

30Course Specification of Structural Analysis I

	I. Course Identification and General Information:						
1	Course Title:	Struct	Structural Analysis I				
2	Course Code & Number:	CE201					
			С	.Н		Credit	
3	Credit hours:	Th.	Tu.	Pr.	Tr.	Hours	
		2	2			3	
4	Study level/ semester at which this	3 rd Lev	3 rd Level 1 st semester				
	course is offered:						
5	Pre –requisite (if any):	Streng	th of Mate	rials (CE	108)		
6	Co –requisite (if any):	Non					
8	Program (s) in which the course is	Civil Engineering					
0	offered:						
9	Language of teaching the course:	English+ Arabic					
10	Location of teaching the course:	Class room					
11	Prepared By:	Dr. Abubaker A. Al-Sakkaf					
12	Date of Approval						

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

II. Course Description:

This course aims to develop an understanding of how structural elements behave under different type of loadings and how they deform. Also, it explains the classical methods of calculating the deformations of real structures. Furthermore, it is to prepare students to handle more advanced structural analysis methods.

III.	Course Intended learning outcomes (CILOs) of	Reference
	the course	PILOs
a.1	Recognize classical and virtual work methods for computing structural deflections.	A1
a.2	Show deflections procedure of different type of structures	A3
b.1	Demonstrate competence how to select the classical and virtual work methods to determine structural deflections	B1
b.2	Demonstrate competence calculating structural deflections using classical and virtual work methods	B2
c.3	Calculate deflections of determine structural using classical and virtual work methods	C2
c.1	Draw the influence lines for simple and continuous beam	C2
c.2	Draw graphs of moment and shear force continuous beam	С3

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Course Intended Learning	Teaching strategies	Assessment Strategies
Outcomes		
	Lecture	Problem set- Written
a1- Recognize classical and virtual	Multimedia Presentations	exam- Written
work methods for computing	Exercises	assignment
structural deflections.	Reading	
	Lecture	Problem set- Written
a2- Show deflections procedure of	Multimedia Presentations	exam- Written
different type of structures	Exercises	assignment
	Reading	

Prepared by Head of

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
b1- Demonstrate competence how to select the classical and virtual work methods to determine structural deflections	Lecture Multimedia Presentations Exercises Reading	Problem set- Written exam- Written assignment				
b2- Demonstrate competence calculating structural deflections using classical and virtual work methods	Lecture Multimedia Presentations Exercises Reading	Problem set- Written exam- Written assignment				

C Alignment Course Intended Learning Outcomes of Professional and Practical							
Skills to Teaching Strategies and Assessment Strategies:							
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies					
c1- Draw the influence lines for simple and continuous beam	Lecture Multimedia Presentations Exercises Reading	Problem set- Written exam- Written assignment					
c2- Draw graphs of moment and shear force continuous beam	Lecture Multimedia Presentations Exercises Reading	Problem set- Written exam- Written assignment					
c3- Calculate deflections of determine structural using classical and virtual work methods	Lecture Multimedia Presentations Exercises	Problem set- Written exam- Written assignment					

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

University of Sana'a Faculty of Engineering

Reading	

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

IV. Course Content:

IV. Course Content:							
A – Theoretical Aspect:							
Order	Units/Topics List	Learning Outcome s	Sub Topics List	Number of Weeks	contact hours		
1	The double integration method	a1, a2	Elastic –Beam theory	1	2		
2	Applications to the double integration method.	b2, c3, c1, c2	Cantilevers and simple beams	1	2		
3	The moment-area theorems	a1, a2	The moment-area theorems	1	2		
4	Applications to the moment- area theorems.	b1, b2, c3, c1, c2	Cantilever beams	1	2		
5	The conjugate beam method.	a1, a2	Theorem1, 2	1	2		
6	Applications to conjugate beam method.	b1, b2, c3, c1, c2	Beams	1	2		
7	The method of virtual work	a1, a2	External work and strain energy Principal of virtual work for truss, beams, and frames	1	2		
8	The method of virtual work	a1, a2	External work and strain energy Principal of virtual work for truss, beams, and frames	1	2		
9	Application of virtual work to trusses, beams, and frames.	b1, b2, c3, c1, c2	Trusses, beams, frames	2	4		
10	Maxwell's theorem of reciprocal deflections	b1, b2	Background and applications	1	2		
11	Construct influence lines for simple and continuous beam	a1, a2	Moving load	1	2		

