Department: Electrical Engineering

37. Course Specification of Digital Communications

]	I. Course Identification and G	ener	al Infor	matio	n:	
1.	Course Title:	Digita	ıl Commur	nications		
2.	Course Code & Number:	CNE3	323			
			C.	Н		Total
3.	Credit hours:	Th.	Tu.	Pr	Tr.	Total
		2	2	2	-	4
4.	Study level/ semester at which this course is offered:	Fourth Year/ First Semester				
5.	Pre –requisite (if any):	Probability and Statistics for Engineers (BR131), Signals and Systems (CNE216), Communication Principles (CNE221)				
6.	Co –requisite (if any):	Digita	ıl Signal Pı	rocessing	(CNE3	17)
7.	Program (s) in which the course is offered:	Communication Engineering and Networks				
8.	Language of teaching the course:	Englis	sh			
9.	Location of teaching the course:	Electr	ical Engin	eering De	epartmei	nt
10.	Prepared By:	Asst.	Prof. Dr. A	di Nagi I	Nosary	
11.	Date of Approval					

II. Course Description:

This course presents an introduction to the basic principles of digital communication systems, a digital communication system is one that transmits a source information (voice, video, data, etc.) from one point to another, by first converting it into a stream of bits, and then into symbols that can be transmitted over channels (cable, wireless, storage, etc.). The course gives an overview of the design of digital communication systems, and explains the mathematical foundation of decomposing the systems into separately designed source codes and channel codes. It introduces the principles and commonly used algorithms in each stage of a digital communication system including encoding, multiplexing, modulation, and errors detection techniques.

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

Department: Electrical Engineering

	III. Course Intended learning outcomes (CILOs)	Referenced
	of the course	PILOs
a1	Understand the basic concepts of digital communication systems regarding design stages, functions, and applications.	A2
a2	Perform standard calculations regarding digital modulation and error detection.	A2
b1	Analyze and compare various choices of digital modulation methods and coding methods in terms of error probabilities, minimum distances, throughput, and related concept.	B1
b2	Select appropriate methods for solving error detection problems depending on the given conditions and requirements.	B2
c1	Use basic signal processing devices and software simulators to generate signals and apply different types of digital processing to the signal to show the properties and outcome of each type.	C2, C5
d1	Use learned digital communication systems principles as a base to develop a good understanding of modern telecommunication engineering techniques and applications.	D5

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
a1- Understand the basic concepts of digital communication systems regarding design stages, functions, and applications.	 Lectures Cooperative Learning Experiential Learning Class Discussion 	 Quizzes, Homework, Project, Practical test, Mid and Final Exams 			
a2- Perform standard calculations regarding digital modulation and error detection.	 Lectures Cooperative Learning Experiential Learning Class Discussion 	 Quizzes, Homework, Project, Practical test, Mid and Final Exams 			

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

(B) Alignment Course Intended Lear Strategies and Assessment Strategies	8	lectual Skills to Teaching
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1- Analyze and compare various choices of digital modulation methods and coding methods in terms of error probabilities, minimum distances, throughput, and related concept.	 Lectures Cooperative Learning Experiential Learning Class Discussion 	 Quizzes, Homework, Project, Practical test, Mid and Final Exams
b2- Select appropriate methods for solving error detection problems depending on the given conditions and requirements.	 Lectures Cooperative Learning Experiential Learning Class Discussion 	 Quizzes, Homework, Mid and Final Exams

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Cou	rse Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
c1- to	Use basic signal processing devices and software simulators generate and signals and apply different types of digital processing to the signal to show the properties and outcome of	Learning Experiential Learning	Project,Practical test		
each	type.				

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to						
Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes			Outcomes		Teaching strategies	Assessment Strategies
d1-	Use	learned	digital	•	Cooperative	
	commu	nication	systems		Learning	Project
princi	ples	as the base to	develop a	•	Research	

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

good	understanding	of	modern
	telecommunication	n eng	gineering
	techniques and app	plica	tions.

IV. Course Content: A – Theoretical Aspect: Number Learning Contact **Order Units/Topics List Sub Topics List** of **Outcomes** hours Weeks ■ An overview on Communication Systems. Digital Communication Systems. Classification of Signals, Spectral a1, a2, b1, Density 1. Introduction 2 4 b2, d1 and Autocorrelation. Random Signals. Signal Transmission

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

2.

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Formatting and

signal

transmission of baseband

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

a1, a2, b1,

b2, d1

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad 3

Through Linear

Baseband Systems.Formatting Textual

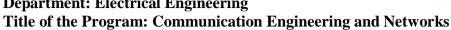
Data (Character

Characters, and

Systems.

Bandwidth of Digital Data.

Coding).

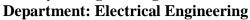

Messages,

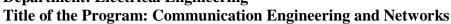
Symbols.

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

6

Department: Electrical Engineering


			 Formatting Analog Information. Sources of Corruption Pulse Code Modulation (PCM). Uniform and Nonuniform Quantization. Baseband modulation. 		
3.	Baseband demodulation/Detection	a1, a2, b1, b2, d1	 Receiver structure. Detection of Binary signal in GN. Vector representation of signals (signal space). Intersymbol Interference Equalization. 	2	4
4.	Bandpass modulation/demodulation	a1, a2, b1, b2, d1	 Why Modulate? Digital Bandpass Modulation Techniques Detection of Signals in Gaussian Noise Coherent Detection Noncoherent Detection Error Performance for Binary Systems M-ary Signaling and Performance 	2.5	5


Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

				 Symbol Error Performance for M-ary Systems Summary of Digital modulations techniques 		
5		Spread Spectrum Techniques	a1, a2, b1, b2, d1	 Spread-Spectrum Overview Pseudonoise Sequences Direct-Sequence Spread-Spectrum Systems Frequency Hopping Systems Multiple access: FDMA, TDMA and CDMA CODING 	2.5	5
6	5.	Channel Coding	a1, a2, b1, b2, d1	 Waveform Coding and Structured Sequences Types of Error Control Structured Sequences Linear Block Codes Error-Detecting and Correcting Capability 	2	4

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

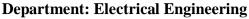
Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

Department: Electrical Engineering

Number of Weeks / and Units Per Semester 14 28	Number of Weeks /and Units Per Semester	14	28
--	---	----	----

Department: Electrical Engineering



B - Tu	B - Tutorial Aspect:				
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes	
1.	Introduction	1	2	a1, a2, b1, b2, d1	
2.	Classification of Signals, Spectral Density and Autocorrelation.	2	4	a1, a2, b1, b2, d1	
3.	Formatting and transmission of baseband signal	3	6	a1, a2, b1, b2, d1	
4.	Baseband demodulation/Detection	2	4	a1, a2, b1, b2, d1	
5.	Bandpass modulation/demodulation	2	4	a1, a2, b1, b2, d1	
6.	Spread Spectrum Techniques	2	4	a1, a2, b1, b2, d1	
7. Channel Coding		2	4	a1, a2, b1, b2, d1	
Number of Weeks /and Units Per Semester		14	28		

C - Pr	C - Practical Aspect:				
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes	
1.	PAM 1	1	2	a1, a2, b1, c1	
2.	PAM 2	1	2	a1, a2, b1, c1	
3.	PA Demodulation	1	2	a1, a2, b1, c1	
4.	PCM using Quantization	1	2	a1, a2, b1, c1	
5.	PCM using DPCM	1	2	a1, a2, b1, c1	
6.	PC Demodulation using Quantization	1	2	a1, a2, b1, c1	
7.	PC Demodulation using DPCM	1	2	a1, a2, b1, c1	
8.	Revision	1	2	a1, a2, b1, c1	
9.	Reports submission	1	2	-	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

10.	Practical test	1	2	-
Nui	mber of Weeks /and Units Per Semester	10	20	

V. Teaching strategies of the course:

- Lectures
- Cooperative Learning
- Experiential Learning
- Class Discussion
- Research

•	VI. Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark			
1.	Problems Sheet #1	a1, a2, b1, b2	2	2			
2.	Problems Sheet #2	a1, a2, b1, b2	4	2			
3.	Problems Sheet #3	a1, a2, b1, b2	6	2			
4.	Problems Sheet #4	a1, a2, b1, b2	8	2			
5.	Problems Sheet #5	a1, a2, b1, b2	10	2			
6.	Project (Report, Simulation, Presentation)	a1, a2, b1, b2,c1, d1	12	20			
	Total			30			

	VII.Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Quiz #1	5 th	5	2.5%	a1, a2, b1, b2	
2.	Midterm Exam	8 th	20	10%	a1, a2, b1, b2	
3.	Quiz #2	10 th	5	2.5%	a1, a2, b1, b2	
4.	Homework (Problems sheets)	10 th	10	5%	a1, a2, b1, b2	
5.	Practical Reports and Test	11 th	20	10%	a1, b1, c1	

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

6.	Project	12 th	20	10%	a1, a2, b1, b2, c1, d1
7.	Final Exam	16 th	120	60%	a1, a2, b1, b2
	Total		200	100%	

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1 -Bernard Sklar -1988 - Digital Communications: Fundamentals and Applications, Second Edition, Prentice Hall PTR, Upper Saddle River, New Jersey, U

2- Essential References.

1 -A. Bruce Carlson and Paul B. Crilly - 1968 - Communication Systems: An Introduction to Signals and Noise in Electrical Communication, Kogakusha Mcgraw
2- Lan Glover and Peter Grant - 2000 - Digital Communications, Pearson.

3- Electronic Materials and Web Sites etc.

1 -MatLab (software).

IX. Course Policies:

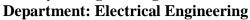
Class Attendance:

1. A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic

Tardy:

2. For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.

Exam Attendance/Punctuality:


A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam-

Assignments & Projects:

4. The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time-

5. Cheating:

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

	For cheating in exam, a student will be considered as fail. In case the cheating is repeated				
	three times during his/her study the student will be disengaged from the Faculty-				
	Plagiarism:				
	Plagiarism is the attending of a student the exam of a course instead of another student.				
6.	If the examination committee proved a plagiarism of a student, he will be disengaged				
	from the Faculty. The final disengagement of the student from the Faculty should be				
confirmed from the Student Council Affair of the university.					
	Other policies:				
	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise				
7.	the student will be asked to leave the lecture room				
	- Mobile phones are not allowed in class during the examination.				
	Lecture notes and assignments my given directly to students using soft or hard copy				

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek			
By	A. Barakat			
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi			
	Name of Reviewer from the Department: Asst. Prof. Dr. Nasser H. Almofari			
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa			
	Assoc. Prof. Dr. Ahmed Mujahed			
	Asst. Prof. Dr. Munasar Alsubri			