مجلس الاعتماد الأكاديمي وضمان الجودة

29.Course Specification of Electronics (2)

I.Co	I.Course Identification and General Information:							
.1	Course Title:					Electronics (2).		
.2	Course Code & Number:					MT202.		
			C.	Η		TOTAL CR.		
.3	Credit hours:	Th.	Seminar	Pr	Tu.	HRS.		
		2	-	2	2	4		
1	Study level/ semester at which this course is			Thir	d Year -	First Semester.		
.4	offered:							
.5	Pre –requisite (if any):		Electronic	s (1) and	d Logic	System Design.		
6.	Co –requisite (if any):					None.		
.7	Program (s) in which the course is offered:		Mech	natronic	s Engin	eering Program.		
.8	Language of teaching the course:				En	glish Language.		
.9	Location of teaching the course:		Mechatr	onics E	ngineeri	ing Department.		
10.	Prepared By:		Assoc	. Prof. I	Dr. Faro	uk AL-Fuhaidy.		
11.	Date of Approval:							

II.Course Description:

This course is the foundation of all modern electronic devices based on digital integrated circuits, such as cellular phones, MP3 players, laptop computers, digital cameras, high definition televisions. It illustrates to students the fundamental principles, concepts, and importance of digital electronics and their applications. The course includes a basic understanding of the basic components as NMOS and CMOS inverters, MOS memory, storage circuits, adder, comparator, encoder, decoder ADC and DAC, multiplexer and de-multiplexer, and VHDL programming. The importance of this course is its development of integrated circuits which play a significant role in solving the problems of logic circuits. These integrated circuits facilitate the placement of a large number of transistors and on a single chip and gain in speed and consummation power.

III.Cou the co	urse Intended learning outcomes (CILOs) of urse	Referenced PILOs
a1.	Classify knowledge of basic concepts, fundamentals, characteristics, and design factors related to CMOS based integrated circuits.	A1
a2.	Depict principles and important parameters taking into consideration while designing digital integrated circuits.	A2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي

مجلس الاعتماد الأكاديمي وضمان الجودة

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

b1.	Contrast digital integra VHDL/Verilog simulation	ated systems probl n software and FPGA ha	lems using ardware tool.	B1
b2.	Construct useful digital sy considering design factors a	stems based on CMOS and standard specification modern digital electro	S technology ons related to nics devices.	B5
c1.	Conduct laboratory experim concepts	ents successfully to veri s related to digital integr	fy theoretical rated circuits.	C1
c2.	Perform electronics problem using FPGA tools/boards	ns related to digital integ and/or VHDL/Verilog	rated systems simulations software.	C2
d1.	Co-operate in work as a team while preparing environment	D1		
d2. Review technical reports, discuss ideas, and justify results creatively through different forms to modern digital electronics technologies.				D6
	(A) Alignment Co Understandi	ourse Intended Learn ng to Teaching Strate	ing Outcome egies and Ass	s of Knowledge and sessment Strategies:
Cou	rse Intended Learning Outcomes	Teaching <mark>S</mark> trategies	Assess	ment Strategies
a1. Class concepts, character related to	sify knowledge of basic fundamentals, istics, and design factors o CMOS based integrated circuits.	 Active Lectures. Tutorials. 	Written Assessment.Short Essays.	
a2. Depi- paramete while de	ct principles and important rs taking into consideration esigning digital integrated circuits	Hands-on Laboratory Work.	 Practical Assessment. Simulation.	

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies						
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies				
b1. Contrast digital integrated systems problems using VHDL/Verilog simulation software and FPGA hardware tool.	Design Work and Project.Case Studies.	Practical Assessment.Reports.				

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

b2. Construct useful digital systems based on CMOS technology considering design factors and standard specifications related to modern digital electronics devices.	 Hands-on Laboratory Work. Case Studies. 	Written Assessments.Project Reports.
--	--	---

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:							
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies					
c1. Conduct laboratory experiments successfully to verify theoretical concepts related to digital integrated circuits.	Hands-on Laboratory Work.Design Work.	Practical Assessment.Laboratory Reports.					
c2. Perform electronics problems related to digital integrated systems using FPGA tools/boards and/or VHDL/Verilog simulations software.	• The Use of Communication and Information Technology	• Simulations such as Computer Based Learning.					

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies			
d1. Co-operate in work as a team leader or a part of a team coherently while preparing environmental digital systems projects and share learned knowledge successfully.	• Group Learning.	 Project Reports. 			
d2. Review technical reports, discuss ideas, and justify results creatively through different forms to modern digital electronics technologies.	 Active Lectures Projects and Lab. Works. 	• Project Reports.			

IV.Course Content:						
	A – Theoretic	al Aspect	:			
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours	

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

1.	Course Orientation and Analog Power Amplifiers.	al	Course Orientations, Power Amplifiers Main Properties and Characteristics, Classes of Power Amplifiers, Power efficiency, Class A and Class B Power Amplifiers	2	4
2.	Analog Feedback & Oscillators Electronics Circuits.	al	Introduction to Feedback circuits, +ve and -ve feedback electronic circuits, and their analysis Electronic Oscillators Circuits, Mono-stable, Bi-stable, and A- stable Oscillators electronics circuits and their operations.	2	4
3.	Introduction to Digital Integrated Circuits.	a1,a2,b1,c2	Introduction to Digital Integrated Circuits (ICs), history and technologies, software, hardware tools, new trends, design factors, and applications.	1	2
4.	NMOS Inverters based Technology.	a1,a2,b2	History of NMOS ICs, NMOS transistors review, NMOS Inverters types, NMOS with Resistive Load, NMOS with E- MOS Load, and NMOS with D- MOS Load, electronics circuits, I/O equations, characteristics operations as a switch (inverter), VTC curves, Switching regions and times, Low-High Output voltages, Design factors effects, Inverters Sizes, Critical(Transition(s)- Voltages), VTC curves Comparison for each type of NMOS Inverters	2	4
5.	Mid-Term Exam.	a1,a2,b2	The First Four Chapters.	1	2
6.	CMOS Inverter based Technology.	a1,a2,b2	History of CMOS ICs, CMOS transistors Construction, Features & Characteristics, Operations, electronics circuits, I/O equations, illustration of its operations as a switch (an	2	4

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

Republic of Yemen

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

			inverter), VTC curves, Switching regions and times, Low-High Output voltages, Aspect Ratio factor effect, Inverters Sizes, Critical (Transitions-Voltages), Noise Margin Region illustration and its equations derivation, Power Dissipation formula derivation, Propagation Delays Times derivations, comparison with NMOS Inverters NAND and NOR gates based NMOS and CMOS inverters, their operations and effects on Low-output voltage in case of NMOS-based gates and aspect ratio consideration in case of CMOS- based gates. Transmission Gates, NMOS, PMOS, and CMOS TGs constructions and operations.		
7.	Combinational Logic Circuits- based CMOS Technology and VHDL Programming.	a1, a2, b1, b2, c2	Introduction to VHDL Simulation Software, System Design Classifications, up/down and Vice-versa design terminology, structural and behavioral (Architecture) design and simulation using VHDL. Transistor-Level Design Principles and Techniques based CMOS technology, structural design, Demorgan Technique, AOI & OAI Methods, Mirror Methods, and Dynamic Implementation Method, to basic combinational logic gates & functions, multiplexers, and decoders. Digital Adders, Half- Adder and Full-Adder review and construction in transistor level based CMOS Technology	2	4

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen

فالي والبحث العلمي	وزارة التعليم الع
الأكاديمي وضمان الجودة	مجلس الاعتماد

			considering different carry propagation implementation techniques like Look ahead Adder, Manchester Technique, etc. Comparator combinational Logic circuits implementation to 4-bit Magnitude Comparator and 8-bit or 16-bit word comparators.		
8.	Memory Elements-based CMOS Technology Digital Circuits .	a1, a2, b1, b2, c2	Introduction to Memory, Memory Types, Static and Dynamic Memories, RAM & ROM, Basic Building Elements, Latches and Flip-Flops Review, timing, design and implementation in transistor level based on CMOS technology and VHDL Simulation and Programming. Counters and Shift Registers implementation in Transistor Level using CMOS Technology.	2	4
9.	ADC and DAC Circuits.	a1, a2, b2	Analog-to-digital conversion circuits, Flash adder Digital-to-analog conversion electronics circuits, Ladder and R-2R Circuits.	1	2
10.	Final Exam.	a1, a2, b1, b2, c2	All the Chapters.	1	2
Number of Weeks /and Units Per Semester			16	32	

		E	8 - Tutoria	al Aspect:
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes
1.	Power Amplifiers Types, Class A and Class B Operations and Power Efficiency with Examples.	1	2	a1, a2
2.	Feedback (+ve & -ve) and Oscillators (Mono, Bi, and A stable)	1	2	a1, a2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

3.	Digital electronics: Ideal logic gates Logic levels definitions and noise margins gates Dynamic response of logic gates Logic voltage levels Noise margins Logic gate design goals Dynamic response of logic gates Rise and fall times Propagation delay Power delay product	1	2	a1, a2, b2
4.	NMOS logic design: NMOS inverter with resistive load Design of the W/L ratio of Ms Load resistor design Load-line visualization On-Resistance of the switching device Noise margin analysis Calculation of the V _{IL} and V _{OH} Calculation of Power Dissipation.	1	2	a1, a2, b2, d1, d2
5.	NMOS logic design: Load resistors problems Transistor alternatives to the load resistor Static design of the NMOS saturated load inverter, Calculation of V_H Calculation of (W/L) Noise margins analysis NMOS inverter with a linear load device (E-MOS Load) NMOS inverter with a depletion-mode (D-MOS) load Design of the W/L ratio of M _L Design of the W/L ratio of M _S Noise margins for the inverter with depletion- mode load.	1	2	a1, a2, b2, d1, d2
6.	NMOS gates and power dissipation, NMOS NAND and NOR gates NAND gates Complex NMOS logic design Selection between the two designs Static power dissipation Dynamic power dissipation Power scaling in NMOS logic gates, PMOS.	1	2	a1, a2, b2, d1, d2
7.	Complementary MOS (CMOS) logic design CMOS inverter technology CMOS inverter layout	1	2	a1, a2, b2, d1, d2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Order	Tasks/ Experiments Orientation (Course Syllabus and Regulations) Laboratory Equipment and VIIDL Simulation	of Weeks	Hours	Learning Outcomes
		C	- Practic	al Aspect:
Nui	Number of Weeks /and Units Per Semester		28	
12.	Arithmetic & Logic Units Design and implementation.	1	2	a1, a2, b2, c2, d1, d2
11.	Sequential Logic Circuits, Latches and Flip- Flops, Counters and Registers, Memories, Static and Dynamic, PLD RAMs types.	2	4	a1, a2, b2, c2, d1, d2
10.	Combinational Circuits: Digital adder, Half adder, Truth Table, construction, full adder, Truth Table, construction, multiple-bit adder, carry look-ahead adders. The digital comparator, type of digital comparator: comparator truth tables, truth table, 4-bit Magnitude comparator, 8-bit word comparator. Encoders and Decoders. Multiplexers and De-Multiplexers.	2	4	a1, a2, b2, c2, d1, d2
9.	CMOS gates, CMOS NOR and NAND gates CMOS NOR gate CMOS NAND gates Design of complex gates in CMOS Minimum size gate design and performance.	1	2	a1, a2, b2, d1, d2
8.	Dynamic behavior of the CMOS inverter, Propagation delay estimate Rise and fall times Delay cascade inverters Power dissipation and power delay product in CMOS Static power dissipation Dynamic power dissipation Power delay product.	1	2	a1, a2, b2, d1, d2
	Static characteristics of the CMOS inverter CMOS voltage transfer characteristics Noise margins for CMOS inverter.			

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin

2.

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Metal

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Oxide Semiconductor Field Effect

Transistor (MOSFET) Simulation and Practical

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

1

2

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

a1, a2, b1, c1, d1

8.

Operation Verification.

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

3.	N-MOSFET Gates Simulations using VHDL/Verilog and Implementation on FPGA (if Possible in Lab).	1	2	a1, a2, b1, c1, d1, d2	
4.	CMOS Inverter and Logic Gates.	1	2	a1, a2, b1, c1, c2, d1	
5.	Adder, Comparator Simulations using VHDL/Verilog and Implementation on FPGA (if Possible in Lab).	1	2	a1, a2, b1, b2, c1, c2 d1, d2	
б.	Encoder and Decoder Simulations using VHDL/Verilog and Implantation on FPGA (if Possible in Lab).	1	2	a1, a2, b1, b2, c1, c2 d1, d2	
7.	Multiplexer /De-multiplexer Simulations using VHDL/Verilog and Implantation on FPGA (if Possible in Lab).	1	2	a1, a2, b1, b2, c1, c2 d1, d2	
8.	Latches and Flip-Flops Simulations using VHDL/Verilog and Implementation on FPGA (if Possible in Lab).	2	4	a1, a2, b1, b2, c1, c2 d1, d2	
9.	Sequential, arithmetic, and Logic Units Simulations using VHDL/Verilog and Implementation on FPGA (if Possible in Lab).	2	4	a1, a2, b1, b2, c1, c2 d1, d2	
10.	Projects Presentations.	2	4	a1, a2, b1, b2, c1, c2 d1, d2	
11.	Final Practical Exam.	1	2	a1, a2, b1, b2, c1, c2, d1, d2	
Numbe	er of Weeks /and Units Per Semester	14	28		
V.Teaching strategies of the course:					
• Active Lectures.					

- Discussions.
- Laboratory Hands-on Work.
- Tutorials.
- Simulations.
- Office Hours.
- Work Groups.
- Projects and Report Presentations.

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

الجمهورية اليمنية

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

VI.A	VI.Assignments:							
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark				
1.	Power Amplifiers.	a1, a2	1 st &2 nd	1				
2.	Feedback & Oscillators.	a1, a2	3^{trd} & 4^{th}	1				
3.	NMOS Inverters.	a1, a2, b2, d1, d2	4^{th} to 7^{th}	1				
4.	CMOS Inverter.	a1, a2, b2, d1, d2	$8^{th} \& 10^{th}$	1				
5.	Combinational Circuits based CMOS.	a1, a2, b1, b2, c2, d1, d2	11 th & 12 th	2				
6.	Sequential Circuits based CMOS.	a1, a2, b1, b2, c2, d1, d2	13 th	2				
7.	Memory.	a1, a2, b1, b2, c2, d1, d2	14 th	1				
8.	ADC &DAC.	a1,a2, b2	15 th	1				
		Total		10				

VII.Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1.	Assignments & HomeWorks.	1^{st} to 15^{th}	24	12%	a1, a2, b1, b2, c2, d1, d2		
2.	Lab. Work and Experiments Reports.	4^{th} to 13^{th}	20	10%	a1, a2, b1, b2, c1, c2, d1, d2		
3.	Practical Term-Project and Presentation.	3 rd to 14 th	20	10%	a1, a2, b1, b2, c1, c2, d1, d2		
4.	Mid-Term Exam (Theoretically).	8 th	16	8%	a1, a2, b2		
5.	Final Term Exam (Practically).	14 th	20	10%	a1, a2, b1, b2, c1, c2, d1, d2		
б.	Final Term Exam (Theoretically).	16 th	100	50%	a1, a2, b1, b2, c2		
	Total Assessments Mark/Percentage200100%						
VIII.Learning Resources:							
F	• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).						

1- Required Textbook(s) (maximum two).

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

1. John P. Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley & Sons,
Inc. ISBN 0-471-12704-3
2. Richard C. Jaeger and Travis N. Blalock, 2011, Microelectronic – 1 NIC circuit Design
– 4/Edition – McGraw Hill Companies, USA – New York.
3. William Kleitz, 2008, Digital Electronics, a Practical Approach – Eighth Edition –
PEARSON, Prentice Hall, USA.
4. M. Morris Mano & Michael D. Ciletti, 2013, Digital Design – PEARSON.
2- Essential References.
1. Raj Kamal, 2006, "Digital Principles and Design" - Pearson Education.
2. Kumar, Virender, 2009, "Digital Electronics: Theory and Experiment" – ISBN : 978-
81-224-1346-5.
3- Electronic Materials and Web Sites <i>etc</i> .
1. http://www.ocw.mit.edu/courses.
2. www.ti.com/
3. http://www.motorola.com/us/consumers/home
4. http://pengchengcapacitor.en.made-in-china.com/
5. Lectures prepared by the lecturer

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.
By	Barakat.
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi.
	Head of Mechatronics Engineering Department: Assoc. Prof. Dr. Abdul-Malik Momin.
	Deputy Rector for Academic Affairs Assoc. Prof. Dr. Ibrahim AlMutaa.
	Assoc. Prof. Dr. Ahmed Mujahed and Asst. Prof. Dr. Munaser Alsubari.

IX.Cou	rse Policies:
1	Class Attendance: attendance according to rules and regulations. The students should have more than 75 % of
1.	of the Faculty.
	Tardy:
2.	The students should respect the timing of attending the lectures. They should attend within
	10 minutes from starting of the lecture.
2	Exam Attendance/Punctuality:
3.	The student should attend the exam on time. The punctuality should be implemented
	according to rules and regulations of the faculty for mid-term exam and final exam.
	Assignments & Projects:
4.	The assignment is given to the students after each chapter, the student has to submit all the
	assignments for checking on time.
_	Cheating:
5.	If any cheating occurred during the examination, the student is not allowed to continue and
	he has to face the examination committee for enquiries.
	Plagiarism:
6.	The student will be terminated from the Faculty, if one student attend the exam on another
	behalf according to the policy, rules and regulations of the university.
	Other Policies:
7	All the teaching materials should be kept out the examination hall.
· ·	The mobile phone is not allowed.
	There should be a respect between the student and his teacher.

Head of the	Quality Assurance	Dean of the	Academic Development	
Department	Unit	Faculty	Center & Quality Assurance	Rector of Sana'a University
Assoc. Prof.	Assoc. Prof. Dr.	Prof. Dr.	Assoc. Prof. Dr. Huda Al-	Prof. Dr. Al-Qassim
Dr. Abdul-	Mohammad	Mohammed AL-	Emad	Mohammed Abbas
Malik Momin	Algorafi	Bukhaiti		

Template for Course Plan Electronics (2)

I.Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Assoc. Prof. Dr Farouk AL-Fuahidy	Office Hours					
Location& Telephone No.	+967-777909815	SAT	SUN	MON	TUE	WED	THU
E-mail	farouqakh@gmail.com						

II.C	II.Course Identification and General Information:							
1.	Course Title:	Electronics (2).						
2.	Course Number & Code:					MT 202.		
			C.I	H		Total Cr.		
3.	Credit hours:	Th.	Seminar	Pr.	Tu.	Hrs.		
		2	-	2	2	4		
4.	Study level/year at which this course is offered:	Third Year- First Semester.						
5.	Pre –requisite (if any):		Electroni	cs (1) and	d Logic S	System Design.		
6.	Co –requisite (if any):					None.		
7.	Program (s) in which the course is offered		Mee	chatronic	s Engine	ering Program.		
8.	Language of teaching the course:	English Language.						
9.	System of Study:	Semesters.						
10.	Mode of delivery:	Lectures, Tutorials and Lab.Work						
11.	Location of teaching the course:		Mechat	ronics E	ngineerii	ng Department.		

III.Course Description:

This course is the foundation of all modern electronic devices based on digital integrated circuits, such as cellular phones, MP3 players, laptop computers, digital cameras, high definition televisions. It illustrates to students the fundamental principles, concepts, and importance of digital electronics and their applications. The course includes a basic understanding of the basic components as NMOS and CMOS inverters, MOS memory, storage circuits, adder, comparator, encoder, decoder ADC and DAC, multiplexer and de-multiplexer, and VHDL programming. The importance of this course is its development of integrated circuits which play a significant role in solving the problems of logic circuits. These integrated circuits facilitate the placement of large number of transistors and on a single chip and gain in speed and consummation power.

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

IV.Cou	IV.Course Intended learning outcomes (CILOs) of the		
cours	e	PILOs	
a1.	Classify knowledge of basic concepts, fundamentals, characteristics, and design factors related to CMOS based integrated circuits.	A1	
a2.	Depict principles and important parameters taking into consideration while designing digital integrated circuits.	A2	
b1.	Contrast digital integrated systems problems using VHDL/Verilog simulation software and FPGA hardware tool.	B1	
b2.	Construct useful digital systems based on CMOS technology considering design factors and standard specifications related to modern digital electronics devices.	B5	
c1.	Conduct laboratory experiments successfully to verify theoretical concepts related to digital integrated circuits.	C1	
c2.	Perform electronics problems related to digital integrated systems using FPGA tools/boards and/or VHDL/Verilog simulations software.	C2	
d1.	Co-operate in work as a team leader or a part of a team coherently while preparing environmental digital systems projects and share learned knowledge successfully.	D1	
d2.	Review technical reports, discuss ideas, and justify results creatively through different forms to modern digital electronics technologies.	D6	

V.Course Content	:
------------------	---

A –	Theoretical	Aspect:

Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
1.	Course Orientation and Analog Power Amplifiers.	Course Orientations, Power Amplifiers Main Properties and Characteristics, Classes of Power Amplifiers, Power efficiency, Class A and Class B Power Amplifiers	1,2	4
2.	Analog Feedback & Oscillators Electronics Circuits.	Introduction to Feedback circuits, +ve and -ve feedback electronic circuits, and their analysis Electronic Oscillators Circuits, Mono- stable, Bi-stable, and A-stable Oscillators electronics circuits and their operations.	3,4	4

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

3.	Introduction to Digital Integrated Circuits.	Introduction to Digital Integrated Circuits (ICs), history and technologies, software, hardware tools, new trends, design factors, and applications.	5	2
4.	NMOS Inverters based Technology.	History of NMOS ICs, NMOS transistors review, NMOS Inverters types, NMOS with Resistive Load, NMOS with E-MOS Load, and NMOS with D-MOS Load, electronics circuits, I/O equations, characteristics operations as a switch (inverter), VTC curves, Switching regions and times, Low-High Output voltages, Design factors effects, Inverters Sizes, Critical(Transition(s)- Voltages), VTC curves Comparison for each type of NMOS Inverters	6,7	4
5.	Mid-Term Exam.	The First Four Chapters.	8	2
6.	CMOS Inverter based Technology.	History of CMOS ICs, CMOS transistors Construction, Features & Characteristics, Operations, electronics circuits, I/O equations, illustration of its operations as a switch (an inverter), VTC curves, Switching regions and times, Low-High Output voltages, Aspect Ratio factor effect, Inverters Sizes, Critical (Transitions-Voltages), Noise Margin Region illustration and its equations derivation, Power Dissipation formula derivation, Propagation Delays Times derivations, comparison with NMOS Inverters NAND and NOR gates based NMOS and CMOS inverters, their operations and effects on Low-output voltage in case of NMOS-based gates and aspect ratio consideration in case of CMOS-based gates. Transmission Gates, NMOS, PMOS, and CMOS TGs constructions and operations.	9,10	4

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

7.	Combinational Logic Circuits-based CMOS Technology and VHDL Programming.	Introduction to VHDL Simulation Software, System Design Classifications, up/down and Vice-versa design terminology, structural and behavioral (Architecture) design and simulation using VHDL. Transistor-Level Design Principles and Techniques based CMOS technology, structural design, Demorgan Technique, AOI & OAI Methods, Mirror Methods, and Dynamic Implementation Method, to basic combinational logic gates & functions, multiplexers, and decoders. Digital Adders, Half-Adder and Full- Adder review and construction in transistor level based CMOS Technology considering different carry propagation implementation techniques like Look ahead Adder, Manchester Technique, etc. Comparator combinational Logic circuits implementation to 4-bit Magnitude Comparator and 8-bit or 16-bit word comparators.	11,12	4
8.	Memory Elements- based CMOS Technology Digital Circuits .	Introduction to Memory, Memory Types, Static and Dynamic Memories, RAM & ROM, Basic Building Elements, Latches and Flip-Flops Review, timing, design and implementation in transistor level based on CMOS technology and VHDL Simulation and Programming. Counters and Shift Registers implementation in Transistor Level using CMOS Technology.	13,14	4
9.	ADC and DAC Circuits.	Flash adder Digital-to-analog conversion electronics circuits, Ladder and R-2R Circuits.	15	2
10.	Final Exam.	All the Chapters.	16	2
	Number of Weeks /and Units Per Semester			32

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

B - Tutorial Aspe				spect:
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes
1.	Power Amplifiers Types, Class A and Class B Operations and Power Efficiency with Examples.	1	2	a1, a2
2.	Feedback (+ve & -ve) and Oscillators (Mono, Bi, and A stable)	2	2	a1, a2
3.	Digital electronics: Ideal logic gates Logic levels definitions and noise margins gates Dynamic response of logic gates Logic voltage levels Noise margins Logic gate design goals Dynamic response of logic gates Rise and fall times Propagation delay Power delay product	3	2	a1, a2, b2
4.	NMOS logic design: NMOS inverter with resistive load Design of the W/L ratio of Ms Load resistor design Load-line visualization On-Resistance of the switching device Noise margin analysis Calculation of the V _{IL} and V _{OH} Calculation of Power Dissipation.	4	2	a1, a2, b2, d1, d2
5.	NMOS logic design: Load resistors problemsTransistor alternatives to the load resistor Static designof the NMOS saturated load inverter, Calculation of V_H Calculation of (W/L) Noisemargins analysisNMOS inverter with a linear load device (E-MOSLoad)NMOS inverter with a depletion-mode (D-MOS)load Design of the W/L ratio of ML Design ofthe W/L ratio of MS Noise margins for the inverter withdepletion-mode load.	5	2	a1, a2, b2, d1, d2
6.	NMOS gates and power dissipation, NMOS NAND and NOR gates NAND gates Complex NMOS logic design Selection between the two designs Static power	6	2	a1, a2, b2, d1, d2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

وزارة التعليم العالي والبحث العلمي

مجلس الاعتماد الأكاديمي وضمان الجودة

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

	dissipation Dynamic power dissipation Power scaling in NMOS logic gates, PMOS.			
7.	Complementary MOS (CMOS) logic design CMOS inverter technology CMOS inverter layout Static characteristics of the CMOS inverter CMOS voltage transfer characteristics Noise margins for CMOS inverter.	7	2	a1, a2, b2, d1, d2
8.	Dynamic behavior of the CMOS inverter, Propagation delay estimate Rise and fall times Delay cascade inverters Power dissipation and power delay product in CMOS Static power dissipation Dynamic power dissipation Power delay product.	8	2	a1, a2, b2, d1, d2
9.	CMOS gates, CMOS NOR and NAND gates CMOS NOR gate CMOS NAND gates Design of complex gates in CMOS Minimum size gate design and performance.	9	2	a1, a2, b2, d1, d2
10.	Combinational Circuits: Digital adder, Half adder, Truth Table, construction, full adder, Truth Table, construction, multiple-bit adder, carry look-ahead adders. The digital comparator, type of digital comparator: comparator truth tables, truth table, 4-bit Magnitude comparator, 8-bit word comparator. Encoders and Decoders. Multiplexers and De-Multiplexers.	10,11	4	a1, a2, b2, c2, d1, d2
11.	Sequential Logic Circuits, Latches and Flip-Flops, Counters and Registers, Memories, Static and Dynamic, PLD RAMs types.	12,13	4	a1, a2, b2, c2, d1, d2
12.	Arithmetic & Logic Units Design and implementation.	14	2	a1, a2, b2, c2, d1, d2
Ν	Number of Weeks /and Units Per Semester	14	28	

	C - Practical Aspect:				
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes	
1.	Orientation (Course Syllabus and Regulations)	1	2	a1, a2, b1, c1, d1	

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

وزارة التعليم العالي والبحث العلمي

مجلس الاعتماد الأكاديمي وضمان الجودة

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

	Laboratory Equipment and VHDL			
	Simulation Software Installation and Familiarization.			
2.	Metal Oxide Semiconductor Field Effect Transistor (MOSFET) Simulation and Practical Operation Verification.	2	2	a1, a2, b1, c1, d1
3.	N-MOSFET Gates Simulations using VHDL/Verilog and Implementation on FPGA (if Possible in Lab).	3	2	a1, a2, b1, c1, d1, d2
4.	CMOS Inverter and Logic Gates.	4	2	a1, a2, b1, c1, c2, d1
5.	Adder, Comparator Simulations using VHDL/Verilog and Implementation on FPGA (if Possible in Lab).	5	2	a1, a2, b1, b2, c1, c2 d1, d2
6.	Encoder and Decoder Simulations using VHDL/Verilog and Implantation on FPGA (if Possible in Lab).	6	2	a1, a2, b1, b2, c1, c2 d1, d2
7.	Multiplexer /De-multiplexer Simulations using VHDL/Verilog and Implantation on FPGA (if Possible in Lab).	7	2	a1, a2, b1, b2, c1, c2 d1, d2
8.	Latches and Flip-Flops Simulations using VHDL/Verilog and Implementation on FPGA (if Possible in Lab).	8,9	4	a1, a2, b1, b2, c1, c2 d1, d2
9.	Sequential, arithmetic, and Logic Units Simulations using VHDL/Verilog and Implementation on FPGA (if Possible in Lab).	10,11	4	a1, a2, b1, b2, c1, c2 d1, d2
10.	Projects Presentations.	12,13	4	a1, a2, b1, b2, c1, c2 d1, d2
11.	Final Practical Exam.	14	2	a1, a2, b1, b2, c1, c2, d1, d2
	Number of Weeks /and Units Per Semester	14	28	

VI.Teaching strategies of the course:

- Active Lectures.
- Discussions.
- Laboratory Hands-on Work.

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

- Tutorials.
- Simulations.
- Office Hours.
- Work Groups.
- Projects and Report Presentations.

VII.Assignments:	
------------------	--

No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Power Amplifiers.	a1, a2	$1^{st} \& 2^{nd}$	1
2.	Feedback & Oscillators.	a1, a2	3^{trd} & 4^{th}	1
3.	NMOS Inverters.	a1, a2, b2, d1, d2	4^{th} to 7^{th}	1
4.	CMOS Inverter.	a1, a2, b2, d1, d2	8^{th} & 10^{th}	1
5.	Combinational Circuits based CMOS.	a1, a2, b1, b2, c2, d1, d2	11 th & 12 th	2
6.	Sequential Circuits based CMOS.	a1, a2, b1, b2, c2, d1, d2	13 th	2
7.	Memory.	a1, a2, b1, b2, c2, d1, d2	14 th	1
8.	ADC &DAC.	a1,a2, b2	15 th	1
	Tota	l		10

VIII.Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1.	Assignments & HomeWorks.	1 st to 15 th	24	12%	a1, a2, b1, b2, c2, d1, d2
2.	Lab. Work and Experiments Reports.	4 th to 13 th	20	10%	a1, a2, b1, b2, c1, c2, d1, d2
3.	Practical Term-Project and Presentation.	3 rd to 14 th	20	10%	a1, a2, b1, b2, c1, c2, d1, d2
4.	Mid-Term Exam (Theoretically).	8 th	16	8%	a1, a2, b2
5.	Final Term Exam (Practically).	14^{th}	20	10%	a1, a2, b1, b2, c1, c2, d1, d2
6.	Final Term Exam (Theoretically).	16 th	100	50%	a1, a2, b1, b2, c2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

الجمهورية اليمنية وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Total Assessments Mark/Percentage	200	100%	

IX.Learning Resources:					
• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).					
1- Required Textbook(s) (maximum two					
 John P. Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley & Son Inc. ISBN 0-471-12704-3 Dishard C. Jaager and Travia N. Plalack. 2011. Microal astronia. 1 NIC sinewit Desir 					
2. Richard C. Jaeger and Travis N. Blalock, 2011, Microelectronic – 1 NIC circuit Desig – 4/Edition – McGraw Hill Companies, USA – New York.					
3. William Kleitz, 2008, Digital Electronics, a Practical Approach – Eighth Edition PEARSON, Prentice Hall, USA.					
4. M. Morris Mano & Michael D. Ciletti, 2013, Digital Design – PEARSON.					
2- Essential References.					
 Raj Kamal, 2006, "Digital Principles and Design" - Pearson Education. Kumar, Virender, 2009, "Digital Electronics: Theory and Experiment" – ISBN : 978 81-224-1346-5. 					
3- Electronic Materials and Web Sites <i>etc</i> .					
 <u>http://www.ocw.mit.edu/courses</u>. <u>www.ti.com/</u> <u>http://www.motorola.com/us/consumers/home</u> <u>http://pengchengcapacitor_en_made_in_china_com/</u> 					
5. Lectures prepared by the lecturer					

Head of the	Quality Assurance	Dean of the	Academic Development	
Department	Unit	Faculty	Center & Quality Assurance	Rector of Sana'a University
Assoc. Prof.	Assoc. Prof. Dr.	Prof. Dr.	Assoc. Prof. Dr. Huda Al-	Prof. Dr. Al-Qassim
Dr. Abdul-	Mohammad	Mohammed AL-	Emad	Mohammed Abbas
Malik Momin	Algorafi	Bukhaiti		

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

X.	Course Policies:
1.	Class Attendance: attendance according to rules and regulations of The students should have more than 75 % of the Faculty.
2.	Tardy: The students should respect the timing of attending the lectures. They should attend within 10 minutes from starting of the lecture.
3.	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.
4.	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.
5.	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquiries.
6.	Plagiarism: The student will be terminated from the Faculty, if one student attend the exam on another behalf according to the policy, rules and regulations of the university.
7.	Other Policies: All the teaching materials should be kept out the examination hall. The mobile phone is not allowed. There should be a respect between the student and his teacher.

Head of the Department Assoc. Prof. Dr. Abdul-	Quality Assurance Unit Assoc. Prof. Dr. Mohammad	Dean of the Faculty Prof. Dr. Mohammed AL-	Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al- Emad	Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas
Malik Momin	Algorafi	Bukhaiti	Linut	Monumiled 7100ub