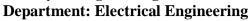
Department: Electrical Engineering

29. Course Specification of Signals and Systems


	I. Course Identification and General Information:							
1.	Course Title:	Signals and Systems						
2.	Course Code & Number:	CNE216						
			C.	Н		T-4-1		
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total		
		2	-	2	-	3		
4.	Study level/ semester at which this course is offered:	Third Year/ First Semester						
5.	Pre –requisite (if any):	Electrical circuits2 (PME112) Differential equations (BR122)						
6.	Co –requisite (if any):	Electrical Machines 2 (PME224)						
7.	Program (s) in which the course is offered:	Electrical Power and Machines Engineering						
8.	Language of teaching the course:	English						
9.	Location of teaching the course:	Class &Lab						
10.	Prepared By:	Asst. Prof. Dr. Amin Abdelghani Mahyob						
11.	Date of Approval	val						

II. Course Description:

This course introduces the basic signal principles necessary to understand, analyze, and enhance analog and digital signals. Its topics include basic analog and digital signals in time and frequency domains, sampling, Laplace, Fourier and z-Transforms and their applications in signal processing and control systems. The course also includes the mathematical modeling of dynamic systems. The Students will learn how to model mechanical, electrical, electromechanical, thermal and liquid level systems as differential equation, transfer function and state variable models

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	III. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Classify analog and digital signals and Understand the mathematical transformations (Laplace and Z transforms) their properties and uses in system analysis.	A1,A3
a2	Identify the components, the inputs and the outputs of physical systems	A1,A3
b1	Analyzing different signals and interpret results achieved by mathematical solutions	B1,B2,B3
b2	Build a mathematical model from a real-life problem related to signals and systems.	B1,B2,B3
c1	Simulate the continuous and discrete-time systems using basic Matlab and Simulink tools.	C1,C2,C3,C4
c2	Obtain transfer functions of physical systems by drawing block diagrams and signal flow graphs	C1,C2,C3,C4
d1	Interact effectively with peers in the group	D1,D3,D4,D5
d2	Present project results to a technical audience and subdivide a project into relevant sub problems and solve it in a given time frame as a team.	D1,D3,D4,D5

` /	(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:				
Cou	arse Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
a1. Classify analog and digital signals and Understand the mathematical transformations (Laplace and Z transforms) their properties and uses in system analysis.		Lectures, Demonstrations, Software Simulation, Lab Experiments, Interactive class discussion.	Assignments, Oral Presentations, Quizzes, Tests, Written Exams.		
a2. inputs system	Identify the components, the and the outputs of physical as	Lectures, Demonstrations, Software Simulation, Lab Experiments,	Assignments, Oral Presentations, Quizzes, Tests, Written Exams.		

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

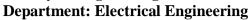
Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Interactive class	
discussion.	

` '	(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:					
Co	urse Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
b1. Analyzing different signals and interpret results achieved by mathematical solutions		Lectures, Demonstrations, Software Simulation, Lab Experiments, Interactive class discussion.	Assignments, Oral Presentations, Quizzes, Tests, Written Exams.			
b2.	Build a mathematical model from a real-life problem related to signals systems.	Lectures, Demonstrations, Software Simulation, Lab Experiments, Interactive class discussion.	Assignments, Oral Presentations, Quizzes, Tests, Written Exams.			


	© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes Teaching strategies Assessment Strategies					
c1.	Simulate continuous and	Lectures, Demonstrations,	Assignments, Oral		
	discrete-time systems using	Software Simulation, Lab	Presentations,		
	basic Matlab and Simulink	Experiments, Interactive	Quizzes, Tests,		
tools.		class discussion.	Written Exams.		
c2.	Obtain transfer functions of	Lectures, Demonstrations,	Assignments, Oral		
	physical systems by drawing	Software Simulation, Lab	Presentations,		
	block diagrams and signal	Experiments, Interactive	Quizzes, Tests,		
flow	graphs.	class discussion.	Written Exams.		

