

<u>30.Course Specification of Theory of</u> <u>Machines</u>

I.C	I.Course Identification and General Information:							
.1	Course Title:	Theory of Machine				y of Machines.		
.2	Course Code & Number:					MT203.		
			C.]	Н		TOTAL Cr.		
.3	Credit hours:	Th.	Seminar	Pr.	Tu.	Hrs.		
		2	-	2	-	3		
4.	Study level/ semester at which this course is offered:			Thir	d Year-l	First Semester.		
5.	Pre –requisite (if any):	Engineering Mechanics (2).				Mechanics (2).		
6.	Co –requisite (if any):	Computer Programming (2				gramming (2).		
7.	Program (s) in which the course is offered:	Mechatronics Engineering Program				ering Program.		
8.	Language of teaching the course:	English Language.						
9.	Location of teaching the course:	Mechatronics Engineering Department.						
10.	Prepared By:		Asst. Prof. 1	Dr. Abdu	ıl-Salam	Al-Mekhlafy.		
11.	Date of Approval:							

II.Course Description:

Theory of Machines is that branch of Engineering-science, which deals with the study of relative motion between the various parts of a machine and forces which act on them. The knowledge of this subject is very essential for an engineer in designing the various parts of a machine. Theory of Machines may be sub-divided into kinematics, kinetics, dynamics, and statics. Students will learn simple mechanisms, computer simulation of various machine mechanisms, velocity in mechanisms, acceleration in mechanisms, cams, static force analysis of mechanisms, dynamic force analysis of mechanisms, balancing of rotating masses.

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

III.0 cou	Course Intended learning outcomes (CILOs) of the rse	Referenced PILOs
a1.	Define the fundamental concepts of mechanisms machines " chain", " links and joints.	A1
a2.	Depict kinematic and kinetic analysis, the " position, velocity, acceleration, and force analysis".	A2
a3.	Describe graphic and analytical methods of the mechanism parts motion.	A3
b1.	Categorize the motion of every part in the mechanism graphic or analytic.	B1
b2.	Compare the mechanism shape graphically related to the input link motion.	B2
b3.	Differentiate between the input motion and the output motion of the mechanism and how many drives need any mechanism.	B4
b4.	Analyze a mechanism for a specific application and decide how to improve the mechanism performance.	B6
c1.	Apply computer programs to determine the positions of every points in the mechanism links. And simulate the mechanism motion.	C1
c2.	Perform solid work or SAM61 software programs to simulate the mechanism motion.	C2
d1.	Co-operate in group projects.	D1
d2.	Evaluate technical reports for the group projects.	D6

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies			
Define the fundamental concepts of a1. mechanisms machines " chain", " links and joints.	Active Lectures.Tutorials.	Written Assessment.Quiz.			
Depict kinematic and kinetic analysis, a2. the "position, velocity, acceleration, and force analysis".	 Lectures. Demonstrations. Modeling. Tutorial. 	 Develop Computer Program. Simulation Program. 			
Describe graphic and analytical methods a3. of the mechanism parts motion.	 Lectures. Demonstrations. Modeling. Tutorial. 	 Develop Computer Program. Simulation Program 			

(\mathbf{B}) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teachin Strategies and Assessment Strategies						
Course Intended Learning Outcomes Teaching Strategies Assessment Strategies						

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

Categorize the motion of every part b1. in the mechanism graphic or analytic.	Lectures.Design Modeling.Tutorial.Case Study.	Computer Program.Computer Simulation.
Compare the mechanism shape b2. graphically related to the input link motion.	 Lectures. Design Modeling. Tutorial. Case Study. 	Computer Program.Computer Simulation.
Differentiate between the input b3. motion and the output motion of the mechanism and how many drives need any mechanism.	• Lectures.	• Written Assessment.
Analyze a mechanism for a specific b4. application and decide how to improve the mechanism performance.	• Lectures.	• Written Assessment.

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:							
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies					
Apply computer programs to c1. determine the positions of every points in the mechanism links. And simulate the mechanism motion.	• Design Work.	 Practical Assessment. Written Report.					
Perform solid work or SAM61 c2- software programs to simulate the mechanism motion.	• Use Communication and Information Technology.	• Simulation Programing.					

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes Teaching strategies Assessment Strategies						
d1. Co-operate in group projects.	Group Learning	Project Report.				
d2. Evaluate technical reports for the group projects.	Active Lectures.	Presentation.				

IV.Course Content: A – Theoretical Aspect:

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

الجمهورية اليمنية وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Ord er	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours
1.	Introduction to Mechanisms and Kinematics.	a1,b2.	 Types of Links and their joints. Constrained Motions. Mobility. 	1	2
2.	Develop Computer Program and Simulation.	a1,a2,a3,b1,b 2,c1.	Modeling: Sliding,Rotation,General motion	1	2
3.	Kinematic Analysis of Mechanisms.	a1,a2,a3,b1,b 2,b4,c1.	Position analyses.Velocity analysisAcceleration analysis	3	6
4.	Cams.	a1,a2,a3,b1,b 2,b4,c2.	 Classification of Followers and cams. Motion of the Follower Construction of Cam Profiles 	1	2
5.	Kinetic Analysis in Mechanisms.	a1,a2,a3,b1,b 4,c2.	Static Force Analysis.Dynamic Force Analysis	1	2
6.	Mid- Term Exam.	a1, a2, a3, b1, b2, b3, b4, c1, c2.	• The first 5 chapters.	1	2
7.	Gear Train: Kinematic Analysis.	a1,a2,a3,b1,b 2,b4, c2.	 Types of Gears Types of Gear Train Planetary gears Torque and Power 	2	4
8.	Friction.	a1,a2,c2.	Types of frictionFriction angleFriction Limit.	1	2
9.	Belts Drives	a1,a2,a3,b1,b 2,b4, c2.	 Types of Belts Tight and slake tension. Effect of centrifugal Force Torque and Power 	1	2
10.	Power Screw Mechanism.	a1,a2,a3,b1 ,c2.	Types ScrewScrew Kinematics.Screw force and Torque.	1	2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

4.

Republic of Yemen

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

		16	32		
13.	Final Exam.	a1, a2, a3, b1, b2, b3, b4, c1,	• All the chapters.	1	2
12.	Revision.	a1, a2, a3, b1, b2, b3, b4, c1, c2.	• All the chapters.	1	2
11.	Turning Moment Diagram, and Flywheel.	a1,a2,c2.	 Introduction. Turning Moment Diagram Determination of Maximum Fluctuation of Energy Flywheel in Punching Press 	1	2

B - Practical Aspect:							
Order	Tasks/ Experiments	Numbe r of Weeks	Contac t <mark>H</mark> ours	Learning Outcomes			
1.	Develop computer program., and determine the motion parameters (position, velocity, displacement and acceleration).	4	8	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2.			
2.	Using software simulation and determine motion parameters.	3	6	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2.			
3.	Force and torque in slide crank mechanism.	2	4	a1, a2, a3, b1, b2, b3, b4, c1, c2. d1, d2.			
4.	Force and torque in cam mechanism.	2	4	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2			
5.	Velocity reduction in gear train.	1	2	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2.			
6.	Force and torque in gear mechanism.	1	2	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2.			
7.	Friction coefficients.	1	2	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2.			
Numbe	er of Weeks /and Units Per Semester	14	28				

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

V.Teaching strategies of the course:

Lectures. Demonstrations. Modeling. Tutorial. Design Work. Use Communication and Information Technology.

VI.Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1	Quiz and Home Work.	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2.	2-14	10		
	Total			10		

VII.Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1.	Develop Computer Program using cc+ or MATLAB to simulate slid Crank Mechanism to determine the Path and the Position. use Software Program.	2,3,5,7,9,11,14	15	10%	a1,a2,a3,b1 ,b2,b3,b4,c1,c2, d1, d2.		
2.	Quiz and Home work	2,3,5,7,9,11,14	15	10%	a1,a2,a3,b1 ,b2,b3,b4,c1,c2, d1, d2.		
3.	Mid- Term.	8	15	10%	a1,a2,a3,b1 ,b2,b3,b4,c1,c2.		
4	Practical Project and Report.	13	15	10%	d1,d2.		
5.	Final Exam.		90	60 %	a1,a2,a3,b1 ,b2,b3,b4,c1,c2.		
	TOTAL 150 100						

VIII.Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	IV Comme Delision
	IX.Course Policies:
1	Class Attendance:
•1	The students should have more than 75% of attendance according to rules and regulations of
	the Faculty.
n	1ardy:
•2	10 minutes from starting of the lecture
	Even Attendence/Dunctuelity
3	Exam Attendance/Functuality: The student should attend the exam on time. The punctuality should be implemented according
•.5	to rules and regulations of the faculty for mid-term exam and final exam
	Assignments & Projects:
4	The assignment is given to the students after each chapter, the student has to submit all the
• 1	assignment is given to the students after each endpter, the student has to submit an the
	Cheating
.5	If any cheating occurred during the examination, the student is not allowed to continue and he
	has to face the examination committee for enquiries.
	Plagiarism:
6.	The student will be terminated from the Faculty, if one student attends the exam on another
	behalf according to the policy, rules and regulations of the university.
	Other Policies:
7	• All the teaching materials should be kept out the examination hall.
7.	• The mobile phone is not allowed.
	• There should be a respect between the student and his teacher
	1- Required Textbook(s) (maximum two).
	Khurmi Gupta, 2006, Theory of Machines, Eurasia Publishing House Pvt. Ltd. 1-
	Uicker, John, Pennock, Gordon, and Shigley, Joseph, 2010, Theory of Machines and 2-
	Mechanisms, 4 th ed., Oxford University Press, New York.
	2- Essential References.
	David H. Myszka, 2012, Machines and Mechanisms: Applied Kinematic Analysis - 4 th ed1
	Prentice Hall, One Lake Street, Upper Saddle River, New Jersey.
	Norton, Robert, 2008, Design of Machinery, 4 th ed., McGraw-Hill Book Company, New York2
	3- Electronic Materials and Web Sites <i>etc</i> .
	1- sam61
	2- solid work
	3- www.howstuffworks.com
	4- http://www.purdue.edu/discoverypark/PLM/SME/Tutorial_6_Crank_Slider.zip
	5- <u>http://www.purdue.edu/discoverypark/PLM/SME/Cams_Design.bin</u>

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek
By	A. Barakat.
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi.
	Head of Mechatronics Engineering Department: Assoc. Prof. Dr. Abdul-Malik
	Momin.
	Deputy Rector for Academic Affairs Assoc. Prof. Dr. Ibrahim AlMutaa.
	Assoc. Prof. Dr. Ahmed Mujahed and Asst. Prof. Dr. Munaser Alsubari.

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Course Plan of Theory of Machines

I.Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Asst. Prof. Dr.Abdulslam Mekhlafy.	Office Hours					
Location& Telephone No.		SAT	SUN	MON	TUE	WED	THU
E-mail	Abdulsalam2@gmail.com.						

II.Course Identification and General Information:							
1.	Course Title:				Theory	of Machines.	
2.	Course Number & Code:					MT203.	
			C.I	H		Tetal	
3.	Credit hours:	Th.	Seminar	Pr.	Tu.	Totai	
		2	-	2	-	3	
4	Study level/year at which this course is	Third Year- First Semest			First Semester.		
	offered:						
5.	Pre –requisite (if any):	Engineering Mechanics (2			Mechanics (2).		
6.	Co –requisite (if any):	Computer Programming (2			ogramming (2).		
7.	Program (s) in which the course is offered	Mechatronics Engineering Program			ering Program.		
8.	Language of teaching the course:	English Language.					
9.	System of Study:	Semesters.					
10.	Mode of delivery:	Lectures and Lab. Work.					
11.	Location of teaching the course:		Mecha	tronics E	ngineerir	ng Department.	

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

III.Course Description:

Theory of Machines is that branch of Engineering-science, which deals with the study of relative motion between the various parts of a machine and forces which act on them. The knowledge of this subject is very essential for an engineer in designing the various parts of a machine. Theory of Machines may be sub-divided into kinematics, kinetics, dynamics, and statics. Students will learn simple mechanisms, computer simulation of various machine mechanisms, velocity in mechanisms, acceleration in mechanisms, cams, static force analysis of mechanisms, dynamic force analysis of mechanisms, balancing of rotating masses.

IV.C	Course Intended learn rse	ning outcomes (CILOs) of t	he Ref PII	erenced 2Os			
a1.	Define the fundamental concepts of mechanisms machines " chain", " links and joints.						
a2.	Depict kinematic and kin	etic analysis, the " position, veloc acceleration, and force analys	ity, is".	A2			
a3.	Describe graphic and anal	ytical methods of the mechanism pa moti	arts ion.	A3			
b1.	Categorize the motion of e	every part in the mechanism graphic analy	or tic.	B1			
b2.	Compare the mechanism sh	hape graphically related to the input l motion	ink on.	B2			
b3.	Differentiate between the in mechanism ar	put motion and the output motion of ad how many drives need any mechani	the sm.	B4			
b4.	Analyze a mechanism for a	to to to to	B6				
c1.	Apply computer programs t in the mechanism li	o determine the positions of every points. And simulate the mechanism motion	ints ion.	C1			
c2.	Perform solid work or SA	M61 software programs to simulate mechanism motion	the on.	C2			
d1.		Co-operate in group proje	cts.	D1			
d.2	Evalua	te technical reports for the group proje	cts.	D6			
V.C	V.Course Content:						
A – Theoretical Aspect:							
Orde	rder Units/Topics List Sub Topics List W			Contact Hours			
1.	1. Introduction to Mechanisms and kinematics • Types of Links and their joints.		1	2			

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

		• Mobility.		
2.	Develop Computer Program and Simulation.	Modeling: Sliding,Rotation,General motion	2	2
3.	Kinematic Analysis of Mechanisms.	Position analyses.Velocity analysisAcceleration analysis	3,4,5	6
4.	Cams.	 Classification of Followers and cams. Motion of the Follower Construction of Cam Profiles 	6	2
5.	Kinetic Analysis in Mechanisms.	Static Force Analysis.Dynamic Force Analysis	7	2
6.	Mid- Term.	• The First 5 Chapters.	8	2
7.	Gear Train: Kinematic Analysis.	 Types of Gears Types of Gear Train Planetary gears Torque and Power 	9,10	4
8.	Friction.	Types of frictionFriction angleFriction Limit.	11	2
9.	Belts Drives	 Types of Belts Tight and slake tension. Effect of centrifugal Force Torque and Power 	12	2
10.	Power Screw Mechanism.	Types ScrewScrew Kinematics.Screw force and Torque.	13	2
11.	Turning Moment Diagram, and Flywheel.	 Introduction. Turning Moment Diagram Determination of Maximum Fluctuation of Energy Flywheel in Punching Press 	14	2
12.	Revision.	• All the Chapters.	15	2
13.	Final Exam.	• All the Chapters.	16	2
	Sem	16	32	

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	B - Practical Aspect:						
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes			
1.	Develop computer program., and determine the motion parameters (position, velocity, displacement and acceleration).	4	8	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2.			
2.	Using software simulation and determine motion parameters.	3	6	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2.			
3.	Force and torque in slide crank mechanism.	2	4	a1, a2, a3, b1, b2, b3, b4, c1, c2. d1, d2.			
4.	Force and torque in cam mechanism.	2	4	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2			
5.	Velocity reduction in gear train.	1	2	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2.			
6.	Force and torque in gear mechanism.	1	2	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2.			
7.	Friction coefficients.	1	2	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2.			
Number of Weeks /and Units Per Semester1428							

VI.Teaching strategies of the course: Lectures. Demonstrations. Modeling. Tutorial. Design Work. Use of Communication and Information Technology.

VII.Assignments:							
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark			
1	Quiz and Home Work.	a1, a2, a3, b1, b2, b3, b4, c1, c2, d1, d2.	2-14	10			
			10				

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research

Council for Accreditation & Quality Assurance

VII	VIII.Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1.	Develop Computer Program using cc+ or MATLAB to simulate slid Crank Mechanism to determine the Path and the Position. use Software Program.	2,3,5,7,9,11,14	15	10%	a1,a2,a3,b1 ,b2,b3,b4,c1,c2, d1, d2.			
2.	Quiz and Home Work.	2,3,5,7,9,11,14	15	10%	a1,a2,a3,b1 ,b2,b3,b4,c1,c2, d1, d2.			
3.	Mid- Term Exam.	8	15	10%	a1,a2,a3,b1 ,b2,b3,b4,c1,c2.			
4	Practical Project and Report.	13	15	10%	d1,d2.			
5.	Final Exam.	16	90	60 %	a1,a2,a3,b1 ,b2,b3,b4,c1,c2.			
	TOTAL		150	100				

IX.Learning Resources:
• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).
1- Required Textbook(s) (maximum two).
Khurmi Gupta, 2006, Theory of Machines, Eurasia Publishing House Pvt. Ltd. 1- Uicker, John, Pennock, Gordon, and Shigley, Joseph, 2010, Theory of Machines and 2- Mechanisms, 4th ed., Oxford University Press, New York.
2- Essential References.
David H. Myszka, 2012, Machines and Mechanisms: Applied Kinematic Analysis - 4 th -1 ed. Prentice Hall, One Lake Street, Upper Saddle River, New Jersey. Norton, Robert, 2008, Design of Machinery, 4 th ed., McGraw-Hill Book Company, New -2 York.
3- Electronic Materials and Web Sites <i>etc</i> .
 sam61 solid work <u>www.howstuffworks.com</u> <u>http://www.purdue.edu/discoverypark/PLM/SME/Tutorial_6_Crank_Slider.zip</u> <u>http://www.purdue.edu/discoverypark/PLM/SME/Cams_Design.bin</u>

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	X.Course Policies:
	Class Attendance:
.1	The students should have more than 75 % of attendance according to rules and
	regulations of the Faculty.
_	Tardy:
.2	the lectures. They should attend The students should respect the timing of attending
	within 10 minutes from starting of the lecture.
	Exam Attendance/Punctuality:
.3	The student should attend the exam on time. The punctuality should be implemented
	according to rules and regulations of the faculty for mid-term exam and final exam.
	Assignments & Projects:
.4	The assignment is given to the students after each chapter, the student has to submit all
	the assignments for checking on time.
	Cheating:
.5	If any cheating occurred during the examination, the student is not allowed to continue
	and he has to face the examination committee for enquiries.
	Plagiarism:
6.	The student will be terminated from the Faculty, if one student attends the exam on
	another behalf according to the policy, rules and regulations of the university.
	Other policies:
7	• All the teaching materials should be kept out the examination hall.
7.	• The mobile phone is not allowed.
	• There should be a respect between the student and his teacher

Head of the	Quality Assurance	Dean of the	Academic Development	
Department	Unit	Faculty	Center & Quality Assurance	Rector of Sana'a University
Assoc. Prof.	Assoc. Prof. Dr.	Prof. Dr.	Assoc. Prof. Dr. Huda Al-	Prof. Dr. Al-Qassim
Dr. Abdul-	Mohammad	Mohammed AL-	Emad	Mohammed Abbas
Malik Momin	Algorafi	Bukhaiti		