

<u>31. Course Specification of Signals and Systems</u>

	I. Course Identification and G	Jener	al Infor	matio	n:	
1.	Course Title:	Signals and Systems				
2.	Course Code & Number:	CNE2	216			
		C.H				Total
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total
		2	-	2	-	3
4.	Study level/ semester at which this course is offered:	Third Year/ First Semester				
5.	Pre –requisite (if any):	Electrical circuits2 (PME112) Differential equations (BR122)				
6.	Co –requisite (if any):	Electrical Machines 2 (PME224)				
7.	Program (s) in which the course is offered:	Electrical Power and Machines				
7.	riogram (s) in which the course is offered.	Engin	eering			
8.	Language of teaching the course:	Englis	sh			
9.	Location of teaching the course:	Class &Lab				
10.	Prepared By:	Asst. Prof. Dr. Amin Abdelghani				
10.	Teparea Dy.	Mahyob				
11.	Date of Approval					

II. Course Description:

This course introduces the basic signal principles necessary to understand, analyze, and enhance analog and digital signals by students. Its topics include basic analog and digital signals in time and frequency domains, sampling, Laplace, Fourier and z-Transforms and their applications in signal processing and control systems. The course also addresses the mathematical modeling of dynamic systems. The Students will learn how to model

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

mechanical, electrical, electromechanical, thermal and liquid level systems as differential equation, transfer function and state variable models

	III. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Classify analog and digital signals and Understand the mathematical transformations (Laplace and Z transforms) their properties and uses in system analysis.	A1,A3
a2	Identify the components, the inputs and the outputs of physical systems	A1,A3
b1	Analyzing different signals and interpret results achieved by mathematical solutions	B1,B2,B3
b2	Build a mathematical model from a real-life problem related to signals and systems.	B1,B2,B3
c1	Simulate of the continuous and discrete-time systems using basic Matlab and Simulink tools.	C1,C2,C3,C4
c2	Obtain transfer functions of physical systems by drawing block diagrams and signal flow graphs	C1,C2,C3,C4
d1	Interact effectively with peers in the group	D1,D3,D4,D5
d2	Present project results to a technical audience and subdivide a project into relevant sub problems and solve it in a given time frame as a team.	D1,D3,D4,D5

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes			g Outcomes	Teaching strategies	Assessment Strategies
a1.	Classify anal	og and	digital signals	Lectures,	Assignments, Oral
and	Understand	the	mathematical	Demonstrations,	Presentations,

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	transformations (Laplace and Z	Software Simulation,	Quizzes, Tests,
	transforms) their properties and	Lab Experiments,	Written Exams.
uses	in system analysis.	Interactive class	
		discussion.	
		Lectures,	
a2.	Identify the components the	Demonstrations,	Assignments, Oral
	Identify the components, the	Software Simulation,	Presentations,
inputs and the outputs of physical systems		Lab Experiments,	Quizzes, Tests,
system	18	Interactive class	Written Exams.
		discussion.	

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

Co	ourse Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1.	Analyze different signals and interpret results achieved by mathematical solutions	Lectures, Demonstrations, Software Simulation, Lab Experiments, Interactive class discussion.	Assignments, Oral Presentations, Quizzes, Tests, Written Exams.
b2. and	Build a mathematical model from a real-life problem related to signals systems.	Lectures, Demonstrations, Software Simulation, Lab Experiments, Interactive class discussion.	Assignments, Oral Presentations, Quizzes, Tests, Written Exams.

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1. Simulate continuous and discrete-time systems using basic Matlab and Simulink tools.	Lectures, Demonstrations, Software Simulation, Lab Experiments, Interactive class discussion.	Assignments, Oral Presentations, Quizzes, Tests, Written Exams.
c2. Obtain transfer functions of physical systems by drawing block diagrams and signal flow graphs.	Lectures, Demonstrations, Software Simulation, Lab Experiments, Interactive class discussion.	Assignments, Oral Presentations, Quizzes, Tests, Written Exams.

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d1. Interact effectively with peers in the group	Demonstrations, Software Simulation, Lab Experiments, Interactive class discussion.	Assignments, Oral Presentations, Quizzes,
d2.Present project results to atechnicalaudience and subdivide aprojectinto relevant subproblems and solve it in a given timeframe as ateam.	, Demonstrations, Software Simulation, Lab Experiments, Interactive class discussion.	Assignments, Oral Presentations, Quizzes,.

Γ	IV. Course Content:				
	A – Theore	tical Aspec	et:		
Orde r	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contac t hours

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

1.	Introduction to signals	a1,a2, b1,b2,	 Definition of signal Typical signals Signal representation Classification of signals and their applications Power and energy of signals 	1	2
2.	Systems	a1,a2, b1,b2,	 Representation of a system Classification of systems: time- invariant and time-varying systems, instantaneous and dynamic systems causal and non-causal systems, continuous- time and discrete-time systems, analog and digital systems, stable and unstable systems, linear and nonlinear system System models: input-output description, transfer function model, differential equation model, state variable model 	1	2
3.	Continuous- time system analysis using the Laplace Transform	b1,b2, d1,d2	 Laplace Transform definition The properties of Laplace Transform Region of convergence, Theorems of Laplace Transform Inverse Laplace transform Differential equation model and transfer function model Use Laplace transform to solve differential equations 	1	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

4.	Modeling of physical system	b1,b2, c1,c2, d1	 Definition of modeling Develop the models of physical systems: Electrical system Mechanical system Electromechanical system Electromechanical system Liquid level system Block Diagram and Signal Flow Graph Transfer Function model Differential equation model Transformers and gears Sensors Simulation of systems model using Matlab Linearization of physical system 	3	6
5.	State variable models	b1,b2, c1,c2,	 Definition General form of state variable model (definitions of vectors and matrices) Develop the state variable models from physical system differential equations Obtain state model from the transfer function and differential equation Simulation diagrams and flow graphs Solution of state equations 	2	4

Prepared by Head

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 Obtain the transfer function from state model Similarity transformation Simulation of systems model using Matlab 		
6.	Continuous- time signal analysis: The Fourier Transform	, b1,b2, c1,c2,	 Definition of Fourier Relation between Fourier Transform and Laplace Transform Linearity and conjugate properties Duality of Fourier Transform, Scaling property, Inverse Fourier Transform of several functions, Fourier Transform of periodic signal 	2	4
7.	Sampling and signal reconstructio n	c1,c2, d1,d2	 Definition of sampling Continuous time vs discrete time Sampling theorem Practical sampling Effects of sampling Selection of sampling time Effects of sampling Signal reconstruction 	2	4
8.	Discrete- time system analysis using z- Transform	b1,b2, c1,c2, d2	 Z-Transform definition Linearity and region of convergence examples of z-Transform for some functions 	2	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Num	 theorems, real and comtranslation theorems) Inverse z-Transform Difference equations. simulation diagrams an graphs State equations ber of Weeks /and Units Per Semester	iplex)	28
	 Comparison between L and z-Transforms, Theorems of z-Transfor (Initial and Final Value theorems, real and com 	rm	

B - Practical Aspect:				
No.	Tasks/ Experiments	No. of Weeks	Contact Hours	Learning Outcomes
1.	MATLAB fundamentals and Complete MATLAB exercises.	3	6	c1
2.	Write a Program for generation of unit impulse, unit step, ramp, exponential, sinusoidal and cosine sequence.	2	4	c1,c2, d1
3.	Write a Program for plotting discrete and continuous signals.	1	2	c1,c2, d1
4.	Mid-Term Exam (Practical)	1	2	c1, c2, d1
5.	Write a Program for computing Fourier Series of several functions.	1	2	c1,c2
6.	Write a Program for computing Fourier Transform of several functions.	1	2	c1,c2,d1
7.	Write a Program for computing z-transform and inverse z-transform of a rational transfer function.	1	2	c1,c2,d1
8.	Write a Program for linear convolution	1	2	c1,c2, d1

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

9.	Write a Program for performing sampling.	1	2	c1,c2, d1
10.	Write a Program for computing Laplace transform and its inverse of several signals.	1	2	c1,c2, d1
11.	Review	1	2	c1,c2, d1
	Number of Weeks /and Units Per Semester		28	

- V. Teaching strategies of the course:
- Lectures.
- Demonstrations,
- Software Simulation,
- Interactive class discussion.
- Some of laboratory experiment (Matlab).

1	VI. Assignments:				
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark	
1.	Problems in Fourier series	a2, b2	4^{th}	2.5	
2.	Problems in Fourier Transform	a1, b2	6 th	1.5	
3.	Problems in Laplace Transform	a1,a2, b2,	10 th	1.5	
4.	Problems in z-transform	a2,b1, b2	14^{th}	2	
Total			7.5		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VII.	VII. Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1.	Assignment	$4^{ m th},6^{ m th},10^{ m th},14^{ m th}$	7.5	5%	a1,a2,b1,b2,
2.	Quizzes	4 th , 8 th ,12 th	7.5	5%	a1,a2,b1,b2,
3.	Class participation, Presentation and Seminars	Weekly	15	10%	c1,c2,d1,d2
4.	Midterm Exam	8 th	20	13%	a1,a2,b1,b2,
5.	Practical Final Exam	15 th	20	13%	b1,b2,c1,c2
6.	Final Exam	16 th	80	54%	a1,a2,b1,b2,
	Total		150	100%	

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. B. P. Lathi, 2005, Linear Systems and Signals, 2nd edition, Oxford University Press, New York. USA.
- **2.** Charles L. Philips and Royce Harbor "Feedback control systems", fourth edition, Prentice Hall.

2- Essential References.

- 1. Dr. J. S. Chitode, 2009, Signals and systems, 1st edition, Technical publication Pune.
- 2. G. E. Carlson, 1998, Signal and linear system analysis-2nd Edition. John Wiley and
- 3. Sons Ltd., New York. USA.
- **4.** Alan V. Oppenheim, Alain S. Willsky with S. Hamid Nawab, 1997, Signals & Systems, 2nd edition, revised, illustrated Prentice Hall, Michigan University. USA-

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

- **5.** Alex palamides. Anastasia Veloni, 2010, Signals and Systems Laboratory with Matlab, 1st edition, Taylor & Fancis Inc. Bosa Roca, USA.
- **6.** Richard C. Dorf and Robert H. Bishop, Modern Control Systems (12th Edition), Prentice Hall.

3- Electronic Materials and Web Sites etc.

- 1. Modelica Association (2000). ModelicaTM A Unified Object-Oriented Language for Physical Systems Modeling. Tutorial Version 1.4 (ModelicaTutorial14.pdf). Available from: https://modelica.org/documents/
- **2.** MapleSim Video Tutorial: Modelica Video lectures available form: http://www.youtube.com/watch?v=reehU1dzeDc.
- **3.** Simulink-Matlab tutorial for beginners Video lectures available form:
- 4. <u>http://www.youtube.com/results?search_query=simulink+tutorial+for+beginners&oq=simulink&gs_l=youtube.1.9.0110.337429.342148.0.351270.8.8.0.0.0.0738.2481.3j3-2j2j0j1.8.0...0.0...1ac.1.11.youtube.iIK7kMX6hfo</u>
- 5. http://www.engineeringvideos.org/
- 6. www.jhu.edu/signals
- 7. www.ece.gatech.edu/users/bonnie/book
- 8. https://sites.google.com/a/asu.edu/signals-and-systems/-

	IX. Course Policies:
1.	Class Attendance: -A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic
2.	Tardy:For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	Exam Attendance/Punctuality:

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	- A student should attend the exam on time. He is Permitted to attend an exam half one		
	hour from exam beginning, after that he/she will not be permitted to take the exam and		
	he/she will be considered as absent in exam.		
	Assignments & Projects:		
4.	- The assignment is given to the students after each chapter; the student has to submit		
	all the assignments for checking on time.		
	Cheating:		
5.	- For cheating in exam, a student will be considered as failure. In case the cheating is		
	repeated three times during his/her study the student will be disengaged from the Faculty.		
	Plagiarism:		
	Plagiarism is the attending of a student the exam of a course instead of another student.		
6.	If the examination committee proved a plagiarism of a student, he will be disengaged		
	from the Faculty. The final disengagement of the student from the Faculty should be		
	confirmed from the Student Council Affair of the university.		
	Other policies:		
	- Mobile phones are not allowed to use during a class lecture. It must be closed,		
7.	otherwise the student will be asked to leave the lecture room		
	- Mobile phones are not allowed in class during the examination.		
	Lecture notes and assignments my given directly to students using soft or hard copy		

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek		
By	<u>A. Barakat</u>		
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi		
	Name of Reviewer from the Department: Assoc. Prof. Dr. Radwan Al bouthigy		
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa		
	Assoc. Prof. Dr. Ahmed Mujahed		
	Asst. Prof. Dr. Munasar Alsubri		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad