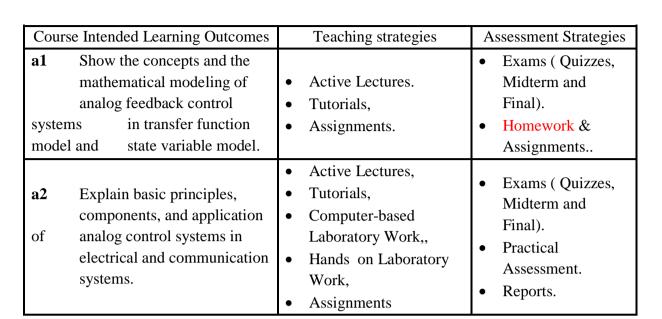


<u>38. Course Specification of Control Systems</u>

I. Course Identification and General Information:							
1.	Course Title:	Control Systems					
2.	Course Code & Number:	CCE3	39				
	Credit hours:		C	L.H		Total	
3.		Th.	Tu.	Pr.	Tr.	Total	
		2	2	2	-	4	
4.	Study level/ semester at which this course is offered:	Fourth	n Year / Fii	rst Semeste	r		
5.	Pre –requisite (if any):	Engineering Mechanics (BR007), Electronics 1 (PME113), Signal & Systems (CCE231)					
6.	Co –requisite (if any):	None					
7.	Program (s) in which the course is offered:	Comn Progra		& Network	ks Engin	eering	
8.	Language of teaching the course:	Englis	sh				
9.	Location of teaching the course:	Facult	y of Engin	eering			
10.	Prepared By:	Asst. I olofi	Prof. Dr. N	Iohammed	Abdulla	ah Al-	
11.	Date of Approval						
]	II. Course Description:						

The course introduces the basic concepts of analog control systems, develop knowledge for model, analysis, and design of analog feedback control systems. It is include the Examples of feedback control systems – dynamics characteristics – Mathematical modeling of control systems using transfer function model and state variable model – analysis of control system in transfer function model and state variable model – block diagrams reduction and signal flow graphs – characteristics and performance of feedback control systems – transient response analysis – stability analysis - Root-Locus method – PID controllers – Frequency response method - Logarithmic plots – Bode diagram method – introduction to design, series and feedback compensation - State space design methods – controllability and observability

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad



– design of linear feedback control systems – linear time varying state models – pole placement design method – observer design method – transfer function of controller.

	III. Course Intended learning outcomes (CILOs)	Referenced
	of the course	PILOs
a1	Show the concepts and the mathematical modeling of analog feedback control systems in transfer function model and state variable model.	A1
a2	Explain basic principles, components, and application of analog control systems in electrical and communication systems.	A2
b1	Construct the analog controllers systems and components to electrical and communication products using the control system design methods.	B1
b2	Analyze the electrical and communication engineering systems using modern control engineering methods and tools.	B3
c1	Implement the analog controllers of analog feedback control systems by using the passive and active electrical circuits.	C2
c2	Use the information technology tools to solve the control systems problems in the field of electrical and communication.	C4
d1	Work productively as an individual and as a member of a team / multi- disciplinary team.	D1
d2	Prepare and present effective technical reports and presentations.	D4

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
b1Construct the analog controllersandcomponentsandcomponentselectricalandcommunicationproductsproductsusingthe controlsystem designdesignmethods.	 Active Lectures, Tutorials, Projects Work, Homework & Assignments, Hand on Laboratory works, Computer-based Laboratory Work, Case Studies 	 Practical Assessment. Written Assessments. Project Presentations, Exams (Midterm, Final), 		
b2 Analyze the electrical and communication engineering systems using modern control engineering methods and tools.	 Tutorials Homework & Assignments, Hands-on Laboratory Work, Computer-based Laboratory Work, Case Studies. 	 Practical Assessment, Written Assessments, Laboratory Reports 		

Head of Department Asst. Prof. Dr.	Quality Assurance Unit Assoc. Prof. Dr.	Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti	Academic Development Center & Quality	Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas
Adel Ahmed Al- Shakiri	Mohammad Algorafi		Assurance	
Sliakii I			Assoc. Prof. Dr.	
			Huda Al-Emad	

© Alignment Course Intended Learning Outcomes of Professional and Practical				
Skills to Teaching Strategies and Course Intended Learning Outcomes Outcomes controllement the analog controllers of analog feedback control systems by using the passive and active electrical circuits.	Assessment Strategies: Teaching strategies • Active Lectures, • Tutorials • Hands on Laboratory Work, • Computer-based Laboratory Work, • The Use of Communication and Information Technologies.	 Assessment Strategies Practical Assessments, Exams (Midterm and Final) 		
c2 Use the information technology tools to solve the control systems problems in the field of electrical and communication.	 Computer-based Laboratory Work, The Use of Communication and Information Technologies 	 Laboratory Assessment Reports & Presentation. Practical Exam 		

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

I caching Strategi	reaching Strategies and Assessment Strategies.			
Course Intended Learning		Teaching strategies	Assessment Strategies	
Outco	mes			
individual a	luctively as an and as a member nulti-disciplinary	 Laboratory small Group Works Homework & Assignments 	 Project and Lab Reports. Written Assessments.	
d4 Prepare effective tech presentation	and present nical reports and ns.	 Laboratory Works. Homework & Assignments Projects 	 Project Reports and Presentations. Written Assessments. Lab Reports. 	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

I	IV. Course Content:						
A – Theoretical Aspect:							
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours		
1.	Introduction of control systems	a1, a2	Introduction of control systems, types of control systems, components, steps to design a control systems.	1	2		
2.	Mathematical models of systems.	a1, a2, b1, b2, c1	Mathematical models of electrical, mechanical, thermal, fluid, hydraulic systems, differential equation, linear approximation of control systems, Laplace transform and theorems , transfer function models, s-plane analysis of feedback control systems, block diagram reduction, signal flow graph	1	2		
3.	State-variable models	a1, a2, b1, b2, c1	State-variable model, analysis in State-variable, transform from State-variable model to transfer function model	1	2		
4.	Feedback control system characteristics	a1, a2, b1, b2, c1, c2	Feedback control system characteristics, error signal analysis, sensitivity of feedback control system to parameters variation, disturbance and noise signal rejection, cost of feedback control system, design examples.	1	2		
5.	Performance of the feedback	a1, a2, b1, b2, c1	Performance of 2 nd order feedback control system, test input signals, steady-state error	1	2		

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

	control system		of feedback control system, performance index of feedback control systems, design examples.		
6.	The Stability of feedback control system	a1, a2, b1, b2, c1	Stability analysis of feedback control system, The Routh- Hurwitz Stability Criterion, Relative stability, Stability of State Variable Systems, design examples.	1	2
7.	The Root Locus method	a1, a2, b1, b2, c1	Root locus concept, root locus procedures,	1	2
8.	The Root Locus method	a1, a2, b1, b2, c1	Parameters design by the root locus, PID controllers, design examples	1	2
9.	Frequency Response methods	a1, a2, b1, b2, c1	Frequency response plots, bode diagram, Frequency response measurements, performance specifications in Frequency response, design example	1	2
10.	The design of feedback control systems	a1, a2, b1, b2, c1	Approaches to System Design, Cascade Compensation Networks, Phase-Lead Design Using the Bode Diagram and Root Locus, System Design Using Integration Networks, Phase-Lag Design Using the Bode Diagram and Root Locus, Design on the Bode Diagram Using Analytical Methods, Systems with a Pre-filter, Design for Dead beat Response, design examples.	3	6
11.	The design of state variable	a1, a2, b1, b2, c1	Image: ControllabilityandObservability,Full-State	2	4

Head of Quality Assurance Dean of the Faculty Academic Rector of Sana'a University Department Prof. Dr. Mohammed Prof. Dr. Al-Qassim Mohammed Unit Development AL-Bukhaiti Asst. Prof. Dr. Assoc. Prof. Dr. Center & Quality Abbas Adel Ahmed Al-Mohammad Algorafi Assurance Shakiri Assoc. Prof. Dr. Huda Al-Emad

Number of Weeks /and Units Per Semester			14	28
		examples		
		Internal Model Design, design		
		Observer, Reference Inputs,		
	systems	Full-State Feedback and		
	control	Observer Design, Integrated		
	feedback	Feedback Control Design,		

B - Pı	actical Aspect:			
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes
1.	Introduction of analog control systems.	1	2	a1, a2
2.	Introduction of matlab software.	1	2	c1, c2
3.	Control Systems toolbox in matlab software.	2	4	a1, a2, b1, b2, c1, c2, d1, d2
4.	Mathematical models of analog control system in matlab software.	1	2	a1, a2, b1, b2, c1, c2, d1, d2
5.	Block diagram reduction in matlab software.	1	2	a1, a2, b1, b2, c1, c2d1, d2
6.	Midterm Practical Exam	1	2	a1, a2, b1, b2, c1, c2d1, d2
7.	Analysis of analog control systems response and performance .	1	2	a1, b1, b2, c1, c2, d1, d2
8.	Root locus method in matlab program.	1	2	a1, b1, b2, c1, c2, d1, d2
9.	Bode plot method in matlab program.	1	2	a1, a2, b1, b2, c1, c2, d1, d2
10.	Analog controller design & Simulation methods in matlab program.	2	4	a1, a2, b1, b2, c1, c2, d1, d2
11.	Review	1	2	a1, a2, b1, b2, c1, c2, d1, d2
12.	Course Project Presentation & Evaluation	1	2	a1, b1, b2, c1, c2, d1

Head of Department Asst. Prof. Dr. Adel Ahmed Al- M Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Number of Weeks /and Units Per Semester	14	28		
---	----	----	--	--

C - Tutorial Aspect:					
Order	Units/Topics List	Number of Weeks	Contact hours	Learning Outcomes	
1.	Mathematical Systems Modeling, Electrical and Mechanical System Modeling	2	4	a1, a2, b1	
2.	State-variable Models	1	2	a1, a2, b1	
3.	Feedback control System Characteristics and its Performance	2	4	a1, a2, b1, b2	
4.	The stability of feedback control systems	1	2	a1, a2, b1, b2	
5.	The Root Locus Method.	2	4	a1, a2, b1, b2, c1	
6.	The Frequency response of control systems	2	4	a1, a2, b1, b2, c1	
7.	The Design of feedback control systems	2	4	a1, a2, b1, b2, c1	
8.	The Design of state variable control Systems	2	4	a1, a2, b1, b2, c1	
Num	ber of Weeks /and Units Per Semester	14	28		

Head of Qu Department Asst. Prof. Dr. A Adel Ahmed Al- Moh Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V. Teaching strategies of the course:

In general, teaching and learning in undergraduate engineering education programs should use a variety of teaching methods, such as:

- Active Lectures (supported with discussions)
- Tutorials,
- Homework & Assignments, Hands-on Laboratory Work,
- Computer-based Lab Works
- Lab Group Works.
- The Use of Communication and Information Technology.
- Case Studies.
- Projects

VI. Assignments & Reports:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark	
1.	Problems, and advance problems, and computer problems of the Chapter 2	a1, a2, b1, c1, d1	2 nd	1	
2.	Problems, and advance problems, and computer problems of the Chapter 3	a1, a2, b1, c1, c2, d1, d2	3 rd	1	
3.	Problems, and advance problems, and computer problems of the Chapter 4, 5	a1, a2, b1, b2, c1, c2, d1, d2	5 th	2	
4.	Problems, and advance problems, and computer problems of the Chapter 6, 7	a1, a2, b1, b2, c1, c2, d1, d2	9 th	2	
5.	Problems, and advance problems, and computer problems of the Chapter 8	a1, a2, b1, b2, c1, c2, d1, d2	10 th	3	
6.	Problems, and advance problems, and computer problems of the Chapter 10	a1, a2, b1, b2, c1, c2, d1, d2	13 th	3	
7.	Problems, and advance problems, and computer problems of the Chapter 11	a1, a2, b1, b2, c1, c2, d1, d2	14 th	3	
8.	Laboratory Reports	a1, b1, b2, c1,c2, d1, d2	3^{rd} to 13^{th}	15	
	Total			30	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	VII.Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Quizzes	4 th , 9 th & 13 th	10	5%	a1, a2, b1, b2, c1, d1	
2.	Assignments & Reports	2 nd to 14 th	30	15%	a1, a2, b1, b2, c1, c2, d1, d2	
3.	Mid-Term Exam (Theory)	8 th	15	7.5%	a1, a2, b1, b2, c1	
4.	Mid-Term Exam (Practical) & the Projects Preparation and Presentations	7 th & 14 th	20	10%	a1, a2, b1, b2, c1, c2, d1, d2	
5.	Final exam (Practical)	15 th	25	12.5%	a1, b1, b2, c1,c2, d1	
6.	Final Exam (Theory)	16 th	100	50%	a1, a2, b1, b2, c1	
	Total		200	100%		

VIII. Learning Resources:
• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).
1- Required Textbook(s) (maximum two).
 Richard C. Dorf, Robert H. Bishop, Modern Control Systems, 12th Edition, Prentice Hall,2013
2- Essential References.
 Katsuhiko Ogata, Modern Control Engineering, 5th Edition, Prentice Hall,2010
3- Electronic Materials and Web Sites etc.

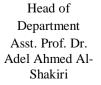
Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

1. http://www.sciencedirect.com/

- <u>http://www.mathwork.com/</u>
- 3. http://www.matlab.com/
- 4. http://dl.acm.org/dl.cfm
- 5. <u>http://ieeexplore.ieee.org/Xplore/guesthome.jsp</u>
- 6. http://www.emeraldinsight.com
- 7. <u>http://www.scopus.com/home.url</u>
- 8. http://link.springer.com/

	IX. Course Policies:
1.	Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2.	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3.	Exam Attendance/Punctuality: A student should attend the exam on time. He/she is permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam
4.	Assignments & Projects: In general one assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time, mostly one week after given the assignment.
5.	Cheating : For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.
6.	Plagiarism:

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	



	Plagiarism is the attending of a student the exam of a course instead of another student.						
	If the examination committee proved a plagiarism of a student, he/she will						
	disengaged from the Faculty. The final disengagement of the student from the Faculty						
	should be confirmed from the Student Council Affair of the university or according to						
	the university roles.						
	Other policies:						
	- Mobile phones are not allowed to use during a class lecture. It must be closed;						
7.	otherwise the student will be asked to leave the lecture room.						
/.	- Mobile phones are not allowed in class during the examination.						
	- Lecture notes and assignments might be given directly to students using soft or hard						
	copy.						

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.				
<u>By</u>	<u>Barakat</u>				
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi				
	Name of Reviewer from the Department: Assoc. Prof. Dr. Farouk Al-Fuhaidy				
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa				
	Assoc. Prof. Dr. Ahmed Mujahed				
	Asst. Prof. Dr. Munasar Alsubri				

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	

Huda Al-Emad

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

