble such electromagnetic energy storage devices.	C2
d1	Engage in independent lifelong learning.	D2

(A) Alignment Course Intended Learning Outcomes of Knowledge and	
Understanding to Teaching Strategies and Assessment Strategies:	

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
 a1 – Demonstrate knowledge of the fundamental concepts of electrostatic and magnetostatic fields, and applied mathematical tools. 	 Interactive Lectures Demonstrations Problem Solving Independent readings 	 Assignments Quizzes Mid-semester Exam Final Exam
a2 – Classify the properties of conductors, dielectrics and magnetic materials.	 Interactive Lectures Demonstrations Problem Solving Independent readings 	 Assignments Mid-semester Exam Final Exam

Head of	Quality Assurance	Dean of the Faculty
Department	Unit	Prof. Dr. Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti
Adel Ahmed Al- Shakiri	Mohammad Algorafi	

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
b1 – Analyze the behavior of static electric and magnetic fields in the presence of dielectric and magnetic materials and at the boundary hatwaan different materials	Interactive LecturesDemonstrationsProblem Solving	 Assignments Quizzes Mid-semester Exam Eingl Exam 	
between different materials.		Final Exam	
b2 – Formulate static Maxwell's equations in integral and differential	Interactive LecturesDemonstrations	AssignmentsMid-semester	
forms, and apply them to solve practical	 Problem Solving 	Exam	
electromagnetic engineering		 Final Exam 	
problems.			

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
 c1 – Use Coulomb's law, Gauss' Law, Biot- Savart's law, Ampere's circuital law, to find the electrostatic and magnetostatics fields. 	 Interactive Lectures Demonstrations Problem Solving Independent readings 	 Assignments Mid-semester Exam Final Exam
c2 -Designelectromagneticenergystoragedeviceslike capacitors andinductorsandchoosesuitablematerials requiredtoassemblesuchelectromagneticenergystoragedevices.	Interactive LecturesDemonstrationsProblem Solving	 Assignments Mid-semester Exam Final Exam

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Course Intended Learning Outcomes			Teaching strategies	Assessment Strategies
d1 -	Engage in independent lifelong		Demonstrations	 Assignments
	learning.	•	Web based	 Final Exam
			Investigations	
		•	Independent readings	

IV. Course Content:						
	A – Theoretical Aspect:					
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours	
1.	Vector Analysis	a1	 Introduction, Scalars and Vectors, Vector Algebra, Coordinate Systems and Transformations 	1	2	
2.	Electrostatic Fields	a1, b1	 Coulomb's Law, Forces Between Electric Charges, Electric Field Intensity, Electric Fields Due to Continuous Charge Distributions (a line charge, a surface charge, a volume charge) 	2	4	
3.	Electric Flux Density, Gauss's Law and Divergence	a1, b1, b2	 Electric Flux Density, Gauss's Law, Applications of Gauss's Law, Divergence of a Vector and Maxwell's First Equation, 	2	4	

Head ofQuality AssuranceDean of the FacultyDepartmentUnitProf. Dr. MohammedAsst. Prof. Dr.Assoc. Prof. Dr.AL-BukhaitiAdel Ahmed Al-
ShakiriMohammad Algorafi

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			D 10		
			- Del Operator and		
			Divergence		
			Theorem		
			- Energy Expended in Moving		
			a Point Charge in Electric		
			Field,		
			- Electric Potential,		
	Energy and		- Potential Difference,		
4.	Electric	a1, b2, c2	- Maxwell's Second Equation,	2	4
	Potential	, ,	- Potential Gradient,		
			- Electric Dipole and Flux		
			Lines,		
			- Energy Density in		
			Electrostatic		
			Fields		
			- Properties of Materials,		
			- Convection and Conduction		
			Currents,		
	Electric Fields		- Conductors, Polarization in		
5.	in Material	a1, a2,	Dielectrics,	1	2
	Space	b1, c1	- Dielectric Constant, and		
			Dielectrics,		
			- Continuity Equation and		
			Relation Time,		
			- Boundary Conditions		
	Electrostatic		- Poisson's and Laplace		
6.	Boundary-	a1. c1	Equations,	1	2
	Value	,	- Resistance and Capacitance,		
	Problems		- Method of Images		
			- Biot-Savart's Law,		
			- Ampere's Circuit Law,		
7.	Magnetostatic	a1. b1. b2	- Curl, Stokes' Theorem,	3	6
	Fields	,,	- Maxwell's Third Equation,	-	-
			- Applications of Ampere's		
			Circuital Law,		

