

<u>37. Course Specification of Electrical Machines</u>

	I. Course Identification and General Information:								
1.	Course Title:	Electr	ical Machi	ines					
2.	Course Code & Number:	PME2	225						
			C.	Η		Total			
3.	Credit hours:		Tu.	Pr.	Tr.	Total			
		2	2	2	-	4			
4.	Study level/ semester at which this course is offered:	Third Year/ Second Semester							
5.	Pre –requisite (if any):	Electr	ical circuit	ts 1&2					
6.	Co –requisite (if any):	NA							
7	Program (s) in which the course is offered	Computer Engineering and Control							
7. Flogram (s) in which the course is offered.			program						
8.	Language of teaching the course:	English							
9.	Location of teaching the course:	Class & lab							
10.	Prepared By:	Assoc. prof. Dr. Radwan AL bouthigy							
11.	Date of Approval	2020							

II. Course Description:

This course is designed to provide principal concepts of electric machines as a major Electric system component. The course includes: Electromechanical energy conversion (EMEC) principles, the construction, classification, performance characteristics, analysis, parallel operation, testing and applications of: DC motors, DC and AC stepper motors, DC and AC servo motors, universal motor, Single-phase Synchronous Motors (Reluctance and Hysteresis) and linear motors as well as, starting and speed control of the different types of motors. Laboratory experiments and MATLAB simulation tool are carried out for different types of machines devices to verify the theoretical concepts.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	III. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Recognize operation principles, speed control and application in industrial system of various type of general-purpose DC motor and special machines.	A1
a2	Acquire knowledge to professionally design and analysis the special machines using computer simulators and practical experiments.	A2,A3
b1	Differentiate between the elements of special machines by their characteristics and construction.	B1
b2	Evaluate the modeling and design principles of DC motor special machines used in the process of designing the elements of systems.	В3
c1	Test and practically investigate the performance of DC motor and special machines by performing electrical, mechanical and related measurements such as: current, voltage, power speed, and torque.	C3
c2	Perform and evaluate practical design of industrial system using computer software such as Modelica, Simulink, LVSim, MATLAB.	C2,C4
d1	Develop students cooperative work though team work.	D1
d2	Encourage students self-learning of general IT skills through presentations.	D2,D5

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

o reaching briategies and Assessment briategies.						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
a1-Recognize operation principles, speed control and application in industrial system of varioustype ofgeneral-purpose DC motor andmotor andspecial machines.	Lectures, Tutorial, interactive class discussions, laboratory experiments, Self-study. Homework	Assignments, Written exams, quizzes				
a2- Acquire knowledge to professionally design and analysis the DC motor and	Lectures, Tutorial, interactive class discussions, laboratory experiments,	Assignments, Written exams, quizzes				

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

special machines using	Self-study. Homework				
computer simulators and practical					
experiments.					
(B) Alignment Course Intended Lear	ning Outcomes of Intellectua	l Skills to Teaching			
Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
	Lectures,	Assignments,			
b1- Differentiate between the	Interactive class discussions,	Quizzes,			
elements of DC motor and special	Homework,	Written exams,			
machines by their characteristics	Laboratory experiments,	Homework.			
and construction.	Self and cooperative	Lab. reports.			
	learning.				
b? Evaluate the modeling and	Lectures,	Assignments,			
design principles of DC motor and	Interactive class discussions,	Quizzes,			
apacial machines used in the	Homework,	Written exams,			
special machines used in the	Laboratory experiments,	Homework.			
of systems	Self and cooperative	Lab. reports.			
of systems.	learning.				

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1- Test and practically investigate the performance of DC motor and special machines by performing electrical, mechanical and related measurements such as: current, voltage, power speed, and torque.	Lectures, Interactive class discussion Exercises, Series of laboratory experiment, Self- study assignments and homework.	Quizzes Laboratory assignments and reports, Homework, Midterm and final exam.
c2- Perform and evaluate practical design of industrial system	Lectures,	Quizzes

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

using	computer	software	such	as	Interactive class discussion	Laboratory
	Modelica,	Simulink,	LVSi	m,	Exercises, Series of	assignments and
	MATLAB	•			laboratory experiment, Self-	reports, Homework,
					study assignments and	Midterm and final
					homework.	exam.

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to						
Teaching Strategies and Assessment	Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
	Lectures,	Laboratory reports,				
	Interactive class	Assignments,				
d1- Develop students cooperative	discussion,	Quizzes,				
work though team work.	rk though team work. Self-study assignments and					
	homework.	Exams, Homework.				
	Lectures,	Laboratory reports,				
d2- Encourage students self-	Interactive class	Assignments,				
learning of general IT skills	discussion,	Quizzes,				
through presentations,	Self-study assignments and	Written exams, Lab.				
	homework.	Exams, Homework.				

I	IV. Course Content:					
	A – Theoret	ical Aspect	•			
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours	
1.	Introduction to Electrical Machines	a1,a2,b1,b2	 Magnetic circuits Definition of DC motor. Torque development due to alignment of two fields and the concept of torque angle. Electro-magnetically induced emf. Elementary concept of an electrical machine 	1	2	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2.	DC motor	a1, a2, b1, c2,b2, d1, d2	 Main distinction between DC generators and motors. Types, Construction, Operation principles and application areas of DC motors. Performance characteristics and the equivalent circuit of DC motors. Speed control of DC motors. The mathematical and MATLAB model of DC motor. 	3	6
3.	DC and AC stepper motor	a1, a2, b1, b2,	 Principle of operation of single-stack, variable-reluctance stepping motor. Principle of operation of multi-stack variable-reluctance stepping motor. Principle of operation of Hybrid Stepper Motors Comparison of stepper motor types 	3	6
4.	DC and AC servo motors	a1, a2, b1, b2, d1, d2	DC Servo motorAC servo motorThree phase servo motor	2	4
5.	universal motor	a1, a2, b1, b2, d1, d2,	 Principle of operation of a universal motor Applications of Universal Motors 	2	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 Mathematical analysis for the developed torque in the hysteresis motor Operation principles Construction, modeling and 		
7.	Linear motor	a1, a2, b1, b2, c1, c2, d1, d2	 Operation principles Construction, modeling and application of Permanent Magnet (PM) linear synchronous motors. And Wound Secondary type 	1	2
N 7 T			linear synchronous motors.		20
Numbe	r of Weeks /an	d Units Per S	emester	14	28

A- Tutorials Aspect:

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Order	Tutorial Skills List	Nº of Weeks	C.H.	CILOs
1.	 Calculation of magnetic circuits, magnetic flux, flux density, magnetic field intensity, and permeability. Force and torque calculations. 	1	2	a1,a2,b1,b2
2.	 Equivalent circuit of types DC motor. The performance characteristics. Graphical analysis Speed regulation The mathematical and Modelica and/or MATLAB model of DC motors. Speed – torque control of DC motors. 	3	6	a1,a2,b1,b2, c2,d1,d2
3.	 Equivalent circuit and equations types stepper motors. The performance characteristics. Graphical analysis Speed regulation The mathematical and Modelica and/or MATLAB model of stepper motors. Speed – torque control of stepper motors. 	2	4	a1,a2,b1,b2, c2,d1,d2
4.	 Equivalent circuit and equations types servo motors. The performance characteristics. Graphical analysis Speed regulation The mathematical and Modelica and/or MATLAB model of servo motors. Speed – torque control of servo motors. 	2	4	a1,a2,b1,b2, c2,d1,d2
5.	 Equivalent circuit and equations types servo motors. 	2	4	a1,a2,b1,b2, c2,d1,d2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	 The performance characteristics. Graphical analysis Speed regulation The mathematical and Modelica and/or MATLAB 			
	model of DC motors.Speed – torque control of servo motors.			
6.	 Equivalent circuit and equations types universel motors. The performance characteristics. Graphical analysis Speed regulation The mathematical and Modelica and/or MATLAB model universel motors. Speed – torque control of universel motors. 	1	2	a1,a2,b1,b2, c2,d1,d2
7.	 Equivalent circuit and equations types single phase synchronous motors. The performance characteristics. Graphical analysis Speed regulation The mathematical and Modelica and/or MATLAB model of single-phase synchronous motors. Speed – torque control of single-phase synchronous motors. 	2	4	a1,a2,b1,b2, c2,d1,d2
8.	 Equivalent circuit and equations types linear motors motors. The performance characteristics. Graphical analysis Speed regulation The mathematical and Modelica and/or MATLAB model of linear motors. Speed – torque control of linear motors. 	1	2	a1,a2,b1,b2, c2,d1,d2

Prepared byHead of Department
Asst. Prof. Dr. Adel
Ahmed Al-ShakiriQuality Assurance Unit
Assoc. Prof. Dr.Dean of the Faculty
Prof. Dr. Mohammed
AL-BukhaitiAcademic Development
Center & Quality Assurance
Assoc. Prof. Dr. Huda Al-Emad

Number of Weeks /and Units Per Semester	14	28	
---	----	----	--

C - Practical Aspect:				
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes
1.	 Safety regulations and requirements in electrical laboratories. Experimental work outlines and requirements. Introduction to main laboratory devices and instrumentations. Introduction to main measurement devices. 	1	2	a1, a2, b1, b2, c1,c2
2.	Terminal characteristics of a separately, shunt, series and compound motors.Starting control of D.C motors	3	6	a1, a2, b1, b2, c1, c2
3.	Speed control Stepper motorsTorque-Speed characteristicsComputer modeling stepper motor	2	4	a1, a2, b1, b2, c1, c2
4.	Speed control servo motorsTorque-Speed characteristicsComputer modeling servo motor	2	4	a1, a2, b1, b2, c1, c2
5.	 Torque-Speed characteristics of a universal motor 	1	2	a1, a2, b1, b2, c1, c2
6.	 Torque-Speed characteristics of a reluctance motor 	1	2	a1, a2, b1, b2, c1, c2
7.	 Torque-Speed characteristics of a hysteresis motor 	1	2	a1, a2, b1, b2, c1, c2
8.	 Familiarize with practical a single-sided and double-sided linear induction motors. 	2	4	a1, a2, b1, b2, c1,c2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Determine the performance characteristics			
	of single-sided motor.			
	 Computer modeling linear motor 			
9.	 Final Exam 	1	2	a1,a2,b1,b2
Nı	Number of Weeks /and Units Per Semester		28	

V. Teaching strategies of the course:

- Lectures.
- Interactive class discussion.
- Simulation Tools
- Series of laboratory experiment.
- Homework
- Project work

VI. Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark	
1.	Comparison between types of DC motors	a1,a2,b1,b2,d2	3 rd	2.5	
2.	Design and implementation of stepper motor circuits using MATLAB tools	a1,a2,b1,b2,c2	5 th	2.5	
3.	Design and implementation of servo motor circuits using MATLAB tools	a1,a2,b1,b2,c2	7 th	2.5	
4.	Design and implementation of single-phase synchronous motor circuits using MATLAB tools	a1,a2,b1,b2,c2	8 th	2.5	
5.	Project presentation	a1,a2,b1,b2	13 th	10	
	Total			20	

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VI	VII. Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1.	Quizzes	4^{th} ,7 th ,10 th , and 12 th	10	5%	a1,a2,b1,b2			
2.	Assignments & Homework, Tasks & Presentation	Weekly	20	10%	a1,a2,b1,b2,d1,d2			
3.	Mid-Term exam	8 th	40	20%	a1,a2,b1,b2			
4.	Final exam practical	15 th	30	15%	a1,a2,b1,b2,c1,c2,d2			
5.	Final Exam theory	16 th	100	50%	a1,a2,b1,b2			
	Total		200	100%				

VIII. Learning Resources:

Written in the following order: (Author – Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. E.G. Janardanan, 2014, 'Special electrical machines', PHI learning Private Limited, Delhi.
- 2. Chapman s. j. (2005), Electric Machinery Fundamentals, 4th Edition, McGraw-Hill.

2- Essential References.

- 1. W. Leonhard, 1985, Control of Electrical Drives, Springer-Verlag, New York,
- 2. T. Wildi,2002, Electrical machines, drives and power systems, fifth edition, Upper Saddle River, New Jersey Columbus, Ohio
- 3. B. L. Theraja, 2005, Electrical Technology, first multi colour India, S.Chand & Company Ltd.
- 4. A. Hughes, 2006, Electric Motors and Drives Fundamentals, Types and Applications, third edition, Elsevier Ltd, British

Prepared by

Head of Department Qu Asst. Prof. Dr. Adel Ahmed Al-Shakiri M

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

3- Electronic Materials and Web Sites etc.

- 1. Modelica Association (2000). ModelicaTM A Unified Object-Oriented Language for Physical Systems Modeling. Tutorial Version 1.4 (ModelicaTutorial14.pdf). Available from: https://modelica.org/documents/
- 2. MapleSim Video Tutorial: Modelica Video lectures available form:<u>http://www.youtube.com/watch?v=reehU1dzeDc</u>.
- 3. Simulink-Matlab tutorial for beginners Video lectures available form

]	X. Course Policies:
1.	Class Attendance: -A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic
2.	Tardy:For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	 Exam Attendance/Punctuality: A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam.
4.	Assignments & Projects:The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.
5.	Cheating:For cheating in exam, a student will be considered as failure. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.
6.	Plagiarism : Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proved a plagiarism of a student, he will be disengaged

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university.
7.	 Other policies: Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek				
By	<u>A. Barakat</u>				
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi				
	Name of Reviewer from the Department: Assoc. Prof. Dr. Radwan Al bouthigy				
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa				
	Assoc. Prof. Dr. Ahmed Mujahed				
	<u>Asst. Prof. Dr. Munasar Alsubri</u>				

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

<u>37. Template for Course Plan of Electrical machines</u>

I. Information about Faculty Member Responsible for the							
Course:							
Name of Faculty Member	Assoc. Prof. Dr. Radwan Al bouthigy	Office Hours					
Location& Telephone No.	775284933	SAT	SUN	MON	TUE	WED	THU
E-mail	radwan006@yahoo.com						

	II. Course Identification and General Information:						
1.	Course Title:	Electric	cal machin	es			
2.	Course Number & Code:	PME22	25				
			C.	H		Total	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
		2	2	2	-	4	
4.	Study level/year at which this course is offered:	Third Year/ Second Semester					
5.	Pre –requisite (if any):	Electric	cal Circuits	<mark>s</mark> 1&2			
6.	Co –requisite (if any):	NA					
7.	Program (s) in which the course is offered	Computer Engineering and Control			l		
8.	Language of teaching the course:	English					
9.	System of Study:	Semester					
10.	Mode of delivery:	Semesters					
11.	Location of teaching the course:	Class &	k lab				

III. Course Description:

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

This course is designed to provide principal concepts of electric machines as a major Electric system component. The course includes: Electromechanical energy conversion (EMEC) principles, the construction, classification, performance characteristics, analysis, parallel operation, testing and applications of: DC motors, DC and AC stepper motors, DC and AC servo motors, universal motor, Single-phase Synchronous Motors (Reluctance and Hysteresis) and linear motors as well as, starting and speed control of the different types of motors. Laboratory experiments and MATLAB simulation tool are carried for different types of machines devices to verify the theoretical concepts.

IV.Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - **1.** Recognize operation principles, speed control and application in industrial system of various type of general-purpose DC motor and special machines.
 - **2.** Acquire knowledge to professionally design and analysis the special machines using computer simulators and practical experiments.
 - **3.** Differentiate between the elements of special machines by their characteristics and construction.
 - **4.** Evaluate the modeling and design principles of DC motor special machines used in the process of designing the elements of systems.
 - 5. Test and practically investigate the performance of DC motor and special machines by performing electrical, mechanical and related measurements such as: current, voltage, power speed, and torque.
 - **6.** Perform and evaluate practical design of industrial system using computer software such as Modelica, Simulink, LVSim, MATLAB.
 - 7. Develop students cooperative work though team work.
 - 8. Encourage students self-learning of general IT skills through presentations.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V.	Course Con	ntent:		
	A – Theoret	ical Aspect:		
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact hours
1.	Introduction to Electrical Machines	 Magnetic circuits Definition of DC motor. Torque development due to alignment of two fields and the concept of torque angle. Electro-magnetically induced emf. Elementary concept of an electrical machine 	1 st	2
2.	DC motor	 Main distinction between DC generators and motors. Types, Construction, Operation principles and application areas of DC motors. Performance characteristics and the equivalent circuit of DC motors. Speed control of DC motors. The mathematical and MATLAB model of DC motor. 	2 nd ,3 rd ,4 th	6
3.	DC and AC stepper motor	 Principle of operation of single-stack, variable-reluctance stepping motor. Principle of operation of multi-stack variable-reluctance stepping motor. Principle of operation of Hybrid Stepper Motors Comparison of stepper motor types 	5 th ,6 th ,7 th	6
4.	Midterm Exam	•	8 th	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Number of Weeks /and Units Per Semester				
9.	Final Exam	 All topics 	16 th	2
8.	Linear motor	 Operation principles Construction, modeling and application of Permanent Magnet (PM) linear synchronous motors. And Wound Secondary type linear synchronous motors. 	15 th	2
7.	Single-phase Synchronous Motors	 Principle of operation of a reluctance motor Torque-Speed characteristics of a reluctance motor Construction of a hysteresis motor Principle of operation of a hysteresis motor Torque-Speed characteristics of a hysteresis motor Applications of Hysteresis Motors Mathematical analysis for the developed torque in the hysteresis motor 	13 th ,14 th	4
6.	universal motor	 Principle of operation of a universal motor Applications of Universal Motors Torque-Speed characteristics of a universal motor Speed Control of Universal Motors Reversing direction of rotation of a universal motor 	11 th ,12 th	4
5.	DC and AC servo motors	DC Servo motorAC servo motorThree phase servo motor	9 th ,10 th	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

B-Tutorials Aspect:				
Order	Tutorial Skills List	Nº of Weeks	C.H.	
1.	 Calculation of magnetic circuits, magnetic flux, flux density, magnetic field intensity, and permeability. Force and torque calculations. 	1 st	2	
2.	 Equivalent circuit of types DC motor. The performance characteristics. Graphical analysis Speed regulation The mathematical and Modelica and/or MATLAB model of DC motors. Speed – torque control of DC motors. 	2 nd ,3 rd ,4 th	6	
3.	 Equivalent circuit and equations types stepper motors. The performance characteristics. Graphical analysis Speed regulation The mathematical and Modelica and/or MATLAB model of stepper motors. Speed – torque control of stepper motors. 	5 th ,6 th	4	
4.	 Equivalent circuit and equations types servo motors. The performance characteristics. Graphical analysis Speed regulation The mathematical and Modelica and/or MATLAB model of servo motors. Speed – torque control of servo motors. 		4	
5.	 Equivalent circuit and equations types servo motors. The performance characteristics. Graphical analysis Speed regulation 	9 th ,10 th	4	

Head of Department Qu Asst. Prof. Dr. Adel Ahmed Al-Shakiri M

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	 The mathematical and Modelica and/or MATLAB model of 		
	DC motors.		
	 Speed – torque control of servo motors. 		
	 Equivalent circuit and equations types universel motors. 		
	 The performance characteristics. 		
	 Graphical analysis 		
6.	 Speed regulation 	11 th	2
	 The mathematical and Modelica and/or MATLAB model 		
	universel motors.		
	 Speed – torque control of universel motors. 		
	 Equivalent circuit and equations types single phase 		
	synchronous motors.		
	 The performance characteristics. 		
7	 Graphical analysis 	1.2th 1.2th	4
7.	 Speed regulation 	12,15	4
	 The mathematical and Modelica and/or MATLAB model of 		
	single-phase synchronous motors.		
	 Speed – torque control of single-phase synchronous motors. 		
	 Equivalent circuit and equations types linear motors motors. 		
	 The performance characteristics. 		
	 Graphical analysis 		
8.	 Speed regulation 	14^{th}	2
	 The mathematical and Modelica and/or MATLAB model of 		
	linear motors.		
	 Speed – torque control of linear motors. 		
Number of Weeks /and Units Per Semester		14	28

C - Practical Aspect:			
Order	Tasks/ Experiments	Number of Weeks	Contact hours
1.	 Safety regulations and requirements in electrical laboratories. Experimental work outlines and requirements. 	1 st	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	 Introduction to main laboratory devices and 		
	instrumentations.		
	 Introduction to main measurement devices. 		
	 Terminal characteristics of a separately, shunt, series 		
2.	and compound motors.	2^{nd} , 3^{rd} , 4^{th}	6
	 Starting control of D.C motors 		
	 Speed control Stepper motors 		
3.	 Torque-Speed characteristics 	5 th ,6 th	4
	 Computer modeling stepper motor 		
	 Speed control servo motors 		
4.	 Torque-Speed characteristics 	7^{th} , 8^{th}	4
	 Computer modeling servo motor 		
5.	 Torque-Speed characteristics of a universal motor 	9 th	2
6.	 Torque-Speed characteristics of a reluctance motor 	10 th	2
7.	 Torque-Speed characteristics of a hysteresis motor 	11 th	2
	 Familiarize with practical a single-sided and double- 		
0	sided linear induction motors. Determine the	1 oth 1 oth	4
8.	performance characteristics of single-sided motor.	12 th ,13 th	
	 Computer modeling linear motor 		
9.	Final Exam	14 th	2
Number of Weeks /and Units Per Semester			28

VI. Teaching strategies of the course:

- Lectures.
- Interactive class discussion.
- Simulation Tools
- Series of laboratory experiment.
- Homework
- Project work

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VII.Assignments:				
No	Assignments	AlignedWeekCILOs(symbols)Due		Mark
1.	Comparison between types of DC motors	a1,a2,b1,b2,d2	3 rd	2.5
2.	Design and implementation of stepper motor circuits using MATLAB tools	a1,a2,b1,b2,c2	5 th	2.5
3.	Design and implementation of servo motor circuits using MATLAB tools	a1,a2,b1,b2,c2	7 th	2.5
4.	Design and implementation of single-phase synchronous motor circuits using MATLAB tools	a1,a2,b1,b2,c2	8 th	2.5
5.	Project presentation	a1,a2,b1,b2	13 th	10
	Total			20

VIII.Schedule of Assessment Tasks for Students During the
Semester:No.Assessment MethodWeek DueMarkProportion of Final
Assessment1.Quizzes4th,7th,10th,
red 12th105%

	Total		200	100%
5.	Final Exam theory	16^{th}	100	50%
4.	Final exam practical	15 th	30	15%
3.	Mid-Term exam	8 th	40	20%
2.	Assignments & Homework, Tasks & Presentation	Weekly	20	10%
	·	and 12 th		

IX. Learning Resources:

Written in the following order: (Author – Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

- 1. E.G. Janardanan, 2014, 'Special electrical machines', PHI learning Private Limited, Delhi.
- 2. Chapman s. j. (2005), Electric Machinery Fundamentals, 4th Edition, McGraw-Hill.

2- Essential References.

- 1. W. Leonhard, 1985, Control of Electrical Drives, Springer-Verlag, New York,
- 2. T. Wildi,2002, Electrical machines, drives and power systems, fifth edition, Upper Saddle River, New Jersey Columbus, Ohio
- 3. B. L. Theraja, 2005, Electrical Technology, first multi colour India, S.Chand & Company Ltd.
- 4. A. Hughes, 2006, Electric Motors and Drives Fundamentals, Types and Applications, third edition, Elsevier Ltd, British

3- Electronic Materials and Web Sites etc.

- Modelica Association (2000). ModelicaTM A Unified Object-Oriented Language for Physical Systems Modeling. Tutorial Version 1.4 (ModelicaTutorial14.pdf). Available from: https://modelica.org/documents/
- 2. MapleSim Video Tutorial: Modelica Video lectures available form:<u>http://www.youtube.com/watch?v=reehU1dzeDc</u>.
- 3. Simulink-Matlab tutorial for beginners Video lectures available form

2	X. Course Policies:
1.	Class Attendance: -A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic
2.	Tardy:For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	Exam Attendance/Punctuality:

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	- A student should attend the exam on time. He is Permitted to attend an exam half one				
	hour from exam beginning, after that he/she will not be permitted to take the exam and				
	he/she will be considered as absent in exam.				
	Assignments & Projects:				
4.	- The assignment is given to the students after each chapter; the student has to submit				
	all the assignments for checking on time.				
	Cheating:				
5.	- For cheating in exam, a student will be considered as fail. In case the cheating is				
	repeated three times during his/her study the student will be disengaged from the Faculty.				
	Plagiarism:				
	Plagiarism is the attending of a student the exam of a course instead of another student.				
6.	If the examination committee proved a plagiarism of a student, he will be disengaged				
	from the Faculty. The final disengagement of the student from the Faculty should be				
	confirmed from the Student Council Affair of the university.				
	Other policies:				
	- Mobile phones are not allowed to use during a class lecture. It must be closed,				
7.	otherwise the student will be asked to leave the lecture room				
	- Mobile phones are not allowed in class during the examination.				
	Lecture notes and assignments my given directly to students using soft or hard copy				

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad