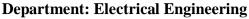


Title of the Program: Communication Engineering and Networks

27. Course Specification of Microprocessors & Assembly

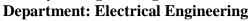

Language

I. (Course Identification and Gene	ral Info	rmation	1:		
1.	Course Title:	Microprocessors & Assembly Language				
2.	Course Code & Number:	CCE214				
		С.Н				Total
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total
		2	-	2	-	3
4.	Study level/ semester at which this	Third Ye	ar/ First Se	mester		
	course is offered:	Time Teal/ That beinester				
	Pre –requisite (if any):	Programming Language 2 (C/C++)				
5.		(CCE143), Logic Circuits 2 (CCE112), Electronics1(PME113)		2),		
6.	Co –requisite (if any):	None				
0.	• • • • • • • • • • • • • • • • • • • •					
7.	Program (s) in which the course is		er Engineer	ing and C	Control	
	offered:	Program				
8.	Language of teaching the course:	English				
9.	Location of teaching the course:	Faculty of	of Engineer	ing		
10.	Prepared By:		f. Dr. Moh	ammed A	Abdullah	Al-
		olofi				
11.	Date of Approval					

II. Course Description:

This course provides students the basic fundamentals and advanced concepts related to microprocessors and microcontrollers organizations & architectures, programming, and their functionalities and applications to the field of computer engineering & control industrially. Topics in this course include the 8086/8088-Mps internal organizations and assembly programming, the 8086/8088-Mps Chip and interfacing with I/O devices, and an introduction to the 8051-Mc interfacing, internal features, and programming using assembly. Lab experiments will cover the 8086/8088-Mps and the 8051-Mc programming and interfacing to I/O devices, and the design and implementation of simple human interfacing applications. By the end of the course, students – in groups- will be asked to

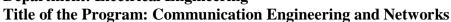
Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri



submit a project in which they reflect their learned skills by this course to design, simulate and implement of real world applications.

II	I. Course Intended learning outcomes (CILOs) of	Referenced PILOs
	the course Demonstrate fundamentals, basic concepts and principles related to	FILOS
a1	the microprocessors/microcontrollers and their assembly programming.	A1
a2	Describe theories and the internal organization of the microprocessors and microcontrollers.	A2
b1	Analyze problems related to microcomputer-based systems using appropriate software and hardware tools.	B1
b2	Develop innovative microprocessor/microcontroller and application-based system solutions for overcoming practical industrial problems.	В3
c1	Apply standard approaches and sustainability principles while constructing microcomputer-based systems using appropriate hardware and software tools.	C1
c2	Form creative microcomputer-based solutions to engineering problems using standard/modern hardware, techniques, and programming language considering industrial and commercial constraints.	C2
d1	Work productively as an individual and as a member of a team / multi-disciplinary team.	D1
d2	Engage in independent lifelong learning.	D2

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:		
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
a1 Demonstrate fundamentals, base concepts and principles related to the microprocessors/microcontrolles and their assembly programming.	Active lectures Interactive class	 Written Tests Coursework Activities Homework and Assignments Case Studies
a2 Describe theories and the internal organization of the microprocessors and microcontrollers.	Active lectures Project Interactive class discussions	 Written tests Coursework Activities Homework and Assignments Case Studies

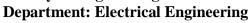

` '	Alignment Course Intended egies and Assessment Strat	Learning Outcomes of Inte	llectual Skills to Teaching
Co	ourse Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1 to	Analyze problems related microcomputer-based systems using appropriate software and hardware	 Active lectures Interactive class discussions Computer-based Lab Works, Laboratory based session (hands on laboratory work) Project. Case Studies 	 Written tests Coursework Activities Laboratory reports Practical Lab assessment Homework and assignments Case studies
b2	Develop innovative microprocessor/ microcontroller and application-based system solutions for overcoming	 Active lectures Interactive class discussions Computer-based Lab Works, 	 Written tests Coursework Activities Laboratory reports Practical Lab assessment

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering



practical industrial	Laboratory based session	Homework and
problems.	(hands on laboratory	assignments
	work)Project.	Case studies
	Case Studies.	

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:		
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1 Apply standard approaches and sustainability principles while constructing microcomputer- based systems using appropriate hardware and software tools.	 Active lectures Problem based learning Case study Directed self- study Laboratory based session (hands on laboratory work), Computer-based Lab Works, 	 Coursework activities Laboratory reports Practical Lab assessment Case studies
c2 Form creative microcomputer- based solutions to engineering problems using standard/modern hardware, techniques, and programming language considering industrial and commercial constraints.	 Active lectures Problem based learning Case study Directed self- study Laboratory based session (hands on laboratory work), Computer-based Lab Works, 	 Coursework activities Laboratory reports Practical Lab assessment Case studies

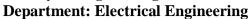
Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

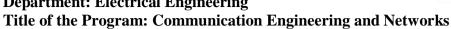
Title of the Program: Communication Engineering and Networks

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:		
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d1 Work productively as an individual and as a member of a team / multi-disciplinary team.	■ Group Learning.	Project Reports.Presentations.
d2 Engage in independent lifelong learning.	 Homework & Assignments, Use of Information and Communications technology. 	Project Reports.Presentations.