Head of Quality Assurance Dean of the Faculty Academic Rector of Sana'a University Prof. Dr. Mohammed Prof. Dr. Al-Qassim Mohammed Department Unit Development AL-Bukhaiti Asst. Prof. Dr. Assoc. Prof. Dr. Center & Quality Abbas Adel Ahmed Al-Mohammad Algorafi Assurance Shakiri Assoc. Prof. Dr.

5.

8.	Magnetic Forces, Materials and Devices Number of V	a1, a2, c1, c2 Veeks /and	 Magnetic Dipole, Magnetic Materials and Magnetization, Magnetic Boundary Conditions, Inductors, Inductances, Magnetic Circuits, Magnetic Energy, Force on Magnetic Materials 	2 14	4 28
8.	Magnetic Forces,	a1, a2,	 Forces Due to Magnetic Fields, Magnetic Torque and Moment, Magnetic Dipole, Magnetic Materials and Magnetization, 	2	4
			 Magnetic Flux and Magnetic Flux Density, Maxwell's Forth Equation, Scalar and Vector Magnetic Potentials 		

B - Tutorial Aspect:							
Order	Tutorial Skills List	Number of Weeks	C.H.	CILOs			
1.	 Vector Analysis Introduction, Scalars and Vectors Vector Algebra Coordinate Systems and Transformations 	1	2	a1			
2.	 Electrostatic Fields Coulomb's Law Forces Between Electric Charges Electric Field Intensity Electric Fields Due to Continuous Charge Distributions (a line charge, a surface charge, a volume charge) 	2	4	a1, b1			

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

Title of the Program: Communication Engineering and Networks	

	Electric Flux Density, Gauss's Law and Divergence			
3.	 Electric Flux Density Gauss's Law Applications of Gauss's Law Divergence of a Vector and Maxwell's First Equation Del Operator and Divergence 	2	4	a1, b1, b2
	Theorem			
4.	 Energy and Electric Potential Energy Expended in Moving a Point Charge in Electric Field Electric Potential Potential Difference Maxwell's Second Equation Potential Gradient Electric Dipole and Flux Lines Energy Density in Electrostatic Fields 	2	4	a1, b2, c2
5.	 Electric Fields in Material Space Properties of Materials Convection and Conduction Currents Conductors, Polarization in Dielectrics Dielectric Constant, and Dielectrics Continuity Equation and Relation Time Boundary Conditions 	1	2	a1, a2, b1, c1
6.	 Electrostatic Boundary-Value Problems Poisson's and Laplace Equations Resistance and Capacitance Method of Images 	1	2	a1, c1
7.	Magnetostatic Fields • Biot-Savart's Law • Ampere's Circuit Law • Curl, Stokes' Theorem • Maxwell's Third Equation	3	6	a1, b1, b2

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

-			
Title of the Program:	Communicati	ion Engineering	and Networks

	 Applications of Ampere's Circuital Law Magnetic Flux and Magnetic Flux Density Maxwell's Forth Equation Scalar and Vector Magnetic 			
	Potentials			
8.	 Magnetic Forces, Materials and Devices Forces Due to Magnetic Fields Magnetic Torque and Moment Magnetic Dipole Magnetic Materials and Magnetization Magnetic Boundary Conditions Inductors, Inductances Magnetic Circuits, Magnetic Energy Force on Magnetic Materials 	2	4	a1, a2, c1, c2
Number	of Weeks /and Units Per Semester	14	28	

T 7	T 1 •		0 41	
V	Teaching	strategies	of the	conree
V •	Itatime	SUAUSIUS	UI UIIC	course.

- Interactive Lectures
- Demonstrations
- Problem Solving
- Independent readings
- Web based Investigations •

V]	VI. Assignments:				
No	Assignments	Aligned CILOs	Week Due	Mark	
1.	Problems on vector analysis	a1, d1	2^{nd}	1	
2.	Problems on electrostatic fields	a1, b1, d1	4 th	1	
3.	Problems on electric flux density, Gauss's law, and divergence	a1, b1, b2, d1	6 th	1	
4.	Problems on energy and electric potential	a1, b2, c2, d1	8 th	1	

Head of	Quality Assurance	Dean of
Department	Unit	Prof. Dr
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-
Adel Ahmed Al-	Mohammad Algorafi	
Shakiri		

f the Faculty Mohammed Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Communication Engineering and Networks

5.	Problems on electric fields in material space and electrostatic boundary-value problems	a1, a2, b1, c1, d1	9 th	1
6.	Problems on using Biot-Savart's law to calculate the magnetic field intensity, Curl, Stokes' Theorem, Maxwell's third Equation	a1, b1, b2, d1	10 th	1
7.	Problems on applications of Ampere's circuital law, magnetic flux and magnetic flux density, Maxwell's forth equation, scalar and vector magnetic potentials	a1, b1, b2, d1	13 th	1
8.	Problems on magnetic forces, materials and Devices	a1, a2, c1, c2, d1	15 th	0.5
	Total			7.5

VII.	/II. Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1.	Assignments	Every Second Week	7.5	5%	a1, a2, b1, b2, c1, c2, d1
2.	Quizzes	5 th , 13 th	15	10%	a1, b1, c1
3.	Participation	Weekly	7.5	5%	a1
4.	Midterm Exam	8 th	30	20%	a1, b1, b2, c2
5.	Final Exam	16^{th}	90	60%	a1, a2, b1, b2, c1, c2
	Tot	al	150	100%	

VIII. **Learning Resources:**

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1. Matthew O. Sadiku, 2014, "Elements of Electromagnetics", Sixth Edition, USA, Oxford University Press.

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. William H. Hayt, Jr. and John A. Buck, 2012, "Engineering Electromagnetics", Eighth Edition, USA, McGraw-Hill.

2- Essential References.

1. Fawwaz T. Ulaby and Umberto Ravaioli, 2015, "Fundamentals of Applied Electromagnetics", Seventh Edition, UK, Pearson.

3- Electronic Materials and Web Sites etc.

- 1. 8.02X: Electricity & Magnetism.
 - https://web.mit.edu/8.02/www/Spring02/info.htm
- 2. Goggling the Internet

Ľ	X.Course Policies:
1.	Class Attendance: - The students should have more than 75% of attendance according to rules and regulations of the faculty.
2.	Tardy: - The students should respect the timing of attending the lectures. They should attend within 15 minutes from starting of the lecture.
3.	 Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.
4.	Assignments & Projects: - The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.
5.	Cheating: - If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquires.
6.	Plagiarism:If one student attends the exam on another behalf; he will be dismissed from the faculty according to the policy, rules and regulations of the university.
7.	 Other policies: All the teaching materials should be kept out the examination hall and mobile phones are not allowed. Mutual respect should be maintained between the student and his teacher and also among students. Failing in keeping this respect is subject to the policy, rules and regulations of the university.

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek
By	A. Barakat
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi
	Name of Reviewer from the Department: Asst. Prof. Dr.Mohammed Al-Suraby
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
	Assoc. Prof. Dr. Ahmed Mujahed
	Asst. Prof. Dr. Munasar Alsubri

Head ofQuality AssuranceDean ofDepartmentUnitProf. Dr.Asst. Prof. Dr.Assoc. Prof. Dr.AL-HAdel Ahmed Al-Mohammad AlgorafiShakiriShakiri

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

26. Template for Course Plan of Electromagnetic Field <u>Theory I</u>

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Assoc. Prof. Dr. Mohammed A. Saeed Al- Mekhlafi			Office	Hour	'S	
Location& Telephone No.	Faculty of Engineering	SAT	SUN	MON	TUE	WED	THU
E-mail	almekmasee@hotmail.com						

II.	II. Course Identification and General Information:							
1-	Course Title:	Electro	Electromagnetic Field Theory I					
2-	Course Number & Code:	CNE211						
		C.H Tota				Total		
3-	3- Credit hours:	Th.	Tu.	Pr.	Tr.	C.H.		
		2	2	_	-	3		
4-	Study level/year at which this course is offered:	3 rd Level/ 1 st Semester						
5-	Pre –requisite (if any):	Engineering Mathematics (BR223) Engineering Physics (FR002)						
6-	Co –requisite (if any):	None						
7-	Program (s) in which the course is offered	Communication Engineering and Networks						
8-	Language of teaching the course:	English + Arabic						
9-	System of Study:	Regular						
10-	Mode of delivery:	Lecture	es					
11-	Location of teaching the course:	Faculty	of Engi	neering, S	Sana'a Ui	niversity		

Head of	Quality Assurance	Dean of the Faculty	А
Department	Unit	Prof. Dr. Mohammed	Dev
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Cente
Adel Ahmed Al-	Mohammad Algorafi		А
Shakiri			Asso

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description:

This course introduces the fundamental concepts of electromagnetic theory. Topics include: Vector Analysis; vector algebra and calculus, coordinate systems and transformations. Electrostatic Fields; Coulomb's law, electric field intensity due to different charge configurations, electric flux density, Gauss's law and its applications, divergence and Maxwell's first equation, divergence theorem, energy and potential, conductors and dielectrics, electric fields in dielectric materials, electric boundary conditions, resistance and capacitance, Poisson's and Laplace equations are discussed. Magnetostatic Fields; Biot– Savart's law, Ampere's circuital laws and its applications, magnetic flux density and Maxwell's second equation, curl and Stoke's theorem, magnetic potentials, magnetic forces and torque, magnetic materials, magnetic boundary conditions, inductors and inductances, magnetic circuits, force on magnetic materials, magnetic energy, and Maxwell's equations for static fields are also emphasized.

IV. Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
- 1- Demonstrate the fundamental concepts of electrostatic and magnetostatics fields, and applied mathematical tools.
- 2- Classify the properties of conductors, dielectrics and magnetic materials.
- **3-** Analyze the behavior of static electric and magnetic fields in the presence of dielectric and magnetic materials and at the boundary between different materials.
- **4-** Formulate static Maxwell's equations in integral and differential forms, and apply them to solve practical electromagnetic engineering problems.
- **5-** Use Coulomb's law, Gauss' Law, Biot-Savart's law, Ampere's circuital law, to find the electrostatic and magnetostatics fields.
- **6-** Design electromagnetic energy storage devices like capacitors and inductors and choose suitable materials required to assemble such electromagnetic energy storage devices.
- 7- Engage in independent lifelong learning.