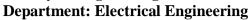
(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

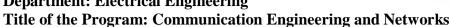
Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
d1. Interact effectively with peers in the group	Demonstrations, Software Simulation, Lab Experiments, Interactive class discussion.	Assignments, Oral Presentations, Quizzes,	
d2. Present project results to a technical audience and subdivide a project into relevant sub problems and solve it in a given time frame as a team.	,Demonstrations, Software Simulation, Lab Experiments, Interactive class discussion.	Assignments, Oral Presentations, Quizzes,.	

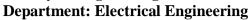

IV	IV. Course Content:						
	A – Theoretical Aspect:						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours		
1.	Introduction to signals	a1,a2, b1,b2,	 Definition of signal Typical signals Signal representation Classification of signals and their applications Power and energy of signals 	1	2		
2.	Systems	a1,a2, b1,b2,	 Representation of a system Classification of systems: time-invariant and time- varying systems, instantaneous and dynamic systems causal and non-causal systems, continuous-time and discrete-time systems, analog and digital systems, stable and unstable systems, linear and nonlinear system 	1	2		


Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

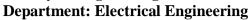

3.	Continuous- time system analysis using the Laplace Transform	b1,b2, d1,d2	 System models: input-output description, transfer function model, differential equation model, state variable model Laplace Transform definition The properties of Laplace Transform Region of convergence, Theorems of Laplace Transform Inverse Laplace transform Differential equation model and transfer function model Use Laplace transform to solve differential equations Definition of modeling Develop the models of 	1	2
4.	Modeling of physical system	b1,b2, c1,c2, d1	 Develop the models of physical systems: Electrical system Mechanical system Electromechanical system Thermal system Liquid level system Block Diagram and Signal Flow Graph Transfer Function model Differential equation model Transformers and gears Sensors Simulation of systems model using Matlab Linearization of physical system 	3	6
5.	State variable models	b1,b2, c1,c2,	Definition	2	4


Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

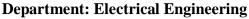


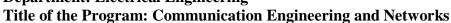
			 General form of state variable model (definitions of vectors and matrices) Develop the state variable models from physical system differential equations Obtain state model from the transfer function and differential equation Simulation diagrams and flow graphs Solution of state equations Obtain the transfer function from state model Similarity transformation Simulation of systems model using Matlab 		
6.	Continuous- time signal analysis: The Fourier Transform	, b1,b2, c1,c2,	 Definition of Fourier Relation between Fourier Transform and Laplace Transform Linearity and conjugate properties Duality of Fourier Transform, Scaling property, Inverse Fourier Transform of several functions, Fourier Transform of periodic signal 	2	4
7.	Sampling and signal reconstruction	c1,c2, d1,d2	 Definition of sampling Continuous time vs discrete time Sampling theorem Practical sampling 	2	4

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

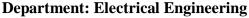

			graphs		
8.	Discrete-time system analysis using z-Transform	b1,b2, c1,c2, d2	 Z-Transform definition Linearity and region of convergence examples of z-Transform for some functions Comparison between Laplace and z-Transforms, Theorems of z-Transform (Initial and Final Value theorems, real and complex translation theorems) Inverse z-Transform Difference equations. simulation diagrams and flow 	2	4
			Effects of samplingSelection of sampling timeEffects of sampling		
			Effects of sampling Signal reconstruction Z-Transform definition Linearity and region of		


В -	B - Practical Aspect:					
No.	Tasks/ Experiments	No. of Weeks	Contact Hours	Learning Outcomes		
1.	MATLAB fundamentals and Complete MATLAB exercises.	3	6	c1		
2.	Write a Program for generation of unit impulse, unit step, ramp, exponential, sinusoidal and cosine sequence.	2	4	c1,c2, d1		
3.	Write a Program for plotting discrete and continuous signals.	1	2	c1,c2, d1		
4.	Mid-Term Exam (Practical)	1	2	c1, c2, d1		
5.	Write a Program for computing Fourier Series of several functions.	1	2	c1,c2		

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad



	Number of Weeks /and Units Per Semester		28	
11.	11. Review		2	c1,c2, d1
10.	Write a Program for computing Laplace transform and its inverse of several signals.	1	2	c1,c2, d1
9.	Write a Program for performing sampling.	1	2	c1,c2, d1
8.	Write a Program for linear convolution	1	2	c1,c2, d1
7.	Write a Program for computing z-transform and inverse z-transform of a rational transfer function.	1	2	c1,c2,d1
6.	Write a Program for computing Fourier Transform of several functions.	1	2	c1,c2,d1

V. Teaching strategies of the course:

- Lectures.
- Demonstrations,
- Software Simulation,
- Interactive class discussion.
- Some of laboratory experiment (Matlab).

•	VI. Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Problems in Fourier series	a2, b2	4 th	2.5		
2.	Problems in Fourier Transform	a1, b2	6 th	1.5		
3.	Problems in Laplace Transform	a1,a2, b2,	10 th	1.5		
4.	Problems in z-transform	a2,b1, b2	14^{th}	2		
Total						

1	VII.Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Assignment	4 th , 6 th ,10 th ,14 th	7.5	5%	a1,a2,b1,b2,	
2.	Quizzes	4 th , 8 th ,12 th	7.5	5%	a1,a2,b1,b2,	
3.	Class participation, Presentation and Seminars	Weekly	15	10%	c1,c2,d1,d2	
4.	Midterm Exam	8 th	20	13%	a1,a2,b1,b2,	
5.	Practical Final Exam	15 th	20	13%	b1,b2,c1,c2	
6.	Final Exam	16 th	80	54%	a1,a2,b1,b2,	
	Total		150	100%		

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- **1.** B. P. Lathi, 2005, Linear Systems and Signals, 2nd edition, Oxford University Press, New York, USA.
- **2.** Charles L..Philips and Royce Harbor "Feedback control systems", fourth edition, Prentice Hall.

2- Essential References.

- 1. Dr. J. S. Chitode, 2009, Signals and systems, 1st edition, Technical publication Pune.
- 2. G. E. Carlson, 1998, Signal and linear system analysis-2nd Edition. John Wiley and
- 3. Sons Ltd., New York. USA.
- **4.** Alan V. Oppenheim, Alain S. Willsky with S. Hamid Nawab, 1997, Signals & Systems, 2nd edition, revised, illustrated Prentice Hall, Michigan University. USA-
- **5.** Alex palamides. Anastasia Veloni, 2010, Signals and Systems Laboratory with Matlab, 1st edition, Taylor & Fancis Inc. Bosa Roca, USA.
- **6.** Richard C. Dorf and Robert H. Bishop, Modern Control Systems (12th Edition), Prentice Hall.

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

Department: Electrical Engineering

3- Electronic Materials and Web Sites etc.

- **1.** Modelica Association (2000). ModelicaTM A Unified Object-Oriented Language for Physical Systems Modeling. Tutorial Version 1.4 (ModelicaTutorial14.pdf). Available from: https://modelica.org/documents/
- **2.** MapleSim Video Tutorial: Modelica Video lectures available form: http://www.youtube.com/watch?v=reehU1dzeDc.
- 3. Simulink-Matlab tutorial for beginners Video lectures available form:
- **4.** <a href="http://www.youtube.com/results?search_query=simulink+tutorial+for+beginners&oq=simulink&gs_l=youtube.1.9.0l10.337429.342148.0.351270.8.8.0.0.0.0.738.2481.3j3-2j2j0j1.8.0...0.0...1ac.1.11.youtube.iIK7kMX6hfo
- 5. http://www.engineeringvideos.org/
- **6.** www.jhu.edu/signals
- 7. www.ece.gatech.edu/users/bonnie/book
- 8. https://sites.google.com/a/asu.edu/signals-and-systems/-