IV. Course Content:

A – Theoretical Aspect:


Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours
1.	Introduction to computing	a1, a2	Course Orientations Introduction to Microprocessors & Microcontrollers, Numbering systems, coding systems.	1	2
2.	Internal organization of computer	a1, a2, b1, c1	Introduction to internal organization of computer, relation between internal organization, internal working of computer.	1	2
3.	The 80x86 Microprocessor	a1, a2, b1, b2, c1	Brief history of the 80x86 family, Inside the 8088/8086, Introduction to the assembly programming, Introduction to program segments, and 80x86 addressing modes	1	2

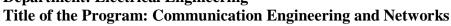

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

4.	assembly language Programming	a1, a2, b1, b2, c1	Directives & A sample program, Assemble, link, and run a program, Examples of assembly programs, Control transfer instructions, Data types and definitions	1	2
5.	Arithmetic and Logic Instructions and Programs	a1, a2, b1, b2, c1	Unsigned addition & subtraction, Unsigned multiplication & division, Logic instructions and sample programs, BCD & ASCII operands and instructions, Rotate instructions.	1	2
6.	Bios, Dos programming in assembly and Macro	a1, a2, b1, b2, c1	Bios INT 10H programming: using INT 10H, Dos interrupt IN 21H: using INT 21H, Define macro and how to use in assembly, How macro expanding by assembler, How to control the expanded of macro in list file, Define the local variable in macro, How to include the macro in another file	1	2
7.	Strings & Tables and Modules & Modular Programming	a1, a2, b1, b2, c1	Code string instructions, Tables processing, Advantages of modular programming, Break a large program into modules and code the modules and calling the program, EXTRN directive, PUBLIC directive, Link a subprograms into one executable program.	1	2
8.	The 8086/8088 Mp IC and Interfacing	a1, a2, b1, b2, c1	The 8086/8088-Mp IC, Pins functions, Modes of Operations, Memory & I/O	2	4


Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

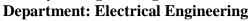
Department: Electrical Engineering

			Ports Addressing & Address Decoding Circuits, Interfacing and Programming of the 8088- Mp with I/O peripherals Like Switch, LEDs, and Sensors		
9.	Introduction to 8051 Microcontroller family & Programming	a1, a2, b1, b2, c1	Introduction to 8051 family microcontroller, IC for 8051, features like ports, Timers, and Serial Modules, Internal RAM, General Purpose Registers (GPRs), Special Function Registers (SFRs), Assembly Language Programming, Flowchart standard symbols.	1	2
10.	8051 Programming	a1, a2, b1, b2, c1, c2	Assembly Language Programming, Data Transfer Instructions, Addressing Modes, Data Processing Instructions, Program Branching instructions, stack, TIME DELAY FOR VARIOUS 8051 CHIPS.	1	2
11.	8051 Programming (I/O Ports)	a1, a2, b1, b2, c1, c2	LEDs, Seven-segments, Switches, Keypad, PWM, DC-motor, Stepper motor, ADC, DAC, I/O Ports Expansion, Alphanumeric LCD, GLCD	2	4
12.	8051 Interrupts	a1, a2, b1, b2, c1, c2	Interrupts Programming, Steps in executing an interrupt, Interrupt Sources, Interrupt Vectors, Interrupt Enable (IE) register, External interrupt, Interrupt Priorities.	1	2

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

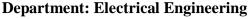
Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad


Department: Electrical Engineering

umber of Weeks /and Units Per Semester	14	28
--	----	----

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad



B - Practical Aspect:					
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes	
1.	Lap equipment and simulation Tools orientations Installation of 8086/8088-Mps simulators and Proetus Simulator.	1	2	a2, c2	
2.	MOV and ADD assembly instructions illustrating memory addressing modes	1	2	b2, c2	
3.	Arithmetic, Shift & Logic Assembly Instructions	2	4	b2, c2	
4.	Assembly programming with subroutines (Procedures)	1	4	c2	
5.	String assembly instructions	1	2	b2, c2	
6.	The 8086/8088-Mps interfacing with LEDs and Switches	1	2	c1, c2, d1	
7.	The 8086/8088-Mps interfacing with Keypad and LCD using 8255	2	4	c1, c2, d1	
8.	The 8051-Mc interfacing and programming with LEDs and Switches	1	2	c1, c2, d1, d2	
9.	The 8051-Mc interfacing and programming with Keypad and LCDs	1	2	c1, c2, d1, d2	
10.	Interrupt handling in 8051-Mc while interfacing to I/O devices and Measuring elements	1	2	c1, c2, d1, d2	
11.	Review	1	2	a1, a2, b1, b2, c1, c2, d1, d2	
12.	12. Projects presentation		2	a1, a2, b1, b2, c1, c2, d1, d2	
Nu	Number of Weeks /and Units Per Semester 14 28				