V	V. Course Content:					
	A – Theoretical	Aspect:				
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
1.	Vector Analysis	 Introduction, Scalars and Vectors, Vector Algebra, Coordinate Systems and Transformations 	1 st	2		
2.	Electrostatic Fields	 Coulomb's Law, Forces Between Electric Charges, Electric Field Intensity, Electric Fields Due to Continuous Charge Distributions (a line charge, a surface charge, a volume charge) 	2 nd , 3 rd	4		
3.	Electric Flux Density, Gauss's Law and Divergence	 Electric Flux Density, Gauss's Law, Applications of Gauss's Law, Divergence of a Vector and Maxwell's First Equation, Del Operator and Divergence Theorem 	4 th , 5 th	4		
4.	Energy and Electric Potential	 Energy Expended in Moving a Point Charge in Electric Field, Electric Potential, Potential Difference, Maxwell's Second Equation, Potential Gradient, Electric Dipole and Flux Lines, Energy Density in Electrostatic Fields 	6 th , 7 th	4		
5.	Midterm Exam	All previous topics	8 th	2		
6.	Electric Fields in Material Space	 Properties of Materials, Convection and Conduction Currents, Conductors, Polarization in Dielectrics, Dielectric Constant, and Dielectrics, 	9 th	2		

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

Sana'a University Faculty of Engineering Department: Electrical Engineering Title of the Program: Communication Engineering and Networks

		- Continuity Equation and Relation		
		Time, Boundary Conditions		
_	Electrostatic	- Poisson's and Laplace Equations,	1 oth	
7.	Boundary-Value Problems	 Resistance and Capacitance, Method of Images 	10 ^m	2
8.	Magnetostatic Fields	 Biot-Savart's Law, Ampere's Circuit Law, Curl, Stokes' Theorem, Maxwell's Third Equation, Applications of Ampere's Circuital Law, Magnetic Flux and Magnetic Flux Density, Maxwell's Forth Equation, Scalar and Vector Magnetic Potentials 	11 th , 12 th , 13 th	6
9.	Magnetic Forces, Materials and Devices	 Forces Due to Magnetic Fields, Magnetic Torque and Moment, Magnetic Dipole, Magnetic Materials and Magnetization, Magnetic Boundary Conditions, Inductors, Inductances, Magnetic Circuits, Magnetic Energy, Force on Magnetic Materials 	14 th , 15 th	4
10.	Final Exam	All topics	16 th	3
	Number of Wee	ks /and Units Per Semester	16	32

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	

B - T	utorial Aspect:		
Order	Tutorial Skills List	Number of Weeks	С.Н.
1.	 Vector Analysis Introduction, Scalars and Vectors Vector Algebra Coordinate Systems and Transformations 	2 nd	2
2.	 Electrostatic Fields Coulomb's Law Forces Between Electric Charges Electric Field Intensity Electric Fields Due to Continuous Charge Distributions (a line charge, a surface charge, a volume charge) 	3 rd , 4 th	4
3.	 Electric Flux Density, Gauss's Law and Divergence Electric Flux Density Gauss's Law Applications of Gauss's Law Divergence of a Vector and Maxwell's First Equation Del Operator and Divergence Theorem 	5 th , 6 th	4
4.	 Energy and Electric Potential Energy Expended in Moving a Point Charge in Electric Field Electric Potential Potential Difference Maxwell's Second Equation Potential Gradient Electric Dipole and Flux Lines Energy Density in Electrostatic Fields 	7 th , 8 th	4
5.	 Electric Fields in Material Space Properties of Materials Convection and Conduction Currents Conductors, Polarization in Dielectrics Dielectric Constant, and Dielectrics Continuity Equation and Relation Time Boundary Conditions 	9 th	2
6.	 Electrostatic Boundary-Value Problems Poisson's and Laplace Equations 	10 th	2

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

	Resistance and Capacitance		
	Method of Images		
	Magnetostatic Fields		
	Biot-Savart's Law		
	Ampere's Circuit Law		
	Curl, Stokes' Theorem	11 th 12 th	
7.	 Maxwell's Third Equation 	11,12, 13 th	6
	 Applications of Ampere's Circuital Law 	15	
	 Magnetic Flux and Magnetic Flux Density 		
	Maxwell's Forth Equation		
	Scalar and Vector Magnetic Potentials		
	Magnetic Forces, Materials and Devices		
	 Forces Due to Magnetic Fields 		
	 Magnetic Torque and Moment 		
	Magnetic Dipole		
8.	 Magnetic Materials and Magnetization 	$14^{\text{th}}, 15^{\text{th}}$	4
	Magnetic Boundary Conditions		
	Inductors, Inductances		
	 Magnetic Circuits, Magnetic Energy 		
	Force on Magnetic Materials		
Numbe	r of Weeks /and Units Per Semester	14	28

VI. Teaching strategies of the course:

- Interactive Lectures
- Demonstrations
- Problem Solving
- Independent readings
- Web based Investigations

VII. Assignments:					
No	Assignments	Aligned CILOs	Week Due	Mark	
1.	Problems on vector analysis	a1, d1	2^{nd}	1	
2.	Problems on electrostatic fields	a1, b1, d1	4 th	1	
3.	Problems on electric flux density, Gauss's law, and divergence	a1, b1, b2, d1	6 th	1	

Head of	Quality Assurance	Dean of the Faculty	
Department	Unit	Prof. Dr. Mohammed	
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	С
Adel Ahmed Al-	Mohammad Algorafi		
Shakiri			Д

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

4.	Problems on energy and electric potential	a1, b2, c2, d1	8 th	1
5.	Problems on electric fields in material space and electrostatic boundary-value problems	a1, a2, b1, c1, d1	9 th	1
6.	Problems on using Biot-Savart's law to calculate the magnetic field intensity, Curl, Stokes' Theorem, Maxwell's third Equation	a1, b1, b2, d1	10 th	1
7.	Problems on applications of Ampere's circuital law, magnetic flux and magnetic flux density, Maxwell's forth equation, scalar and vector magnetic potentials	a1, b1, b2, d1	13 th	1
8.	Problems on magnetic forces, materials and Devices	a1, a2, c1, c2, d1	15 th	0.5
	Total			7.5

VIII. Schedule of Assessment Tasks for Students During the				
Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment
1.	Assignments	Every Second Week	7.5	5%
2.	Quizzes	5 th , 13 th	15	10%
3.	Participation	Weekly	7.5	5%
4.	Midterm Exam	8 th	30	20%
5.	Final Exam	16 th	90	60%
Total			150	100%

IX. Learning Resources:

• Written in the following order:(Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. Matthew O. Sadiku, 2014, "Elements of Electromagnetics", Sixth Edition, USA, Oxford University Press.
- 2. William H. Hayt, Jr. and John A. Buck, 2012, "Engineering Electromagnetics", Eighth Edition, USA, McGraw-Hill.

2- Essential References.

Head of	Quali
Department	
Asst. Prof. Dr.	Ass
Adel Ahmed Al-	Mohai
Shakiri	

Quality Assurance Unit Assoc. Prof. Dr. Iohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Communication Engineering and Networks

1. Fawwaz T. Ulaby and Umberto Ravaioli, 2015, "Fundamentals of Applied Electromagnetics", Seventh Edition, UK, Pearson.

3- Electronic Materials and Web Sites *etc*.

- 1. 8.02X: Electricity & Magnetism.
- 2. https://web.mit.edu/8.02/www/Spring02/info.htm
- 3. Goggling the Internet

Course Policies: X. **Class Attendance:** - The students should have more than 75% of attendance according to rules and 1. regulations of the faculty. **Tardy:** 2. - The students should respect the timing of attending the lectures. They should attend within 15 minutes from starting of the lecture. **Exam Attendance/Punctuality:** 3. - The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam. **Assignments & Projects:** - The assignment is given to the students after each chapter; the student has to submit 4. all the assignments for checking on time. **Cheating:** 5. - If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquires. **Plagiarism:** 6. - If one student attends the exam on another behalf; he will be dismissed from the faculty according to the policy, rules and regulations of the university. **Other policies:** - All the teaching materials should be kept out the examination hall and mobile phones are not allowed. 7. Mutual respect should be maintained between the student and his teacher and also among students. Failing in keeping this respect is subject to the policy, rules and regulations of the university.

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