Prepared by

12

Head of Department Dr. Abdulkareem Yahya Al khattabi

continuous beam

Application of construct

influence lines for simple and

Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi

Number of Weeks /and Units Per Semester

a1, b1, b2,

c3, c1, c2

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Simple beams,

continuous beams

Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

4

28

2

14

University of Sana'a **Faculty of Engineering**

Prepared by Head of Department

Dr. Abdulkareem Yahya Al khattabi

Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

B - Tutorial Aspect:					
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes	
1	Applications to the double integration method.	2	4	b1, b2, c3, c1, c2	
2	Applications to moment-area theorems	2	4	b1, b2, c3, c1, c2	
3	Applications to conjugate beam method.	2	4	a1, a2, b1, b2, c3, c1, c2	
4	Application of virtual work to trusses, beams, and frames.	4	8	b1, b2, c3, c1, c2	
5	Applications of Maxwell's theorem of reciprocal deflections	1	2	b1, b2, c3, c1, c2	
6	Construct influence lines for simple and continuous beam	2	4	b1, b2, c3, c1, c2	
7	Review	1	2		
Numb	Number of Weeks /and Units Per Semester 14 28				

V. Teaching strategies of the course:

Lecture

Multimedia Presentations

Exercises

Reading

\mathbf{V}	VI. Assignments:						
N o	Assignments	Aligned CILOs(symbols	Week Due	Mark			
1	Applications to the double integration method.	b1,b2,c3,c1,c2	2	1.75			
2	Applications to the moment-area theorems	b1,b2,c3,c1,c2	4	1.75			
3	Applications to conjugate beam method.	b1,b2,c3,c1,c2	6	1.75			
4	Application of virtual work to trusses, beams, and frames.	a1,a2,b1,b2,c3	8	1.75			

Prepared by Head of Department

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

5	Applications of Maxwell's theorem of reciprocal deflections	a1,a2,b1,b2,c3	10	1.75
6	Construct influence lines for simple and continuous beam.	b1,b2,c3,c1,c2	13	1.75

7	VII. Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1	Written assignment	2,3,5,7,9,11,13	10.5	7	a1,a2,b1,b2,c3,c1,c2			
2	Participate		4.5	3	b1,b2			
3	Mid-term exam.	8th	30	20	c1,c2			
4	Final-exam.		105	70	c1,c2			
	Sum		150	100%				

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1- R.C. Hibbeler, Structural Analysis, 8th Edition, 2012,

2- Essential References.

W.M.C. McKenzie, Examples in Structural Analysis, 2006

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

IX.	Course Policies:
1	Class Attendance: The students should have more than 75 % of attendance according to rules and regulations of the engineering faculty.
2	Tardy: The students should respect the timing of attending the lectures. They should attend within 1 minutes from starting of the lecture.
3	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to the rules and regulations of the engineering faculty for midterm exam and final exam.
4	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.
5	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he/she has to face the examination committee for enquiries.
6	Plagiarism: The student will be terminated from the Faculty, if he/she attends the exam on another student behalf according to the policy, rules and regulations of the university.
7	Other policies: - All the teaching materials should be kept out of the examination hall. - Cellular phone or alike devices are not allowed into the examination hall. - There should be a respect between the student and his teacher.

Reviewed By	Vice Dean for Academic Affairs and Post Graduate Studies
	Dr. Tarek A. Barakat
	Dr. Mohammad Algorafi
	Deputy Rector for Academic Affairs Dr. Ibrahim AlMutaa
	Dr. Ahmed mujahed
	Dr. Munaser Alsubri

Prepared by He

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Template for Course Plan (Syllabus) of Structural Analysis I

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member Dr. Abubaker A. Al- Sakkaf Office Hours							
Location& Telephone No.	Faculty, 777455428	SAT	SUN	MON	TUE	WED	THU
E-mail					10- 12		

	II. Course Identification and General Information:					
1	Course Title:	Structural Analysis I				
2-	Course Number & Code:	CE201				
			C.	H		Credit
3-	Credit hours:	Th.	Tu.	Pr.	Tr.	Hours
		2	2			3
1	Study level/year at which this course is	3 rd Level 1 st semester				
4-	offered:					
5-	Pre –requisite (if any):	Strengt	th of <mark>Mate</mark> r	ials (CE1	08)	
6-	Co –requisite (if any):	Non				
7-	Program (s) in which the course is	Civil E	Engineering			
/-	offered					
8-	Language of teaching the course:	English+ Arabic				
9-	System of Study:	Regular				
10-	Mode of delivery:	Lecture				
11-	Location of teaching the course:	Class				

Prepared by Head of Department

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

III. Course Description:

This course aims to develop an understanding of how structural elements behave r different type of loadings and how they deform. Also, it explains the classical methods lculating the deformations of real structures. Furthermore, it is to prepare students to le more advanced structural analysis methods.

IV. Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
- a.1- Recognize classical and virtual work methods for computing structural deflections. A1
- **a.2-** Show deflections procedure of different type of structures. A3
- **b.1-** Demonstrate competence how to select the classical and virtual work methods to determine

structural deflections. B1

b.2- Demonstrate competence calculating structural deflections using classical and virtual work

methods. B2

- **c.3-** Calculate deflections of determine structural using classical and virtual work methods. C2
- **c.1** Draw the influence lines for simple and continuous beam. C 2
- c.2- Draw graphs of moment and shear force continuous beam. C3

V. Course Content:

Distribution of Semester Weekly Plan of Course Topics/Items and Activities.

A – Theoretical Aspect:

Order	Topics List		Week Due	Contact Hours
1	The double integration method	Elastic –Beam theory	1	2
2	Applications to the double integration method.	Cantilevers and simple beams	2	2
3	The moment-area theorems	The moment-area theorems	3	2

Prepared by Head of Department

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

V. Course Content:

• Distribution of Semester Weekly Plan of Course Topics/Items and Activities.

A – Theoretical Aspect:

Order	Topics List		Week Due	Contact Hours
4	Applications to the moment-area theorems.	Cantilever beams	4	2
5	The conjugate beam method.	Theorem1, 2	5	2
6	Applications to conjugate beam method.	Beams	6	2
7	The method of virtual work	External work and strain energy Principal of virtual work for truss, beams, and frames	7	2
8	Midt	term test	8	2
9	Application of virtual work to trusses, beams, and frames	External work and strain energy Principal of virtual work for truss, beams, and frames	9,10	4
10	Maxwell's theorem of reciprocal deflections	Trusses, beams, frames	11	2
11	Construct influence lines for simple and continuous beam	Background and applications	12	2
12	Application of Construct influence lines for simple and continuous beam	Moving load	13,14	4
13	Review	Simple beams, continuous beams		2
14	Final Exam.		16	2
	Number of Weeks /and	Units Per Semester	16	32

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

B - Tut	B - Tutorial Aspect:			
Order	Topics List	Week Due	Contact Hours	
1	Applications to the double integration method.	1,2	4	
2	Applications to the moment-area theorems.	3,4	4	
3	Applications to conjugate beam method.	5,6	4	
4	Application of virtual work to trusses, beams, and frames.	7,9	6	
5	Applications of Maxwell's theorem of reciprocal deflections		2	
6	Construct influence lines for simple and continuous beam	11,13	6	
7	Review	14	2	
	Number of Weeks /and Units Per Semester 14 28			

VI. Teaching strategies of	of the course:
----------------------------	----------------

Lecture

Multimedia Presentations

Exercises

Reading

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

VII.	/II. Assignments:				
No	Assignments	Aligned CILOs(symbols)	Week Due	Mar k	
1	Applications to the double integration method.	b1,b2,c3,c1,c2	2	1.75	
2	Applications to the moment-area theorems.	b1,b2,c3,c1,c2	4	1.75	
3	Applications to conjugate beam method.	b1,b2,c3,c1,c2	6	1.75	
4	Application of virtual work to trusses, beams, and frames.	a1,a2,b1,b2,c3	8	1.75	
5	Applications of Maxwell's theorem of reciprocal deflections	a1,a2,b1,b2,c3	10	1.75	
6	Construct influence lines for simple and continuous beam.	b1,b2,c3,c1,c2	13	15%	

VIII. Schedule of Assessment Tasks for Students During the Semester:						
Assessment	Type of Assessment Tasks	Week Due Mark		Proportion of Final Assessment		
1	Written assignment	2,3,5,7,9,11,13	10.5	7		
2	Participate		4.5	3		
3	Mid-term exam.	8	30	20		
4	Final-exam.		105	70		
	Total		150	100%		

IX. Learning Resources:

• Written in the following order: (Author – Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1- R.C. Hibbeler, Structural Analysis, 8th Edition, 2012,

2- Essential References.

W.M.C. McKenzie, Examples in Structural Analysis, 2006

Prepared by Head of Department Dr. Abdulkareem

Yahya Al khattabi

Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

T 7	
Χ.	
	s otherwise stated, the normal course administration policies and rules of the Faculty of
Engin	eering apply. For the policy, see:
	Class Attendance:
1	The students should have more than 75 % of attendance according to rules and
	regulations of the engineering faculty.
	Tardy:
2	The students should respect the timing of attending the lectures. They should attend
	within 1 minutes from starting of the lecture.
	Exam Attendance/Punctuality:
3	The student should attend the exam on time. The punctuality should be implemented
3	according to the rules and regulations of the engineering faculty for midterm exam
	and final exam.
	Assignments & Projects:
4	The assignment is given to the students after each chapter, the student has to submit
	all the assignments for checking on time.
	Cheating:
5	If any cheating occurred during the examination, the student is not allowed to
	continue and he/she has to face the examination committee for enquiries.
	Plagiarism:
6	The student will be terminated from the Faculty, if he/she attends the exam on another
	student behalf according to the policy, rules and regulations of the university.
	Other policies:
7	- All the teaching materials should be kept out of the examination hall.
/	- Cellular phone or alike devices are not allowed into the examination hall.
	- There should be a respect between the student and his teacher.

Prepared by Head o

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti