

36Course Specification of Mathematics 6

	I. Course Identification and General Information:					
1.	Course Title:	Mathematics 6				
2.	Course Code & Number:	BR202				
		C.H. Cı		Credit		
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Hours
			2	-		3
4.	Study level/ semester at which this course is	Second Level / Second Semester.				
	offered:					
5.	Pre –requisite (if any):	Mathematics 5 (BR201)				
6.	Co –requisite (if any):	None				
7.	Program (s) in which the course is offered:	Mechatronics, Mechanical ,Civil, Elictric		ctric		
/٠	1 logram (s) in which the course is officied.	Engineering Departments.				
8.	Language of teaching the course:	English Language.				
9.	Location of teaching the course:	Faculty of Engineering, Sana'a University.				
10.	Prepared By:	Associate Prof. Dr. Yasser ALhuri.				
11.	Date of Approval:	Januar	y 2020.			

II. Course Description:

This course will emphasize the numerical analysis methods to provide approximation solution to common problems formulated in science and engineering. The emphasis of the course will be the thorough study of numerical algorithms to understand the guaranteed accuracy that various methods provide.

The focus of the course is the numerical methods using the following computational techniques: error analysis, numerical solutions to nonlinear equations, solution methods for linear system, interpolation, numerical differentiation, numerical integration, and the numerical solutions of ordinary differential equations.

Prepared by Head of Department

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

II	I. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1.	Define the concept of Numerical Analysis Methods and Error Analysis.	A1
a2.	Identify some Numerical Methods and appropriate techniques for solving Nonlinear Equations, Linear system and finding the Interpolation.	A3
b1.	Examine different Numerical Methods to solve Applied Problems.	B1
b2.	Investigate the Numerical Analysis in solving 1D and 2D Civil Problems.	B2
c1.	Apply various techniques of numerical methods to solve the mathematics problems	С3
d1.	Co-operate with team members to share different knowledges.	D3
d2.	Assess to tasks with the support of the different resources.	D5

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:			
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
a1. Know the concept of Numerical Analysis Methods and Error Analysis.	• Active Lectures. • Tutorials.	• Written Assessment. • Final exam	
a2. Identify some Numerical Methods and appropriate techniques for solving Nonlinear Equations, Linear system and finding the Interpolation.	• Active Lectures. • Tutorials.	Written Assessment.Final exam.	
a3. Establish Numerical Analysis to approximate Integration, Differentiation and Ordinary Differential Equations Problems.	• Active Lectures. • Tutorials.	 Written Assessment. Final exam	

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching		
Strategies and Assessment Strategies:		
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1. Examine different Numerical Methods to	• Active Lectures.	• Written Assessment.
solve Applied Problems.	• Tutorials.	• Final exam
b2. Investigate the Numerical Analysis in solving	• Active Lectures.	• Written Assessment.
1D and 2D Civil Problems.	• Tutorials.	• Final exam

Prepared by Head of Department
Dr. Abdulkareem
Yahya Al khattabi

Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to			
Teaching Strategies and Assessment Strategies:			
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
c1. Apply various techniques of numerical	Active Lectures.	• Written Assessment.	
methods to solve the mathematics problems	• Tutorials.	 Final exam 	

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:		
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d1 . Co-operate with team members to share different knowledges.	• Case Studies.	• Written Assessment.
d2 . Assess to tasks with the support of the different resources.	• Case Studies.	• Written Assessment.

IV. Course Content: A – Theoretical Aspect: Contact Ord Learning Number **Units/Topics List Sub Topics List** of Weeks **Outcomes** Hours er - Accuracy, Precision and Error Definitions. 1. **Error Analysis** a1,b2,c1,d1 1 2 -Round-Off Errors. -Truncation Errors. -Bisection Method. Numerical - False position Method. Methods for solving a2,b1,c1,d1 - Fixed – Point iteration. 3 6 **Nonlinear Equations** - Newton - Raphson. of one variable - Secant Methods. -Gauss elimination. - Pivoting. a2 **Linear Systems** - LU factorization. 2 4 ,b1,c1,d1,d2 - Jacobi Method. - Gauss Seidel. a2,b1,b2,c1,

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi

The Interpolation

Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi

d1,d2

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Direct Fit Polynomial.

Equations Number of Weeks /and Units Per Semester			14	28	
8.	Numerical Solutions of Ordinary Differential	a3,b1,b2,c1, d1,d2	Euler's Method Runge-Kutta Method.	2	4
7.	Numerical Integration	a3,b1,b2,c1, d1,d2	The Trapezoidal Rule. Simpson's Rules.	2	4
6.	Numerical Differentiation	a3,b1,b2,c1, d1	Derivatives of Unequally Spaced Data. Derivatives and Integrals for Data with Errors.	1	2
5.	The Interpolation	a2,b1,b2,c1, d1,d2	Direct Fit Polynomial. Newton Interpolating Polynomials. Lagrange Interpolating Polynomials. Newton's Divided-Difference Interpolating Polynomials.	2	4
			Newton Interpolating Polynomials. Lagrange Interpolating Polynomials. Newton's Divided-Difference Interpolating Polynomials.	1	

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

B – Tut	B – Tutorial Aspect:			
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes
1.	Tutorial_1 Error Analysis	1	2	a1,b2,c1,d1
2.	Tutorial_2+3+4 Numerical Methods for solving Nonlinear Equations of one variable	3	6	a2 ,b1,c1,d1
3.	Tutorial_5+6 Linear Systems	2	4	a2 ,b1,c1,d1,d2
4.	Tutorial_7+8+9 The Interpolation	3	6	a2,b1,b2,c1,d1,d2
5.	Tutorial_10 Numerical Differentiation	1	2	a3,b1,b2,c1,d1
6.	Tutorial_11+12 Numerical Integration	2	4	a3,b1,b2,c1,d1,d2
7.	Tutorial_13+14 Numerical Solutions of Ordinary Differential Equations	2	4	a3,b1,b2,c1,d1,d2
Number of Weeks /and Units Per Semester 14 28				

V. Teaching strategies of the course:

- Active Lectures.
- Tutorials.
- Case Studies.

Dr. Abdulkareem Yahya Al khattabi

VI.	VI. Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Error Analysis Tutorial_1	a1,b2,c1,d1	First Week	3		
2.	Numerical Methods for solving Nonlinear Equations of one variable Tutorial_2+3+4	a2 ,b1,c1,d1	Second, Third and Fourth Weeks	9		
3.	Linear Systems Tutorial_5+6	a2 ,b1,c1,d1,d2	Fifth and Sixth Weeks	6		
4.	The Interpolation Tutorial_7+8+9	a2,b1,b2,c1,d1,d2	Seventh, Eight and Ninth Weeks	9		
5.	Numerical Differentiation Tutorial_10	a3,b1,b2,c1,d1	Tenth Week	3		
6.	Numerical Integration Tutorial_11+12	a3,b1,b2,c1,d1,d2	Eleventh and Twelfth Weeks	6		
7,	Numerical Solutions of Ordinary Differential Equations Tutorial_13+14	a3,b1,b2,c1,d1,d2	Thirteenth and Fourteen Weeks	9		

	VII. Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1.	Assessment (Work Sample such as Portfolios).	1-14	45	30 %	All
2.	Final Exam.	15	105	70 %	All
	Total	16	150	100%	

Prepared by Head of Department Dr. Abdulkareem

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1- Richard L.Burden and J.Doyglass Faires. 2011 Numerical Analysis, 9th ed. Brooks ⁄Col, Cengage Learning.
- 2- Chapra S. C. and Canale R. P. (2015) Numerical Methods For Engineers, 7th ed. McGraw-Hill Education.

2- Essential References.

1- Xin-She Yang., 2007, Applied Engineering Mathematics. University of Cambridge, Cambridge, United Kingdom Pub.

3- Electronic Materials and Web Sites etc.

- http://ocw.mit.edu/courses/
- http://depts.washington.edu/amath/
- http://www.esam.northwestern.edu/index.html

	X. Course Policies:			
1.	Class Attendance: The students should have more than 75 % of attendance according to			
	rules and regulations of the Faculty.			
2.	Tardy: The students should respect the timing of attending the lectures. They should			
2.	attend within 10 minutes from starting of the lecture.			
	Exam Attendance/Punctuality: The student should attend the exam on time. The			
3.	punctuality should be implemented according to rulesand regulations of the faculty for mid			
	term exam and final exam.			
4.	Assignments & Projects: The assignment is given to the students after each chapter, the			
4.	student has to submit all the assignments for checking on time.			
5.	Cheating:If any cheating occurred during the examination, the student is not allowed to			
J.	continue and he has to face the examination committee for enquiries.			
-	Plagiarism : The student will be terminated from the Faculty, if one student attend the			
6.	exam on another behalf according to the policy, rules and regulations of the university.			
	Other policies:			
• All the teaching materials should be kept out the examination hall.				
/.	The mobile phone is not allowed.			
	There should be a respect between the student and his teacher			

Reviewed By	Vice Dean for Academic Affairs and Post Graduate Studies
	Dr. Tarek A. Barakat
	Dr. Mohammad Algorafi
	Deputy Rector for Academic Affairs Dr. Ibrahim AlMutaa
	Dr. Ahmed mujahed
	Dr. Munaser Alsubri

Prepared by He

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Template for Course Plan (Syllabus) of Mathematics 6

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Dr. Yasser Alhuri Office Hours						
Location& Telephone No.	Department of Basic Engineering Science 00967773038653	SAT	SUN	MON	TUE	WED	THU
E-mail	yasseralhuri@yahoo.com						

	II. Course Identification and General Information:					
1.	Course Title:	Mathematics 6				
2.	Course Number & Code:	BR202				
		C.H Credi			Credit	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Hours
		2	2	-		3
4.	Study level/year at which this course is offered:	Second Level / Second Semester.				
5.	Pre –requisite (if any):	Mathematics 5 (BR201)				
6.	Co –requisite (if any):	None				
7.	Program (s) in which the course is offered	Mechatronics, Mechanical ,Civil, Electric Engineering Departments.				
8.	Language of teaching the course:	English Language.				
9.	System of Study:	Classes				
10.	Mode of delivery:	Lecture				
11.	Location of teaching the course:	Faculty	of Engineer	ring		_

Prepared by Head

Head of Department Dr. Abdulkareem

Yahya Al khattabi

Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

III. Course Description:

This course will emphasize the numerical analysis methods to provide approximation solution to common problems formulated in science and engineering. The emphasis of the course will be the thorough study of numerical algorithms to understand the guaranteed accuracy that various methods provide.

The focus of the course is the numerical methods using the following computational techniques: error analysis, numerical solutions to nonlinear equations, solution methods for linear system, interpolation, numerical differentiation, numerical integration, and the numerical solutions of ordinary differential equations.

IV. Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
- **a1.** Define the concept of Numerical Analysis Methods and Error Analysis. A1
- **a2.** Identify some Numerical Methods and appropriate techniques for solving Nonlinear Equations, Linear system and finding the Interpolation. A3
- **b1.** Examine different Numerical Methods to solve Applied Problems. B1
- **b2.** Investigate the Numerical Analysis in solving 1D and 2D Civil Problems. B2
- **c1.** Apply various techniques of numerical methods to solve the mathematics problems C3
- **d1.** Co-operate with team members to share different knowledges.
- **d2.** Assess to tasks with the support of the different resources. D5

V.Course Content:

• Distribution of Semester Weekly Plan of Course Topics/Items and Activities.

A – Theoretical Aspect:

Ord	m		Week	Contact
er	Topics List	Sub Topics List	Due	Hours
1.	Error Analysis	- Accuracy, Precision and ErrorDefinitions.-Round-Off Errors.-Truncation Errors.	1	2
2.	Numerical Methods for solving Nonlinear Equations of one variable	 -Bisection Method. - False position Method. - Fixed – Point iteration. - Newton – Raphson. - Secant Methods. 	2,4	4
3.	Linear Systems	-Gauss elimination Pivoting LU factorization Jacobi Method Gauss Seidel.	5,6	4
4.	- Direct Fit Polynomial. - Newton Interpolating Polynomials. - Lagrange Interpolating Polynomials. - Newton's Divided-Difference Interpolating Polynomials.		7	2
5.		Midterm Exam	8	2
6.	The Interpolation	 Direct Fit Polynomial. Newton Interpolating Polynomials. Lagrange Interpolating Polynomials. Newton's Divided-Difference Interpolating Polynomials. 	9,10	4
7.	Numerical Differentiation	Derivatives of Unequally Spaced Data.Derivatives and Integrals for Data with Errors.	11	2

Prepared by Head of

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

8.	Numerical Integration - The Trapezoidal Rule Simpson's Rules.		12,13	4
9.	Numerical Solutions of Ordinary Differential Equations - Euler's Method - Runge-Kutta Method.		14,15	4
10.	Final Exam		16	2
	Number of Weeks /and Units Per Semester			32

B – Tutorial Aspect:					
Order	Tasks/ Experiments	Number of Weeks	Contact Hours		
1.	Error Analysis Tutorial_1	1	2		
2.	Numerical Methods for solving Nonlinear Equations of one variable Tutorial_2+3+4	2,3,4	6		
3.	Linear Systems Tutorial_5+6	5,6	4		
4.	The Interpolation Tutorial_7+8+9	7,8,9	6		
5.	Numerical Differentiation Tutorial_10	10	2		
6.	Numerical Integration Tutorial_11+12	11,12	4		
7.	Numerical Solutions of Ordinary Differential Equations Tutorial_13+14	13,14	4		
Numbe	Number of Weeks /and Units Per Semester 14 28				

VI. Teaching strategies of the course:	
Active Lectures.	

Prepared by Head of Department
Dr. Abdulkareem
Yahya Al khattabi

Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

University of Sana'a Faculty of Engineering

- Tutorials.
- Case Studies.

V	VII. Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Error Analysis Tutorial_1	a1,b2,c1,d1	First Week	3		
2.	Numerical Methods for solving Nonlinear Equations of one variable Tutorial_2+3+4	a2 ,b1,c1,d1	Second, Third and Fourth Weeks	9		
3.	Linear Systems Tutorial_5+6	a2 ,b1,c1,d1,d2	Fifth and Sixth Weeks	6		
4.	The Interpolation Tutorial_7+8+9	a2,b1,b2,c1,d1,d2	Seventh, Eight and Ninth Weeks	9		
5.	Numerical Differentiation Tutorial_10	a3,b1,b2,c1,d1	Tenth Week	3		
6.	Numerical Integration Tutorial_11+12	a3,b1,b2,c1,d1,d2	Eleventh and Twelfth Weeks	6		
7,	Numerical Solutions of Ordinary Differential Equations Tutorial_13+14	a3,b1,b2,c1,d1,d2	Thirteenth and Fourteen Weeks	9		

Prepared by Head of Department

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

V	VIII.Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Assessment (Work Sample such as Portfolios).	1-14	45	30 %	all	
2.	Final Exam.	15	105	70 %	all	
	Total	16	150	100%		

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- Richard L.Burden and J.Doyglass Faires. 2011 Numerical Analysis, 9th ed. Brooks Col, Cengage Learning.
- 2- Chapra S. C. and Canale R. P. (2015) Numerical Methods For Engineers, 7th ed. McGraw-Hill Education.

2- Essential References.

1- Xin-She Yang., 2007, Applied Engineering Mathematics. University of Cambridge, Cambridge, United Kingdom Pub.

3- Electronic Materials and Web Sites etc.

- http://ocw.mit.edu/courses/
- http://depts.washington.edu/amath/
- http://www.esam.northwestern.edu/index.html

X.	. Course Policies:		
1.	Class Attendance: The students should have more than 75 % of attendance according to rules and regulations of the Faculty.		
2.	Tardy: The students should respect the timing of attending the lectures. They should attend within 10 minutes from starting of the lecture.		
3.	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid term exam and final exam.		
4.	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.		
5.	Cheating :If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquiries.		
6.	Plagiarism : The student will be terminated from the Faculty, if one student attend the exam on another behalf according to the policy, rules and regulations of the university.		
7.	 Other policies: All the teaching materials should be kept out the examination hall. The mobile phone is not allowed. There should be a respect between the student and his teacher. 		

Prepared by I

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti