

37. Course Specification of Power Electronics

-	I. Course Identification and General Information:						
1.	Course Title:	Power	Power electronics				
2.	Course Code & Number:	PME244					
		C.H			Total		
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
		2	2	2	-	4	
4.	Study level/ semester at which this course is offered:	Third Year/ Second Semester					
5.	Pre –requisite (if any):	PME113, PME214					
6.	Co –requisite (if any):	NA					
7.	Program (s) in which the course is offered:	Power and Machines Engineering Program					
8.	Language of teaching the course:	English					
9.	Location of teaching the course:	Class &lab					
10.	Prepared By:	Assoc. Prof. Dr. Radwan Al bouthigy					
11.	Date of Approval	2020					

II. Course Description:

This course is prepared to provide students with the principal concepts in the field of power electronics and drives as enabling technologies. It gives students the skills in the definitions, analysis, and solving problems related to power semiconductor devices and drive circuits. The course enables students to discuss the basic topologies of power switching devices, rectifiers, AC voltage controllers, DC choppers, and voltage/current -fed inverters with special emphasis on application of devices and current industrial practice. Laboratory experiments and MATLB simulation tool are carried out for different types of power electronics elements to verify the theoretical concepts.

	8		Referenced PILOs
4	a1	Recognize the common power control devices includes, diodes, Thyristors and transistors and their circuits.	A1

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

a2	Define the circuit diagrams, waveforms and equation of different types of power control devices.	A2
b1	Analyze the common power electronic devices which are used in control and solve engineering problems	B2
b2	Differentiate between theory of operation for different power semiconductor devices and circuits	В3
c1	Use the electronic instrumentation and modern simulation tools to implement, design and test power electronic circuits, and useful power control project	C2
c2	Apply a variety of device models and circuit analysis theorems to analysis, design and implementing power control systems for engineering systems applications.	C4
d1	Work with small groups and distribute the tasks with his team.	D1
d2	Use computer and Internet to extract information related to field of study.	D2,D5

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
a1- Recognize the common power control devices includes, diodes, Thyristors and transistors and their circuits.	LecturesTutorialsSelf-learningDialogue and discussion	 written exam Oral discussion Reports evaluation Presentations and evaluation 		
a2- Define the circuit diagrams, waveforms and equation of different types of power control devices.	 Tutorials 	 written exam Oral discussion Reports evaluation Presentations and evaluation 		

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:			
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines Engineering

b1- Analyze the common power electronic devices which are used in control and solve engineering problems	 Lectures Analysis and Problem solving Tutorials Project 	 Written Test and Quizzes Laboratory reports evaluation Project reports Presentations
b2- Differentiate between theory of operation for different power semiconductor devices and circuits	 Lectures Analysis and Problem solving Tutorials Project 	 Written Test and Quizzes Laboratory reports evaluation Project reports Presentations

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
c1- Use the electronic instrumentation and modern simulation tools to implement, design and test power electronic circuits, electric drives and useful power control project	 Lectures Laboratory Projects Design exercises Simulation tools 	 Written Test and Quizzes Laboratory reports evaluation Presentations evaluation Project reports Observation of performance 			
c2- Apply a variety of device models and circuit analysis theorems to analysis, design and implementing power control systems for engineering systems applications.	 Lectures Laboratory Projects Design exercises Simulation tools 	 Written Test and Quizzes Laboratory reports evaluation Presentations evaluation Project reports Observation of performance 			

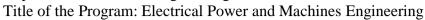
(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:			
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines Engineering


d1- team.	Work with small groups and distribute the tasks with his	LaboratoryProjectsPresentationsResearch	 Observation and interviews Laboratory reports evaluation Research reports Presentations
d2-	Use computer and Internet to extract information related to of study.	LaboratoryProjectsPresentationsResearch	 Observation and interviews Laboratory reports evaluation Research reports Presentations

Γ	IV. Course Content:						
	A – Theoretical Aspect:						
Orde r	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contac t hours		
1.	Introduction	a1,a2,b1,b 2	 Power Electronics Defined Power semiconductor devices Conversion Examples 	1	2		
2.	Semiconductor switching devices used in power electronics	a1,a2,b1,b 2,c1	Power DiodesPower TransistorsThyristors and TRIAC	1	2		
3.	Uncontrolled Rectifiers	a1,a2,b1,b 2,c1,d2	 Single phase uncontrolled rectifiers Three phase uncontrolled rectifiers Harmonic analysis Output voltage with LC filter 	2	4		
4.	Controlled Rectifiers	a1,a2,b1,b 2,c1,d2	 Single phase-controlled rectifiers Three phase-controlled rectifiers Harmonic analysis Power factor improvement 	2	4		

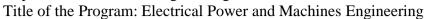
Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

5.	DC –DC Chopper Converters	a1,a2,b1,b 2,c1,d2	 Step down chopper converter Step up chopper converter Classifications of chopper converter 	3	6
6.	DC – AC Inverters	a1,a2,b1,b 2,c1,d2	 Single-Phase Voltage Source Inverters Three-Phase Voltage Source Inverters Current Source Inverters Pulse width modulation technique Harmonic analysis Closed-Loop Operation of Inverters 	3	6
7.	AC Voltage converter	a1,a2,b1,b 2,c1,d2	 Single Phase AC Controllers. Three Phase AC Controllers. Harmonic analysis Cycloconverters 	2	4
Numb	er of Weeks /and	Units Per Se	mester	14	28

B – Tutorial Aspect:							
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes			
1.	 Operation and characteristics of diode rectifiers Performance parameters of uncontrolled rectifiers (diode) Analyzing of uncontrolled rectifier circuits Simulating uncontrolled rectifiers by using MATLAB Effects of load inductance on load currents 	2	4	a1,b1,d1,d2			
2.	 Operation and characteristics of controlled rectifiers (Thyristor) Performance parameters of controlled rectifiers Analyzing of controlled rectifier circuits Simulating controlled rectifiers by using MATLAB Effects of load inductance on load currents 	3	6	a1,a2,b1,b2,c1,d1,d2			
3.	 Operation dc – dc converters (chopper) Performance parameters of dc converter Analyzing of dc converter Simulating dc converter by using MATLAB Effects of load inductance on load currents and the conditions for continuous current 	3	6	a1,a2,b1,b2,c1,d1,d2			


Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Academic

Department: Electrical Engineering

Numb	oer of Weeks /and Units Per Semester	14	28	
5.	 Operation of matrix converters Performance parameters of ac voltage controllers Analyzing of ac voltage controllers Simulating ac converter by using MATLAB Effects of load inductance on load currents 	3	6	a1,a2,b1,b2,c1,d1,d2
4.	 Operation dc – ac converters known as inverters Performance parameters of inverters Analyzing of dc converter Simulating inverters by using MATLAB Effects of load impedance on load currents Operation of ac voltage controllers 	3	6	a1,a2,b1,b2,c1,d1,d2

C - Pı	C - Practical Aspect:					
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes		
1.	 Safety regulations and requirements in electrical laboratories. Introduction to main laboratory devices and instrumentations. Introduction to main measurement devices. Reporting format. 	1	2	a1,b1,c1,c2		
2.	■ Diodes, SCR and TRIC Characteristics	1	2	a1,b1,c1,c2,d1,d2		
3.	■ Single phase half and full wave uncontrolled rectifier	1	2	b1,b2,c1,c2,d1,d2		
4.	■ Three phase half wave and full wave uncontrolled rectifier	2	4	b2,c1,c2,d1,d2		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines Engineering

5.	■ Single phase half wave, semi and full wave-controlled rectifier	3	6	c1,c2,d1,d2
6.	■ Three phase half wave and full wave- controlled rectifier	2	4	a1,a2,b1,b2,c1,c2
7.	■ Step down chopper with (R- L) Load	1	2	b1,b2,c1,c2,d1,d2
8.	■ Single phase inverter	1	2	a1,a2,b2,c1,c2
9.	■ Single phase AC voltage controller	1	2	b2,c1,c2,d1,d2
10.	■ Review	1	2	a1,a2,b2,c1,c2
Number of Weeks /and Units Per Semester		14	28	

V. Teaching strategies of the course:

- Lectures
- Problem Solving
- Laboratory works
- Design exercises
- Project work
- Simulation Tools

VI. Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Comparison between types of power diodes	a1,a2,b1,b2,d2	3 rd	4		
2.	Design and implementation of uncontrolled rectifier circuits using MATLAB tools	a1,a2,b1,b2,c1	4 th	4		
3.	Design and implementation of controlled rectifier circuits using MATLAB tools	a1,a2,b1,b2,c1	6 th	4		
4.	Design and implementation of DC – DC choppers circuits using MATLAB tools	a1,a2,b1,b2,c1	8 th	4		
5.	Design and implementation of DC- AC rectifier circuits using MATLAB tools	a1,a2,b1,b2,c1	10 th	4		
	Total			20		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines Engineering

V]	VII.Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1.	Quizzes	4 th ,7 th , 10 th , and 13 th	20	10%	a1,a2,b1,b2			
2.	Assignments & Homework, Tasks & Presentation	Weekly	20	10%	a1,a2,b1,b2,d1,d2			
3.	Mid-Term exam	7^{th}	20	10%	a1,a2,b1,b2			
4.	Final exam practical	15 th	40	20%	a1,a2,b1,b2,c1,c2			
5.	Final Exam theory	16 th	100	50%	a1,a2,b1,b2			

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1. M. H. Rashid, 2014, "Power electronics: circuits, devices, and applications," fourth edition, Prentice Hall

200

100%

2. Austin Hughes, (2006) Electric Motors and Drives Fundamentals, Types and Applications, 3rd Edition, Elsevier Ltd.

2- Essential References.

Total

- 1. Cyril W. Lander, 1993, "Power electronics", 3rd edition, McGraw-Hill.
- **2.** B. W. Williams, 1992, Power Electronics, Devices, Drivers, Application and Passive components
- **3.** Fang Lin Luo, Hong Ye, Muhammad Rashid, "Digital Power Electronics and Applications", 2005, Elsev USA
- **4.** E. Acha, Power Electronics control in Electrical system, 1st, 2002, Newnes.

3- Electronic Materials and Web Sites etc.

- 1. www.goelectricdrive.com/
- 2. www.electricmachinery.com/
- **3.** www.goelectricdrive.com/
- **4.** http://www.ece.tamu.edu/~empelab/

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines Engineering

]	IX. Course Policies:
1.	Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic
2.	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	Exam Attendance/Punctuality: A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam-
4.	Assignments & Projects: The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time-
5.	Cheating: For cheating in exam, a student will be considered as failure. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty-
6.	Plagiarism: Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university.
7.	Other policies: - Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room - Mobile phones are not allowed in class during the examination. Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek						
By	A. Barakat						
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi						
	Name of Reviewer from the Department: Asst. Prof. Dr. Adel Ahmed Al-Shakiri						
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa						
	Assoc. Prof. Dr. Ahmed Mujahed						
	Asst. Prof. Dr. Munasar Alsubri						

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

37. Template for Course Plan of Power Electronics

I. Information about Faculty Member Responsible for the							
Course:							
Name of Faculty Member	Assoc. Prof. Dr. Radwan Al bouthigy Office Hours						
Location& Telephone No.	775284933	SAT SUN MON TUE WED THE			THU		
E-mail	radwan006@yahoo.com						

	II. Course Identification and	Gene	ral Infor	mation	ı :		
1.	Course Title:	Power Electronics					
2.	Course Number & Code:	PME244					
		C.H				Total	
3.	3. Credit hours:		Tu.	Pr.	Tr.	Total	
			2	2	-	4	
4.	Study level/year at which this course is offered:	Third Year/ Second Semester					
5.	Pre –requisite (if any):	PME1	13, PME21	4			
6.	Co –requisite (if any):	None.					
7.	Program (s) in which the course is offered	Power	and Machin	nes Engin	eering		
8.	Language of teaching the course:	English					
9.	System of Study:	semester					
10.	Mode of delivery:	Semesters					
11.	Location of teaching the course:	Class	& lab			_	

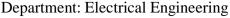
III. **Course Description:**

This course is prepared to provide students with the principal concepts in the field of power electronics and drives as enabling technologies. It gives students the skills in the definitions, analysis, and solving problems related to power semiconductor devices and drive circuits. The course enables students to discuss the basic topologies of power switching devices, rectifiers, AC voltage controllers, DC choppers, and voltage/current -fed inverters with special emphasis

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

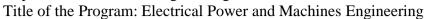
Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti


Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

on application of devices and current industrial practice. Laboratory experiments and MATLB simulation tool are carried out for different types of power electronics elements to verify the theoretical concepts.

IV.Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - 1. Recognize the common power control devices includes, diodes, Thyristors and transistors and their circuits.
 - **2.** Define the circuit diagrams, waveforms and equation of different types of power control devices.
 - **3.** Analyze the common power electronic devices which are used in control and solve engineering problems
 - **4.** Differentiate between theory of operation for different power semiconductor devices and circuits
 - **5.** Use the electronic instrumentation and modern simulation tools to implement, design and test power electronic circuits, and useful power control project
 - **6.** Apply a variety of device models and circuit analysis theorems to analysis, design and implementing power control systems for engineering systems applications.
 - 7. Work with small groups and distribute the tasks with his team.
 - **8.** Use computer and Internet to extract information related to field of study.



V. Course Content: A – Theoretical Aspect: Number Orde Units/Topics Learning Contac **Sub Topics List** of List **Outcomes** t hours r Weeks Power Electronics Defined a1,a2,b1,b Power semiconductor 1st Introduction 2 1. 2 devices Conversion Examples Semiconductor switching Power Diodes 2nd 2. devices used in 2 a1,a2,b1,b Power Transistors power 2.c1 Thyristors and TRIAC electronics Single phase uncontrolled rectifiers Uncontrolled Three phase uncontrolled 3rd, 4th 3. 4 rectifiers Rectifiers a1,a2,b1,b 2,c1,d2 Harmonic analysis Output voltage with LC filter Single phase-controlled rectifiers Three phase-controlled 5th, 6th 4. Controlled a1,a2,b1,b 4 rectifiers Rectifiers 2,c1,d2 Harmonic analysis Power factor improvement Mid-Term a1,a2,b1,b 7th 5. 2 Exam 2 Step down chopper converter DC -DC 8^{th,} 9th. a1,a2,b1,b Step up chopper converter 6. Chopper 6 10th 2,c1,d2 Classifications of chopper Converters converter Single-Phase Voltage Source Inverters 11th, 12th DC - ACa1,a2,b1,b Three-Phase Voltage Source 7. 6 13th 2,c1,d2 **Inverters Inverters Current Source Inverters**

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Number of Weeks /and Units Per Semester				16	32
9.	Final Exam	a1,a2,b1,b	All topics	16 th	2
8.	AC Voltage converter	a1,a2,b1,b 2,c1,d2	 Single Phase AC Controllers. Three Phase AC Controllers. Harmonic analysis Cycloconverters 	14 ^{th,} 15 th	4
			 Pulse width modulation technique Harmonic analysis Closed-Loop Operation of Inverters 		

B-T	B – Tutorial Aspect:						
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes			
1.	 Operation and characteristics of diode rectifiers Performance parameters of uncontrolled rectifiers (diode) Analyzing of uncontrolled rectifier circuits Simulating uncontrolled rectifiers by using MATLAB Effects of load inductance on load currents 	1 ^{st,} 2 nd	4	a1,b1,d1,d2			
2.	 Operation and characteristics of controlled rectifiers (Thyristor) Performance parameters of controlled rectifiers Analyzing of controlled rectifier circuits Simulating controlled rectifiers by using MATLAB 	3 ^{rd,} 4 ^{th,} 5 th	6	a1,a2,b1,b2,c1,d1,d2			

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines Engineering

	■ Effects of load inductance on load			
	currents			
3.	 Operation dc – dc converters (chopper) Performance parameters of dc converter Analyzing of dc converter Simulating dc converter by using MATLAB Effects of load inductance on load currents and the conditions for continuous current 	6 ^{th,} 7 ^{th,} 8 th	6	a1,a2,b1,b2,c1,d1,d2
4.	 Operation dc – ac converters known as inverters Performance parameters of inverters Analyzing of dc converter Simulating inverters by using MATLAB Effects of load impedance on load currents 	9 ^{th,} 10 ^{th,} 11 th	6	a1,a2,b1,b2,c1,d1,d2
5.	 Operation of ac voltage controllers Operation of matrix converters Performance parameters of ac voltage controllers Analyzing of ac voltage controllers Simulating ac converter by using MATLAB Effects of load inductance on load currents 	12 ^{th,} 13 ^{th,} 14 th	6	a1,a2,b1,b2,c1,d1,d2
Numb	er of Weeks /and Units Per Semester	14	28	

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

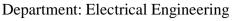
Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

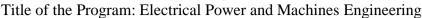
Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

C - Practical Aspect:							
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes			
1.	 Safety regulations and requirements in electrical laboratories. Introduction to main laboratory devices and instrumentations. Introduction to main measurement devices. Reporting format. 	$1^{ m st}$	2	a1,b1,c1,c2			
2.	■ Diodes, SCR and TRIC Characteristics	2 nd	2	a1,b1,c1,c2,d1,d2			
3.	■ Single phase half and full wave uncontrolled rectifier	$3^{\rm rd}$	2	b1,b2,c1,c2,d1,d2			
4.	■ Three phase half wave and full wave uncontrolled rectifier	4 th , 5 th	4	b2,c1,c2,d1,d2			
5.	■ Single phase half wave, semi and full wave-controlled rectifier	6 th , 7 th , 8 th	6	c1,c2,d1,d2			
6.	■ Three phase half wave and full wave- controlled rectifier	9 th , 10 th	4	a1,a2,b1,b2,c1,c2			
7.	■ Step down chopper with (R- L) Load	11 th	2	b1,b2,c1,c2,d1,d2			
8.	■ Single phase inverter	12 th	2	a1,a2,b2,c1,c2			
9.	■ Single phase AC voltage controller	13 th	2	b2,c1,c2,d1,d2			
10.	■ Review	14 th	2	a1,a2,b2,c1,c2			
11.	■ Final exam	15 th	2	b1,b2,c1,c2,d1,d2			
Numbe	Number of Weeks /and Units Per Semester 14 28						

VI. Teaching strategies of the course:


- Lectures
- **Problem Solving**
- Laboratory works
- Design exercises
- Project work
- **Simulation Tools**


Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VII.Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Comparison between types of power diodes	a1,a2,b1,b2,d2	3 rd	4		
2.	Design and implementation of uncontrolled rectifier circuits using MATLAB tools	a1,a2,b1,b2,c1	4 th	4		
3.	Design and implementation of controlled rectifier circuits using MATLAB tools	a1,a2,b1,b2,c1	6 th	4		
4.	Design and implementation of DC – DC choppers circuits using MATLAB tools	a1,a2,b1,b2,c1	8 th	4		
5.	Design and implementation of DC- AC rectifier circuits using MATLAB tools	a1,a2,b1,b2,c1	10 th	4		
	Total			20		

VIII. Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1.	Quizzes	4 th ,7 th , 10 th , and 13 th	20	10%	a1,a2,b1,b2		
2.	Assignments & Homework, Tasks & Presentation	Weekly	20	10%	a1,a2,b1,b2,d1,d2		
3.	Mid-Term exam	7^{th}	20	10%	a1,a2,b1,b2		
4.	Final exam practical	15 th	40	20%	a1,a2,b1,b2,c1,c2		
5.	Final Exam theory	16 th	100	50%	a1,a2,b1,b2		
	Total		200	100%			

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1. M. H. Rashid, 2014, "Power electronics: circuits, devices, and applications," fourth edition, Prentice Hall

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2. Austin Hughes, (2006) Electric Motors and Drives Fundamentals, Types and Applications, 3rd Edition, Elsevier Ltd.

2- Essential References.

- 1. Cyril W. Lander, 1993, "Power electronics", 3rd edition, McGraw-Hill.
- **2.** B. W. Williams, 1992, Power Electronics, Devices, Drivers, Application and Passive components
- **3.** Fang Lin Luo, Hong Ye, Muhammad Rashid, "Digital Power Electronics and Applications", 2005, Elsev USA
- **4.** E. Acha, Power Electronics control in Electrical system, 1st, 2002, Newnes.

3- Electronic Materials and Web Sites etc.

- 1. www.goelectricdrive.com/
- 2. www.electricmachinery.com/
- 3. www.goelectricdrive.com/
- **4.** http://www.ece.tamu.edu/~empelab/

X. Course Policies:

Class Attendance:

1. A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic

Tardy:

2. For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.

Exam Attendance/Punctuality:

A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam-

Assignments & Projects:

4. The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time-

Cheating:

5. For cheating in exam, a student will be considered as failure. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty-

6. Plagiarism:

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Sana'a University
Faculty of Engineering
Department: Electrical Engineering

Title of the Program: Electrical Power and Machines Engineering

Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university.

Other policies:

- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room
 - Mobile phones are not allowed in class during the examination.

Lecture notes and assignments my given directly to students using soft or hard copy