]	IX. Course Policies:
1.	Class Attendance: -A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic
2.	Tardy:For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	Exam Attendance/Punctuality: - A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam.
4.	Assignments & Projects: - The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.
5.	 Cheating: For cheating in exam, a student will be considered as failure. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
6.	If the examination committee proved a plagiarism of a student, he will be disengaged
	from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university.
	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed,
7.	otherwise the student will be asked to leave the lecture room.
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek			
By	A. Barakat			
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi			
	Name of Reviewer from the Department: Assoc. Prof. Dr. Radwan Al bouthigy			
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa			
	Assoc. Prof. Dr. Ahmed Mujahed			
	Asst. Prof. Dr. Munasar Alsubri			

Title of the Program: Communication Engineering and Networks

29. Template for Course Plan of Signals and Systems

I. Information Course:	about Faculty M	embo	er R	espon	sible	for	the
Name of Faculty Member	Asst. Prof. Dr. Amin Abdelghani Mahyob	Office Hours					
Location& Telephone No.	770249615	SAT	SUN	MON	TUE	WED	THU
E-mail	amin.mahyob@gmail.com						

II. Course Identification and General Information:							
1.	Course Title:	Signals and Systems					
2.	Course Code & Number:	CNE216					
			C.	H		Total	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
		2	-	2	-	3	
4.	Study level/ semester at which this course is offered:	Third Year/Second Semester					
5.	Pre –requisite (if any):	Electrical circuits2 (PME112) Differential equations (BR122)					
6.	Co –requisite (if any):	Electrical Machines 2 (PME224)					
7.	Program (s) in which the course is offered:	Electrical Power and Machines					
٠٠.	1 logram (s) in which the course is offered.	Engineering					
8.	Language of teaching the course:	English					
9.	System of Study:	Semester System					
10.	Mode of delivery:	Lecture					
11.	Location of teaching the course:	Classroom					

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Communication Engineering and Networks

III. Course Description:

This course introduces the basic signal principles necessary to understand, analyze, and enhance analog and digital signals. Its topics include basic analog and digital signals in time and frequency domains, sampling, Laplace, Fourier and z-Transforms and their applications in signal processing and control systems. The course also addresses the mathematical modeling of dynamic systems. The Students will learn how to model mechanical, electrical, electromechanical, thermal and liquid level systems as differential equation, transfer function and state variable models

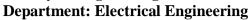
IV. Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - 1. Classify analog and digital signals and Understand the mathematical transformations (Laplace and Z transforms) their properties and uses in system analysis.
 - 2. Identify the components, the inputs and the outputs of physical systems
 - 3. Analyze different signals and interpret results achieved by mathematical solutions
 - **4.** Build a mathematical model from a real-life problem related to signals and systems.
 - **5.** Simulate of the continuous and discrete-time systems using basic Matlab and Simulink tools.
 - **6.** Obtain transfer functions of physical systems by drawing block diagrams and signal flow graphs
 - 7. Interact effectively with peers in the group
 - **8.** Present project results to a technical audience and subdivide a project into relevant sub problems and solve it in a given time frame as a team.

Department: Electrical Engineering

V. Course Content: A – Theoretical Aspect: Number **Units/Topics** Contact Order **Sub Topics List** of List hours Weeks Definition of signal Typical signals Signal representation Introduction to 1^{st} 2 1. Classification of signals and their signals applications Power and energy of signals Representation of a system Classification of systems: time-invariant and time-varying systems, instantaneous and dynamic systems causal and noncausal systems, continuous-time and 2^{nd} discrete-time systems, analog and digital 2 2. **Systems** systems, stable and unstable systems, linear and nonlinear system System models: input-output description, transfer function model, differential equation model, state variable model Laplace Transform definition ■ The properties of Laplace Transform • Region of convergence, Continuous-■ Theorems of Laplace Transform time system 3rd Inverse Laplace transform 3. 2 analysis using the Laplace Differential equation model and transfer Transform function model Use Laplace transform to solve differential equations Definition of modeling Develop the models of physical systems: 4th .5th Modeling of 4. 6

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

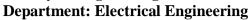

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

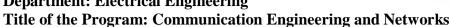
physical system

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Electrical system Mechanical system

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad .6th

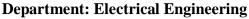



		 Electromechanical system Thermal system Liquid level system Block Diagram and Signal Flow Graph Transfer Function model Differential equation model Transformers and gears Sensors Simulation of systems model using Matlab Linearization of physical system 		
5.	Midterm exam.		7^{th}	2
6.	State variable models	 Definition General form of state variable model (definitions of vectors and matrices) Develop the state variable models from physical system differential equations Obtain state model from the transfer function and differential equation Simulation diagrams and flow graphs Solution of state equations Obtain the transfer function from state model Similarity transformation Simulation of systems model using Matlab 	8 th ,9 th	4
7.	Continuous- time signal analysis: The Fourier Transform	 Definition of Fourier Relation between Fourier Transform and Laplace Transform Linearity and conjugate properties Duality of Fourier Transform, Scaling property, Inverse Fourier Transform of several functions, 	10 th ,11 th	4

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad



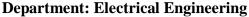
10.	Final exam	 Difference equations. Simulation diagrams and flow graphs State equations 	16 th	2
		 Simulation diagrams and flow graphs 		
9.	Discrete-time system analysis using z- Transform	 Z-Transform definition Linearity and region of convergence Examples of z-Transform for some functions Comparison between Laplace and z-Transforms, Theorems of z-Transform (Initial and Final Value theorems, real and complex translation theorems) Inverse z-Transform 	14 th ,15 th	4
8.	Sampling and signal reconstruction	 Fourier Transform of periodic signal Definition of sampling Continuous time vs discrete time Sampling theorem Practical sampling Effects of sampling Selection of sampling time Effects of sampling Signal reconstruction 	12 th ,13 th	4

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

B - Practical Aspect:						
No.	Tasks/ Experiments	No. of Weeks	Contact Hours			
1.	MATLAB fundamentals and Complete MATLAB exercises.	1 st , 2 nd ,3 rd	6			
2.	Write a Program for generation of unit impulse, unit step, ramp, exponential, sinusoidal and cosine sequence.	4 th ,5 th	4			
3.	Write a Program for plotting discrete and continuous signals.	6 th	2			
4.	Mid-Term Exam (Practical)	7^{th}	2			
5.	Write a Program for computing Fourier Series of several functions.	8 th	2			
6.	Write a Program for computing Fourier Transform of several functions.	9 th	2			
7.	Write a Program for computing z-transform and inverse z-transform of a rational transfer function.	10 th	2			
8.	Write a Program for linear convolution	11 th	2			
9.	Write a Program for performing sampling.	12 th	2			
10.	Write a Program for computing Laplace transform and its inverse of several signals.	13 th	2			
11.	Review	14 th	2			
12.	Final Term Exam (Practical)	15 th	2			
	Number of Weeks /and Units Per Semester 14 28					

VI. Teaching strategies of the course:

- Lectures.
- Demonstrations,
- Software Simulation,
- Interactive class discussion.
- Some of laboratory experiment (Matlab).


•	VII.Assignments:		
No	Assignments	Week Due	Mark

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

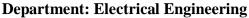
1.	Problems in Fourier series	4 th	2.5	
2.	Problems in Fourier Transform	6 th	1.5	
3.	Problems in Laplace Transform	10 th	1.5	
4.	Problems in z-transform	14 th	2	
Total				

VIII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment		
1.	Assignment	4^{th} , 6^{th} , 10^{th} , 14^{th}	7.5	5%		
2.	Quizzes	4 th , 8 th ,12 th	7.5	5%		
3.	Class participation, Presentation and Seminars	Weekly	15	10%		
4.	Midterm Exam	7 th	20	13%		
5.	Practical Final Exam	15 th	20	13%		
6.	Final Exam	16 th	80	54%		
	Total		150	100%		

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).


- 1. B. P. Lathi, 2005, Linear Systems and Signals, 2nd edition, Oxford University Press, New York. USA.
- 2. Charles L..Philips and Royce Harbor "Feedback control systems", fourth edition, Prentice Hall.

2- Essential References.

- 1. Dr. J. S. Chitode, 2009, Signals and systems, 1st edition, Technical publication Pune.
- 2. G. E. Carlson, 1998, Signal and linear system analysis-2nd Edition. John Wiley and
- 3. Sons Ltd., New York. USA.

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

- 4. Alan V. Oppenheim, Alain S. Willsky with S. Hamid Nawab, 1997, Signals & Systems, 2nd edition, revised, illustrated Prentice Hall, Michigan University. USA-
- 5. Alex palamides. Anastasia Veloni, 2010, Signals and Systems Laboratory with Matlab, 1st edition, Taylor & Fancis Inc. Bosa Roca, USA.
- 6. Richard C. Dorf and Robert H. Bishop, Modern Control Systems (12th Edition), Prentice Hall.

3- Electronic Materials and Web Sites etc.

- 1. Modelica Association (2000). ModelicaTM A Unified Object-Oriented Language for Physical Systems Modeling. Tutorial Version 1.4 (ModelicaTutorial14.pdf). Available from: https://modelica.org/documents/
- 2. MapleSim Video Tutorial: Modelica Video lectures available form: http://www.youtube.com/watch?v=reehU1dzeDc.
- 3. Simulink-Matlab tutorial for beginners Video lectures available form:
- 4. http://www.youtube.com/results?search_query=simulink+tutorial+for+begi-nners&oq=simulink&gs_l=youtube.1.9.0l10.337429.342148.0.351270.8.8.
 http://www.youtube.com/results?search_query=simulink+tutorial+for+begi-nners&oq=simulink&gs_l=youtube.1.9.0l10.337429.342148.0.351270.8.8.
 https://www.youtube.search_query=simulink+tutorial+for+begi-nners&oq=simulink&gs_l=youtube.1.9.0l10.337429.342148.0.351270.8.8.
 <a href="https://www.youtube.search_guery=simulink+tutorial+for+begi-nners&oq=simulink&gs_l=youtube.1.9.0l10.337429.342148.0.351270.8.8.
 <a href="https://www.youtube.search_guery=simulink+tutorial+for+begi-nners&oq=simulink&gs_l=youtube.search_guery=simulink+tutorial+for+begi-nners&oq=simulink&gs_l=youtube.search_guery=simulink&gs_l=youtube.search_guery=simulink+tutorial+for+begi-nners&oq=simulink&gs_l=youtube.search_guery=simulink&gs_l=youtube.guery=simulink&gs_l=youtube.guery=simulink&gs_l=youtube.guery=simulink&
- 5. http://www.engineeringvideos.org/
- 6. www.jhu.edu/signals
- 7. www.ece.gatech.edu/users/bonnie/book
- 8. https://sites.google.com/a/asu.edu/signals-and-systems/-

X. **Course Policies: Class Attendance:** -A student should attend not less than 75 % of total hours of the subject; otherwise he 1. will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic Tardy: - For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent. **Exam Attendance/Punctuality:** - A student should attend the exam on time. He is Permitted to attend an exam half one 3. hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam. **Assignments & Projects:**

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	

Huda Al-Emad

Department: Electrical Engineering

	- The assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time.
	Cheating:
5.	- For cheating in exam, a student will be considered as failure. In case the cheating is
	repeated three times during his/her study the student will be disengaged from the Faculty.
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
6.	If the examination committee proved a plagiarism of a student, he will be disengaged
	from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university.
	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed,
7.	otherwise the student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Department: Electrical Engineering

Title of the Program: Communication Engineering and Networks