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

V. Teaching strategies of the course:

In general, teaching and learning in undergraduate engineering education programs should use a variety of teaching methods, such as:

- Active Lectures (supported with discussions).
- Interactive class discussions
- Projects,
- Case Studies.
- Problem based learning
- Directed self- study
- Laboratory based session (hands on laboratory work)Computer-based Lab Works,
- Group Learning.

VI.	VI. Assignments & Reports:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Memory addressing modes and Assembly instructions (Arithmetic & Logic)	a1, a2, b2, c2, d1	3 rd & 4 th	1		
2.	Jump & Loops and mapping of high- level language code to assembly code	a2, c2, , d1	5 th	1		
3.	Subroutines in assembly	a2, c2, d1	6 th and 7 th	1		
4.	Interfacing 8086/8088-Mps	a1, a2, b1, b2, c1, d1	9 th to 11 th	2.5		
5.	Interfacing 8051-Mc	a1, a2, b1, b2, c1, d1, d2	12 th to 14 th	2.5		
6.	Lab Reports	a1, a2, b1, b2, c1, c2, d1, d2	3 rd to 12 th	7		
Total						

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

VII	VII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Assignments & Reports	3 rd to 14 th	15	10%	a1, a2, b1, b2, c1, c2, d1, d2	
2.	Quizzes	5 th , 10 th & 14 th	10	6.67%	a1, a2, b1, b2, c1, d1	
3.	Midterm Exam (Theory)	8 th	20	13.33%	a1, a2, b1, b2, c1	
4.	Final Lab. Exam (including Course Project Evaluation)	13 th & 14 th	30	20%	a1, a2, c1, c2, c2, d1, d2	
5.	Final Exam (Theory)	16 th	75	50%	a1, a2, b1, b2, c1, c2	
Total 150 100%						

VIII.Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. Richard C. Detmer, 2014, Introduction to 80x86 Assembly Language and Computer Architecture, 3rd edition, UK, Jones & Bartlett Learning.
- 2. M. Mazidi, and J. Mazidi, 2002, the 80x86 IBM PC and Compatible Computers Assembly Language, Design and Interfacing 4th Edition, UK, Prentice Hall
- 3. M. Mazidi, and J. Mazidi, 2002, the 8051 Microcontroller, Design and Interfacing 4th Edition, UK, Prentice Hall

2- Essential References.

- 1. John E. Uffenbeck, The 80x86 Family: Design, Programming, and Interfacing.
- 2. Lyla B Das, 2010, The X86 Microprocessors: Architecture and Programming (8086 to Pentium), 2nd Edition, New Delhi india, Dorling Kindersley

3- Electronic Materials and Web Sites etc.

1. http://nptel.iitm.ac.in

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Communication Engineering and Networks

- 2. https://ocw.mit.edu/courses.
- 3. Lectures that may be prepared by the lecturer
- 4. http://www.sciencedirect.com/
- 5. http://dl.acm.org/dl.cfm
- 6. http://ieeexplore.ieee.org/Xplore/guesthome.jsp
- 7. http://www.emeraldinsight.com
- 8. http://www.scopus.com/home.url
- 9. http://link.springer.com/

IX. Course Policies:

Class Attendance:

1. A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic

Tardy:

2. For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.

Exam Attendance/Punctuality:

A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam-

Assignments & Projects:

4. The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time-

Cheating:

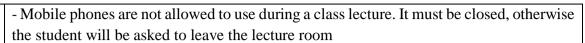
5. For cheating in exam, a student will be considered as failure. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty-

Plagiarism:

Plagiarism is the attending of a student the exam of a course instead of another student.

6. If the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university.

7. Other policies:


Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

- Mobile phones are not allowed in class during the examination.

Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.			
By	<u>Barakat</u>			
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi			
	Name of Reviewer from the Department: Assoc. Prof. Dr. Farouk Al-Fuhaidy			
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa			
	Assoc. Prof. Dr. Ahmed Mujahed			
	Asst. Prof. Dr. Munasar Alsubri			

Department: Electrical Engineering

Title of the Program: Communication Engineering and Networks

