Ministry of Higher Education & Scientific Research

Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

36.Course Specification of Electrical Machines (2)

I.C	ourse Identification and General	Info	rmatio	n:		
1.	Course Title:			I	Electrica	l Machines (2).
.2	Course Code & Number:					MT209.
	Condit house		C.	H		TOTAL CR.
.3	Credit hours:	Th.	Seminar	Pr	Tu.	HRS.
		2	-	2	2	4
.4	Study level/ semester at which this course is offered:	Third Year-Second Semester.				
.5	Pre –requisite (if any):	Electrical Circuits (2).				
6.	Co –requisite (if any):	None.				
7.	Program (s) in which the course is offered:	Mechatronics Engineering Program.				
.8	Language of teaching the course:	English Language.				
.9	Location of teaching the course:	Mechatronics Engineering Department.				
10.	Prepared By:	Assoc. Prof. Dr. Radwan Mohammed Al Bouthigy				
11.	Date of Approval:					

II.Course Description:

This course is designed to provide principal concepts of electrical machines as a major Mechatronics system component. This course covers construction, classification, performance characteristics, analysis, parallel operation, testing and applications of: three-phase synchronous AC machines , special purpose motor and asynchronous AC machines as well as, starting and speed control of the different types of motors.

III.Cou course	urse Intended learning outcomes (CILOs) of the	Referenced PILOs
a1.	Identify the operation principles, construction, performance characteristics, application areas, merits and demerits of synchronous and asynchronous machines.	A1, A3.
a2.	Express the equivalent circuit, the analytic model, parallel operation, regulation and speed control of synchronous machines.	A6, A8

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momir

Republic of Yemen

Ministry of Higher Education & Scientific Research

Council for Accreditation & Quality Assurance

b1.	Analyze the operation conditions, modeling and design principles of AC synchronous and induction machines using mathematical models and computer simulation.	B1,B2,B3
b2.	Explore the various requirements and operation conditions of synchronous generator and motors from the related manufacturer data sheets, codes and standards.	B1,B2,B3
c1.	Apply methods of regulation and speed control to adjust and/or modify the performance and the output characteristic of general type of rotating electrical machines.	C1,C2
c2.	Conduct experiment to obtain the parameters and load characteristics of various AC motors and generators under different loading conditions.	C1,C2
d1.	Co-operate in teams to conduct experiments, analyze results, and develop technically sound reports of outcomes.	D1,D3,D6
d2.	Review transferable skills of problem solving and design.	D1,D3,D6

(A) Alignment Course Intended	_		Knowledge and egies and Asse		_
Course Intended Learning Outcomes	Teaching S	trategies	Assessm	ent Strateg	gies
a1. Identify the operation principles, performance construction, characteristics, application areas, merits and demerits of synchronous and asynchronous machines.	Lectures, Interactive Discussions, Experiments,	Class		Written	Exams, Quizzes.
a2. Express the equivalent circuit, the analytic model, parallel operation, regulation and speed control of synchronous machines.	Lectures, Interactive Discussions, Experiments	Tutorial, Class Laboratory , Self-study.	ζ ,	Written	Exams, Quizzes.

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:							
Course Inten	ded Lear	ning	Teac	hing Strategies		Assessment Strategies	
Outcomes				5 5			•
b1. Analyze	the op	eration	Lectures,	Interactive	Class	Assignments,	Quizzes,
conditions, mod	leling and	design	Discussions,	La	boratory	Written	Exams,
principles of A	AC synch	ronous		Expe	eriments,	Homework,	Lab.
and induction	machines	using	Self and	Self and Cooperative Learning.			Reports.
mathematical	models	and		_			_
com	puter sim	ulation.					

Head of the	Quality Assurance
Department	Unit
Assoc. Prof.	Assoc. Prof. Dr.
Dr. Abdul-	Mohammad
Malik Momin	Algorafi

Republic of Yemen

Ministry of Higher Education & Scientific Research
Council for Accreditation & Quality Assurance

b2.	Explore	the	various	Lectures,	Interactive	Class	Assignment	ts, Quizzes,
requi	irements	and	operation	Discussions,	La	aboratory	Written	Exams,
cond	itions o	f sy	nchronous		Expe	eriments,	Homework,	Lab.
gene	rator and	motors	from the	Self and Cooperative Learning.			Reports.	
relate	ed manufac	cturer d	ata sheets,					
	cod	les and	standards.					

© Alignment Course Intended L	o e	ofessional and Practical Skills to gies and Assessment Strategies:		
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies		
c1. Apply methods of regulation and speed control to adjust and/or modify the performance and the output of characteristic of general type rotating electrical machines.	Lectures, Interactive Class Discussion Exercises, Series of laboratory Experiment, Self-Study, Assignments.	Quizzes, Laboratory Assignments and Reports, Homework, Mid-Term and Final exams.		
c2. Conduct experiment to obtain the parameters and load characteristics of various AC motors and generators under different loading conditions	Lectures, Interactive Class Discussion Exercises, Series of Laboratory Experiment, Self-Study Assignments	Quizzes, Laboratory Assignments and Reports, Homework, Mid-Term and Final Exams.		

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:							
Course Intended Learning Outcomes	Teaching	Strategies	Assessment	Strategies			
d1. Co-operate in teams to conduct		Lectures,	Laboratory	Reports,			
experiments, analyze results, and	Interactive	Class	Assigni	ments, Quizzes,			
develop technically sound reports of	Discussion,	Self-Study	Written Exams,	Lab. Exams,			
outcomes	A	ssignments.		Homework.			
d2. Review transferable skills of		Lectures,	Laboratory	Reports,			
problem solving and design	Interactive	Class	Assigni	ments, Quizzes,			
	Discussion,	Self-study	Written Exams,	Lab. Exams,			
	A	ssignments.		Homework.			

IV.Course Content:	
A – Theoretical Aspect:	

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momin

Republic of Yemen

Ministry of Higher Education & Scientific Research
Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Order	Units/Topics List	Learning Outcome s	Sub Topics List	Number of Weeks	Contact Hours
1.	Three-Phase Synchronous Generators.	a1, a2, b1, b2, c1, c2, d1, d2.	 Construction, principles and application areas. Performance characteristics and equivalent circuits. Mathematical and MATLAB model. Voltage and Power regulations. Parallel operation of synchronous generators. 	3	6
2.	Three-Phase Synchronous Motors.	a1, a2, b1, b2, c1, c2, d1, d2.	 Construction, Performance characteristics, equivalent circuits and application areas. Mathematical modeling and MATLAB representation. Speed control. 	2	4
3.	Single-Phase Induction Motors.	a1, a2, b1, b2, c1, c2, d1, d2.	 Construction and Operation principles. Performance characteristics, equivalent circuits and application areas. Modeling of single-phase induction motors. 	3	6
4.	Mid-Term Exam.	a1, a2, b1, b2.	• The First 3 Chapters.	1	2
5.	Three-Phase Induction motors.	a1, a2, b1, b2, c1, c2, d1, d2.	 Construction, Operation principles and application areas. Performance characteristics and equivalent circuits. Speed control and starting methods Mathematical and MATLAB modeling. 	4	8
6.	Special Purpose Machines.	a1, a2, b1, b2,	Construction, Operation principles and application	2	4

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momin

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Ministry of Higher Education & Scientific Research
Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

		c1, c2, d1, d2.	areas of stepper and servo motors.		
7.	Final Exam.	a1, a2, b1, b2	• All Chapters.	1	2
	Number of Weeks /and Units Per Semester			16	32

В- '	B- Tutorials Aspect:						
Order	Tutorial Skills List	Number of Weeks	Contact Hours	CILOs			
1	Three-phase Synchronous generators. • Equivalent circuits • Performance characteristics • Phasor diagram • Power and torque • Determining model parameters. • Effect of load changes	2	4	a1,a2,b1,b2,c1,c2,d1,d2.			
2	Three-phase Synchronous generators. • Mathematical and MATLAB model. • Voltage and Power regulations. • Parallel operation of synchronous generators.	2	4	a1,a2,b1,b2,c1,c2,d1,d2.			
3	Three-phase Synchronous motors. • Equivalent circuits • Performance characteristics • Effect of load changes • Effect of field current changes • Power factor correction • Starting of motor	3	6	a1,a2,b1,b2,c1,c2,d1,d2.			
4	Single-phase Induction motors.Equivalent circuits.Performance characteristicsStarting and speed control.	1	2	a1,a2,b1,b2,c1,c2,d1,d2.			
5	Threephase Induction motors.Concept of rotor slip	2	4	a1,a2,b1,b2,,c1,c2,d1,d2.			

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momin

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen

Ministry of Higher Education & Scientific Research
Council for Accreditation & Quality Assurance

	 Equivalent circuits Power and torque			
6	 Three phase Induction motors. Performance characteristics. Determining model parameters. Starting control methods. Speed control methods. 	3	6	a1,a2,b1,b2,c1,c2,d1,d2.
7	Stepper and servo motorsEquivalent circuitsSpeed control	1	2	a1,a2,b1,b2,c1,c2,d1,d2.
Numbe	r of Weeks /and Units Per Semester	14	28	

			C - Prac	tical Aspect:
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes
1.	 Safety regulations and requirements in electrical laboratories. Introduction to main laboratory devices and instrumentations. Introduction to main measurement devices. Reporting format. 	1	2	a1,a2,b1,b2, c1,c2,d1,d2.
2.	 External characteristics of three phase synchronous generator Voltage regulation of three phase synchronous generator Synchronous generator characteristics 	2	4	a1,a2,b1,b2, c1,c2,d1,d2.
3.	 Parallel operation and synchronism of synchronous generator. Computer modeling of parallel operation and synchronism. 	1	2	a1,a2,b1,b2, c1,c2,d1,d2.
4.	 Load characteristics of Synchronous motor Synchronous motor characteristics V – curve of Synchronous motor Computer modeling of three-phase synchronous motors. 	2	4	a1,a2,b1,b2, c1,c2,d1,d2.
5.	• Starting and reversing of Three-phase Induction motors	5	10	a1,a2,b1,b2, c1,c2,d1,d2.

Ministry of Higher Education & Scientific Research
Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	 Performance characteristics of Three-phase Induction motors (no load, locked rotor, DC test and load test) Measurement of torque – speed of Three-phase Induction motors Speed control of Three-phase Induction motors Effect of rotor resistance for behavior of three phase induction motor Computer modeling of three-phase induction motors. 			
6.	 Single-phase Induction motors starting. Single-phase Induction motors characteristics. Computer modeling of single-phase induction motors. 	1	2	a1,a2,b1,b2, c1,c2,d1,d2.
7.	Speed control Stepper and servo motors	1	2	a1,a2,b1,b2, c1,c2,d1,d2.
8.	Laboratory exam	1	2	a1,a2,b1, b2,c1,c2.
Nı	umber of Weeks /and Units Per Semester	14	28	

V.Teaching strategies of the course:

- Lectures.
- Interactive Class Discussion.
- Tutorial Classes and Exercises.
- Series of Laboratory Experiment.
- Self-Study of Computer Aided Design Software Like Modelica and/MATLAB.

VI.Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Design and implementation of Synchronous generator circuits using MATLAB tools.	a1,a2,b1,b2,d2.	3 th	2		
2.	Design and implementation of Synchronous motor circuits using MATLAB tools.	a1,a2,b1,b2,c1.	4 th	2		

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momin

Ministry of Higher Education & Scientific Research
Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

3.	Design and implementation of three induction motor circuits using MATLAB tools.	a1,a2,b1,b2,c1.	6 th	2
4.	Design and implementation of stepper motor circuits using MATLAB tools.	a1,a2,b1,b2,c1.	8 th	2
5.	Lab-reports.	a1,a2,b1,b2.	Weekly	2
Total				

VII	VII.Schedule of Assessment Tasks for Students During the Semester:								
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes				
1.	Quizzes.	4th,7th,10th, and 13th	20	10%	a1,a2,b1,b2.				
2.	Assignments & & Homework, Tasks & Presentation.	Weekly	20	10%	a1,a2,b1,b2,d2.				
3.	Mid-Term Exam.	9 th	20	10%	a1,a2,b1,b2.				
4.	Final Exam Practical.	15 th	20	10%	a1,a2,b1,b2,c1,c2,d2.				
5.	Final Exam Theoretical.	16 th	120	60%	a1,a2,b1,b2				
	Total 200 100%								

VIII.Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1- Chapman S. J. (2005), Electric Machinery Fundamentals, 4 th Edition, McGraw-Hill.
- 2- Fitzgerald A. E. (2003), Electric Machinery, 6th Edition, McGraw-Hill.

2- Essential References.

- 1. D.F. Warne (2000), Newnes Electrical Engineer's Handbook, 1st Edition, Biddles Ltd-www. biddlesxo. Uk.
- 2. Nasar S. A. (1998), Electric Machines and Electromechanics, 2nd Edition, Schaum's outlines series- McGraw-Hill.
- 3. Bandyopadhyay M.N, (2009), ELECTRICAL MACHINES: THEORY AND PRACTICE, 1st Edition, Prentice-Hall of India Pvt Ltd.
- 4. Bimbhra P.S.,(1995), Electric Machinery, 7th Edition Khanna Publishers.

3- Electronic Materials and Web Sites etc.

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momin

Ministry of Higher Education & Scientific Research

Council for Accreditation & Quality Assurance

- 1. Modelica Association (2000). ModelicaTM A Unified Object-Oriented Language for Physical Systems Modeling. Tutorial Version 1.4 (ModelicaTutorial14.pdf). Available from: https://modelica.org/documents/
- 2. MapleSim Video Tutorial: Modelica Video lectures available form: http://www.youtube.com/watch?v=reehU1dzeDc.
- 3. Simulink-Matlab tutorial for beginners Video lectures available form:
- 4. <a href="http://www.youtube.com/results?search_query=simulink+tutorial+for+beginners-beginner

IX.C	Course Policies:
1.	Class Attendance: The student should be attending not less than 75% of total contact hours of the subject, otherwise he will not able to take exam and considered as an exam failure. If the student is absent due to illness, he/she should bring the approved statement from university Clinic.
2.	For late in attending the class, the student will be initially notified. If he comes late in attending class again, he will consider as absent.
3.	Exam Attendance/Punctuality: The student should attend the exam on time. He is Permitted to attend the exam half one hour from exam beginning, after that he/she will not be permitted to take exam and he/she is considered absent in exam.
4.	Assignments & Projects: In general, one assignment is given after each chapter of a course. The student should submit the assignment on time, mostly one week after giving the assignment.
5.	Cheating: For cheating in exam, the student considered as failure. Case the cheating repeated three times during study the student will disengage from the Faculty
6.	Plagiarism: Plagiarism is the attending of the student the exam of a course instead of other student. If the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Affair Council of the university.
7.	Other Policies: - The mobile phone is not allowed to be used during class lecture. It must be closed, otherwise the student will ask to leave the lecture room - The mobile phone is not allowed to be taken with in class during the examination. - Lecture notes and assignments may be given directly to students using soft or hard copy.

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momin

Republic of Yemen

Ministry of Higher Education & Scientific Research

Council for Accreditation & Quality Assurance

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek
By	A. Barakat.
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi.
	Head of Mechatronics Engineering Department: Assoc. Prof. Dr. Abdul-Malik
	Momin.
	Deputy Rector for Academic Affairs Assoc. Prof. Dr. Ibrahim AlMutaa.
	Assoc. Prof. Dr. Ahmed Mujahed.
	Asst. Prof. Dr. Munaser Alsubari.

Ministry of Higher Education & Scientific Research

Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Template for Course Plan of Electrical Machines (2)

I.Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Assoc. Prof. Dr. Radwan AL-Bouthigy	Office Hours					
Location & Telephone No.	775284933	SAT	SUN	MON	TUE	WED	THU
E-mail	Radwan006@yahoo.com						

II.0	Course Identification and General In	format	tion:			
1.	Course Title:	Electrical Machines (2)				
2.	Course Code & Number:	MT209				MT209.
			(C.H		T-4-1 C- H
3.	Credit hours:	Th.	Tr.	Pr.	Tu.	Total Cr.Hrs.
		2	-	2	2	4
4.	Study level/ semester at which this course is offered:	Third Year-Second Semester.				
5.	Pre –requisite (if any):				Elec	trical Circuits (2).
6.	Co –requisite (if any):	None.				
7.	Program (s) in which the course is offered:		N	Mechatro	onics Eng	ineering Program.
8.	Language of teaching the course:	English Language.				
9.	Location of teaching the course:	Mechatronics Engineering Department.				
10.	Prepared By:	Assoc.	Prof.	Dr. R	Radwan	Mohammed AL Bouthigy.
11.	Date of Approval:					

III.Course Description:

This course is designed to provide principal concepts of electrical machines as a major Mechatronics system component. This course covers construction, classification, performance characteristics, analysis, parallel operation, testing and applications of: three-phase synchronous AC machines , special purpose motor and asynchronous AC machines as well as, starting and speed control of the different types of motors.

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momin

Ministry of Higher Education & Scientific Research
Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	ourse Intended learning outcomes (CILOs) of	Referenced PILO
the co	urse	
a1.	Identify the operation principles, construction, performance characteristics, application areas, merits and demerits of synchronous and asynchronous machines.	A1, A3.
a2.	Express the equivalent circuit, the analytic model, parallel operation, regulation and speed control of synchronous machines.	A6, A8
b1.	Analyze the operation conditions, modeling and design principles of AC synchronous and induction machines using mathematical models and computer simulation.	B1,B2,B3
b2.	Explore the various requirements and operation conditions of synchronous generator and motors from the related manufacturer data sheets, codes and standards.	B1,B2,B3
c1.	Apply methods of regulation and speed control to adjust and/or modify the performance and the output characteristic of general type of rotating electrical machines.	C1,C2
c2.	Conduct experiment to obtain the parameters and load characteristics of various AC motors and generators under different loading conditions.	C1,C2
d1.	Co-operate in teams to conduct experiments, analyze results, and develop technically sound reports of outcomes.	D1,D3,D6
d2.	Review transferable skills of problem solving and design.	D1,D3,D6

V.Course Content:

A – Theoretical Aspect:

Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
1.	Three-Phase Synchronous Generators.	 Construction, Operation principles and application areas. Performance characteristics and equivalent circuits. Mathematical and MATLAB model. Voltage and Power regulations. Parallel operation of synchronous generators. 	1,2,3	6
2.	Three-Phase Synchronous Motors.	 Construction, Performance characteristics, equivalent circuits and application areas. Mathematical modeling and MATLAB representation. 	4,5	4

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momin

Republic of Yemen

Ministry of Higher Education & Scientific Research
Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

		Speed control.		
3.	Single-Phase Induction Motors.	 Construction and Operation principles. Performance characteristics, equivalent circuits and application areas. Modeling of single-phase induction motors. 	6,7,8	6
4.	Mid-Term Exam.	• The First 3 Chapters.	9	2
5.	Three-Phase Induction Motors.	 Construction, Operation principles and application areas. Performance characteristics and equivalent circuits. Speed control and starting methods Mathematical and MATLAB modeling. 	10,11,12,1	8
6.	Special Purpose Machines.	Construction, Operation principles and application areas of stepper and servo motors.	14,15	4
7.	Final Exam	All Chapters.	16	2
Nun	Number of Weeks /and Units Per Semester			32

C-	Tutorials Aspect:				
Order	Tutorial Skills List	Number Contact of Weeks Hours		Learning Outcomes	
1.	Synchronous Three-phase generators. • Equivalent circuits • Performance characteristics • Phasor diagram • Power and torque • Determining model parameters. • Effect of load changes	1,2	4	a1,a2,b1,b2,c1,c2,d1,d2.	
2.	Synchronous Three-phase generators. Mathematical and MATLAB model. Voltage and Power regulations. Parallel operation of synchronous generators.	3,4	4	a1,a2,b1,b2,c1,c2,d1,d2.	

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momin

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen

Ministry of Higher Education & Scientific Research
Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

3.	 Three-phase Synchronous motors. Equivalent circuits Performance characteristics Effect of load changes Effect of field current changes Power factor correction Starting of motor 	5,6,7	6	a1,a2,b1,b2,c1,c2,d1,d2.
4.	 Single-phase Induction motors. Equivalent circuits. Performance characteristics Starting and speed control. 	8	2	a1,a2,b1,b2,c1,c2,d1,d2.
5.	 Threephase Induction motors. Concept of rotor slip Equivalent circuits Power and torque 	9,10	4	a1,a2,b1,b2,,c1,c2,d1,d2.
6.	 Three phase Induction motors. Performance characteristics. Determining model parameters. Starting control methods. Speed control methods. 	11,12,13	6	a1,a2,b1,b2,c1,c2,d1,d2.
7.	Stepper and servo motorsEquivalent circuitsSpeed control	14	2	a1,a2,b1,b2,c1,c2,d1,d2.
Nu	mber of Weeks /and Units Per Semester	14	28	

				C - Practical Aspect:
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes
1.	 Safety regulations and requirements in electrical laboratories. Introduction to main laboratory devices and instrumentations. 	1	2	a1,a2,b1,b2,c1,c2,d1,d2.

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momin

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen

Ministry of Higher Education & Scientific Research

Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	 Introduction to main measurement devices. Reporting format. 			
2.	 External characteristics of three phase synchronous generator. Voltage regulation of three phase synchronous generator. Synchronous generator characteristics. 	2,3	4	a1,a2,b1,b2,c1,c2,d1,d2.
3.	 Parallel operation and synchronism of synchronous generator. Computer modeling of parallel operation and synchronism. 	8 4 2 a1,a2,b1,b2,c1,c2,d1		a1,a2,b1,b2,c1,c2,d1,d2.
4.	 Load characteristics of Synchronous motor. Synchronous motor characteristics. V – curve of Synchronous motor. Computer modeling of three-phase synchronous motors. 	5,6	4	a1,a2,b1,b2,c1,c2,d1,d2.
5.	 Starting and reversing of Three-phase Induction motors. Performance characteristics of Three-phase Induction motors (no load, locked rotor, DC test and load test). Measurement of torque – speed of Three-phase Induction motors. Speed control of Three-phase Induction motors. Effect of rotor resistance for behavior of three phase induction motor. Computer modeling of three-phase induction motors. 	7,8,9,10, 11	10	a1,a2,b1,b2,c1,c2,d1,d2.
6.	Single-phase Induction motors starting.	12	2	a1,a2,b1,b2,c1,c2,d1,d2.

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momin

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Ministry of Higher Education & Scientific Research
Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	 Single-phase Induction motors characteristics. Computer modeling of single-phase induction motors. 			
7.	• Speed control Stepper and servo motors.	13	2	a1,a2,b1,b2,c1,c2,d1,d2.
8.	Laboratory exam.	14	2	a1,a2,b1,b2,c1,c2.
Number of Weeks /and Units Per Semester		14	28	

VI.Teaching strategies of the course:

- Lectures.
- Interactive Class Discussion.
- Tutorial Classes and Exercises.
- Series of Laboratory Experiment.
- Self-Study of Computer Aided Design Software Like Modelica and/MATLAB.

VII.	Assignments:			
No	Assignments Aligned CILOs(symbols)		Week Due	Mark
1.	Design and implementation of Synchronous generator circuits using MATLAB tools.	a1,a2,b1,b2,d2.	3 th	2
2.	Design and implementation of Synchronous motor circuits using MATLAB tools.	a1,a2,b1,b2,c1.	4 th	2
3.	Design and implementation of three induction motor circuits using MATLAB a1,a2,b1,b2,c1. 6th tools.		2	
4.	Design and implementation of stepper motor circuits using MATLAB tools. a1,a2,b1,b2,c1. 8th		2	
5.	Lab. reports.	a1,a2,b1,b2.	Weekly	2
Total 10				

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momin

Ministry of Higher Education & Scientific Research
Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

VII	VIII.Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Quizzes.	4th,7th,10th, and 13th	20	10%	a1,a2,b1,b2.	
2.	Assignments & Homework, Tasks & Presentation.	Weekly	20	10%	a1,a2,b1,b2,d2.	
3.	Mid-Term Exam.	9 th	20	10%	a1,a2,b1,b2.	
4.	Final Exam Practical.	15 th	20	10%	a1,a2,b1,b2,c1,c2,d2.	
5.	Final Exam Theoretical.	16 th	120	60%	a1,a2,b1,b2	
Total 200 100%						

IX.Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. Chapman S. J. (2005), Electric Machinery Fundamentals, 4 th Edition, McGraw-Hill.
- 2. Fitzgerald A. E. (2003), Electric Machinery, 6 th Edition, McGraw-Hill.

2- Essential References.

- 1. D.F. Warne (2000), Newnes Electrical Engineer's Handbook, 1st Edition, Biddles Ltd-www. biddlesxo. Uk.
- 2. Nasar S. A. (1998), Electric Machines and Electromechanics, 2nd Edition, Schaum's outlines series- McGraw-Hill.
- 3. Bandyopadhyay M.N, (2009), ELECTRICAL MACHINES: THEORY AND PRACTICE, 1st Edition, Prentice-Hall of India Pvt Ltd.
- 4. Bimbhra P.S.,(1995), Electric Machinery, 7th Edition Khanna Publishers.

3- Electronic Materials and Web Sites etc.

- 1. Modelica Association (2000). ModelicaTM A Unified Object-Oriented Language for Physical Systems Modeling. Tutorial Version 1.4 (ModelicaTutorial14.pdf). Available from: https://modelica.org/documents/
- 2. MapleSim Video Tutorial: Modelica Video lectures available form: http://www.youtube.com/watch?v=reehU1dzeDc.
- 3. Simulink-Matlab tutorial for beginners Video lectures available form:
- 4. <a href="http://www.youtube.com/results?search_query=simulink+tutorial+for+beginners&oq=simulink&gs_l=youtube.1.9.0l10.337429.342148.0.351270.8.8.0.0.0.0.738.2481.3j3-2j2j0j1.8.0...0.0...1ac.1.11.youtube.iIK7kMX6hfo

Head of the
Department
Assoc. Prof.
Dr. Abdul-
Malik Momin

Ministry of Higher Education & Scientific Research
Council for Accreditation & Quality Assurance

X.Course Policies:	
1.	Class Attendance: The student should be attending not less than 75% of total contact hours of the subject, otherwise he will not able to take exam and considered as an exam failure. If the student is absent due to illness, he/she should bring the approved statement from university Clinic.
2.	For late in attending the class, the student will be initially notified. If he comes late in attending class again, he will consider as absent.
3.	Exam Attendance/Punctuality: The student should attend the exam on time. He is Permitted to attend the exam half one hour from exam beginning, after that he/she will not be permitted to take exam and he/she is considered absent in exam.
4.	Assignments & Projects: In general, one assignment is given after each chapter of a course. The student should submit the assignment on time, mostly one week after giving the assignment.
5.	Cheating: For cheating in exam, the student considered as failure. Case the cheating repeated three times during study the student will disengage from the Faculty
6.	Plagiarism: Plagiarism is the attending of the student the exam of a course instead of other student. If the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Affair Council of the university.
7.	Other Policies: - The mobile phone is not allowed to be used during class lecture. It must be closed, otherwise the student will ask to leave the lecture room - The mobile phone is not allowed to be taken with in class during the examination. - Lecture notes and assignments may be given directly to students using soft or hard copy.