

<u>38. Course Specification of Mechanical Vibrations</u>

	I. Course Identification and General Information:					
1.	Course Title:	Mech	Mechanical Vibrations.			
2.	Course Code & Number:	ME2	22			
			C.H			TOTAL
3.	Credit hours:	Th.	Seminar/Tu	Pr	Tr.	CR. HRS.
		2	2	-	-	3
4.	Study level/ semester at which this course is offered:	Third Year- Second Semester.				
5.	Pre –requisite (if any):	Mechanics of Machines.				
6.	Co –requisite (if any):	None.				
7.	Program (s) in which the course is offered:	Mechanical Engineering Program.			n.	
8.	Language of teaching the course:	English Language.				
9.	Location of teaching the course:	Mechanical Engineering Department.				
10.	Prepared By:	Asst. Prof. Dr. Abdullah Dhaiban			1	
11.	Date of Approval:					

II. Course Description:

The aims of this course are to provide students with the basic knowledge and skills of analysis and/or use of computer software of various mechanical systems, such as Matlab, and formulation of mathematical models of problems in vibrations. This course will also provide students with the ability to select and design the appropriate isolation, absorption, and control system of vibration for the application of various mechanical systems.

-	III. Alignment course intended learning outcomes (CILOs)		
a1	Recognize fundamental principles of mathematics, science and engineering necessary to solve vibration problems relevant to mechanical engineering fields.	A1	
a2	Explain concepts and principles of mechanical vibrations and characteristics of free and force damped and undamped vibration systems.	A2	

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

b1	Create equations of motions and develop models for a free and force damped and undamped vibration systems, find engineering solutions and realize physical systems in innovative ways.	B1
b2	Solve problems of one- and multi-DOF systems, free and force (harmonic) vibration, viscous and hysteric damping under general forcing condition.	B2
c1	Use analytical and/or computational methods, such as Matlab, to determine response of single-degree-of-freedom or two-degree of freedom vibration systems.	C1
c2	Apply vibration principles and analytical tools in the design of various engineering systems and devices.	C3
d1	Inspect the mechanical vibration systems used in daily life.	D3
d2	Show communication skills both orally and in writing technical reports.	D5

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

` ´	(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes Teaching strategies Assessme Strategie Strategie						
a1- Recognize fundamental principles of			Examinations,			
	mathematics, science and engineering	Lectures, Tutorials,	Homework			
necessary to solve vibration problems		Self-Learning	Presentations			
relevant to mechanical engineering		Problems Seminars				
fields.						
a2-	Explain concepts and principles of		Examinations,			
mechanical vibrations and		Lectures, Tutorials,	Homework			
characteristics of free and force		Self-Learning	Presentations			
dampe	ed and undamped vibration	Problems Seminars				
system	ns.					

(**B**) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
 b1- Create equations of motions and develop models for a free and force damped and undamped vibration systems, find engineering solutions and realize physical systems in innovative ways. 	Lectures, Tutorials, Self-Learning Problems Seminars	Examinations, Homework Presentations	
b2-Solve problems of one- and multi-DOFsystems, free and force (harmonic)vibration, viscous and hystericdampingunder general forcingcondition.	Lectures, Tutorials, Self-Learning Problems Seminars	Examinations, Homework Presentations	

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

c1- Use analytical and/or computational methods, such as Matlab, to determine response of single-degree-of- freedom or two-degree of freedom vibration systems.	Computer Laboratory, Seminars, Projects	Examinations, Laboratory Reports, Presentations, Individual and Group Project Reports.
c2- Apply vibration principles and analytical tools in the design of various engineering systems and devices	Tutorials, Computer Laboratory, Seminars, Projects	Examinations, Laboratory Reports, Presentations, Individual and Group Project Reports.

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

Teaching Strategies and Assessment Strategies.						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
d1- Inspect the mechanical vibration systems used in daily life.	Tutorials, Computer Laboratory, Seminars, Projects, Self-Learning Problems	Presentations, Reports. Attendance of Lectures and Tutorials				
d2- Show communication skills both orally and in writing technical reports.	Seminars, Computer Laboratory, Self- Learning Problems, Projects.	Attendance of Lectures and Tutorials Presentations, Reports				

IV	IV. Course Content:						
	A – Theoreti	ical Aspect:					
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours		
1.	Fundamentals of Vibration	a2, b1	 Basic Concepts of Vibrations Classification of Vibrations Vibration Analysis Procedure 	1	2		

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

			 Spring Elements, Mass Elements, Damping Elements. 		
2.	Harmonic Motion	a1, a2,b1,b2	 Vectorial Representation of Harmonic Motion Complex-Number Representation of Harmonic Motion, Complex Algebra, Operations on Harmonic Functions, Definitions and Terminology. 	1	2
3.	Harmonic Analysis	a1, a2,b1,b2, c1	 Fourier Series Expansion, Complex Fourier Series Frequency Spectrum, Time- and Frequency- Domain Representations, Examples Using MATLAB. 	1	2
4.	Free Vibration of Single- Degree-of- Freedom Systems	a1, a2,b1,b2,	 Free Vibration of an Undamped Translational System, Equation of Motion Using Newton S Second Law of Motion, Equation of Motion Using Other Methods, Equation of Motion of a Spring-Mass System in Vertical Position, Solution, Harmonic Motion. 	1	2
5.	Free Vibration of Single- Degree-of- Freedom Systems	a1, a2,b1,b2	 Free Vibration of an Undamped Torsional System, Response of First Order Systems and Time Constant, Rayleigh's Energy Method. 	1	2
6.	Free Vibration of Single-	a1, a2,b1,b2	 Free Vibration with Viscous Damping: Equation of Motion 	1	2

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

	Degree-of- Freedom Systems		 Logarithmic Decrement Energy Dissipated in Viscous Damping Torsional Systems with Viscous Damping. 		
7.	Harmonically Excited Vibration	a1, a2,b1,b2	 Equation of Motion Response Of Un-Damped System Under Harmonic Force. 	1	2
8.	Mid Term Exam	a1, a2,b1,b2, c1,d1	All Previous Topics	1	2
9.	Harmonically Excited Vibration	a1, a2,b1,b2	 Response of Damped System Under Harmonic Force Response of Damped System Under F(t) = Fe^{iωt} 	1	2
10.	Harmonically Excited Vibration	a1, a2,b1,b2	 Response of a Damped System Under the Harmonic Motion of the Base, Response of a Damped System Under Rotating Unbalance. 	1	2
11.	Vibration Under General Forcing Conditions	a1, a2,b1,b2	 Response Under a General Periodic Force First-Order Systems Second Order Systems. 	1	2
12.	Vibration Under General Forcing Conditions	a1, a2,b1,b2	 Response Under a Periodic Force of Irregular Form Response Under a Nonperiodic Force Response to an Impulse Response to a General Forcing Condition Response to Base Excitation. 	1	2
13.	Two-Degree- of-Freedom Systems	a1, a2,b1,b2	IntroductionEquations of Motion for Forced Vibration	1	2

Head of Quality Assurance Dean of the Faculty Academic Rector of Sana'a Department Unit Prof. Dr. Mohammed Development University AL-Bukhaiti Asst. Prof. Dr. Assoc. Prof. Dr. Center & Quality Prof. Dr. Al-Qassim Adel Ahmed Mohammad Mohammed Abbas Assurance Al-Shakiri Algorafi Assoc. Prof. Dr. Huda Al-Emad

16. Numbe	Final Exam r of Weeks /and	a2,b1,b2,c1, d1,d2	All Topics mester	1 16	2 32
		a1,			
15.	Vibration Control	a1, a2,b1,b2	 Vibration Nomograph and Vibration Criteria Reduction of Vibration at the Source Balancing of Rotating Machines. 	1	2
14.	Two-Degree- of-Freedom Systems	a1, a2,b1,b2	 an Undamped System. Torsional System Coordinate Coupling and Principal Coordinates Forced-Vibration Analysis 	1	2
			 Free Vibration Analysis of 		

B – Tutorial Aspect:						
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes		
1.	Fundamentals of Vibration	1	1	a1, a2,b1,b2,c2, d1, d2		
2.	Harmonic Motion	2	2	a1, a2,b1,b2, c2, d1, d2		
3.	Harmonic Analysis	1	1	a1, a2,b1,b2, c1		
4.	Free Vibration of Single-Degree- of-Freedom Systems	2	2	a1, a2,b1,b2, c2, d1, d2		
5.	Harmonically Excited Vibration	2	2	a1, a2,b1,b2, c2, d1, d2		
6.	Vibration Under General Forcing Conditions	2	2	a1, a2,b1,b2, c2, d1, d2		
7.	Two-Degree-of-Freedom Systems	2	2	a1, a2,b1,b2, c2, d1, d2		
8.	Vibration Control	2	2	a1, a2,b1,b2, c2, d1, d2		
Number of Weeks /and Units Per Semester		14	14			

C – Practical Aspect:				
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

1.	Matlab Lab 1: Harmonic Analysis	1	1	c1, c2, d1, d2
2.	Matlab Lab 2: Free Vibration of Single-Degree-of-Freedom Systems	2	2	c1, c2, d1, d2
3.	Matlab Lab 3: Harmonically Excited Vibration	2	2	c1, c2, d1, d2
4.	Matlab Lab 4: Vibration Under General Forcing Conditions	2	2	c1, c2, d1, d2
5.	Matlab Lab 5: Two-Degree-of- Freedom Systems	2	2	c1, c2, d1, d2
6.	Matlab Lab 6: Vibration Control	3	3	c1, c2, d1, d2
7.	Review	1	1	
8.	Final Practical Exam	1	1	c1, c2, d1, d2
Number of Weeks /and Units Per Semester		14	14	

V. Teaching strategies of the course:

- Lectures,
- Tutorials,
- Self-Learning Problems
- Seminars
- Computer Laboratory, and
- Projects

V	I. Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1	Exercises and Homework	a1, a2,b1,b2, c2, d1, d2	Weekly	10
2	Projects	a1, a2,b1,b2, c1,c2, d1, d2	14^{th}	15
3	Computer Laboratory Reports	c1, c2, d1, d2	weekly	10
4	Class Attendance & Participation.	a1, a2,b1,b2, c2, d1, d2	Weekly	5
	Total			40

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

VII. Schedule of Assessment Tasks for Students During the **Semester:**

No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment%	Aligned Course Learning Outcomes
1	Assignments	Weekly	40	27%	a1,a2,b1,b2,c1,c2,d1,d2
2	Mid-Term Exam	8 th week	20	13%	a1,a2,b1,b2, c2, d1, d2
3	Final Exam (Practical)	15 th week	15	10%	c1, c2, d1, d2
4	Final Exam (Theoretical)	16 th week	75	50%	a1, a2,b1,b2, c2, d1, d2
	Total		150	100	

VIII. Learning Resources:

Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. Rao, S.S. 2011, Mechanical Vibrations, 5th Edition, Pearson-Prentice Hall.
- 2. Grover, G. K., 2009, Mechanical Vibrations, Nem Chand and Bros, Roorkee.

2- Essential References.

- 1. Ambekar, A. G., 2006, Mechanical Vibrations and Noise Engineering, Prentice Hall of
 - India, New Delhi.
- 2. Kelly, S. G., 2007, Mechanical Vibrations, Schaum's Outlines, Tata McGraw Hill. New

Delhi.

3- Electronic Materials and Web Sites etc.

- 1. Dynamics and Vibrations Home Page.
- 2. https://webcache.googleusercontent.com/search?q=cache:9VINJBNdpgEJ:https:// cosmolearning.org/courses/mechanical-vibrations-537/+&cd=15&hl=en&ct=clnk

Course Policies: I.

Class Attendance:

- The student should be attending not less than 75% of total contact hours of the subject, 1 otherwise he will not able to take exam and be considered as an exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic.

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

	Tardy:
2	- For lateness in attending the class, the student will be initially notified. If he repeates
	late in attending class he will be considered absent.
	Exam Attendance/Punctuality:
3	- The student should attend the exam on time. He is permitted to attend the exam half one
	hour from exam beginning, after that he/she will not be permitted to take exam and he/she
	is considered absent in the exam. Assignments & Projects:
4	- In general one assignment is given after each chapter of a course. The student should
	submit the assignment on time, mostly one week after giving the assignment
_	Cheating:
5	- For cheating in exam, the student is considered as failure. In case the cheating is repeated
	three times during study the student will be disengaged from the Faculty
	Plagiarism:
	Plagiarism is the attending of the student the exam of a course instead of other student. If
6	the examination committee proved a plagiarism of a student, he will be disengaged from
	the Faculty. The final disengagement of the student from the Faculty should be confirmed
	from the Student Affair Council of the university.
	Other policies:
	- The mobile phone is not allowable to be used during class lecture. It must be switched
7	off, otherwise the student will be ordered to leave the lecture room.
	- The mobile phone is not allowed to be taken during the examination time.
	- Lecture notes and assignments may be given directly to students using soft or hard
L	copy.

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.
By	Barakat
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi
	Name of Reviewer from the Department: Assoc.Prof. Dr. Khalil Al-Hatab
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
	Assoc. Prof. Dr. Ahmed Mujahed
	Asst. Prof. Dr. Munasar Alsubri

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri	Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi	Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti	Academic Development Center & Quality Assurance Assoc. Prof. Dr.	Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas
			Huda Al-Emad	

38. Course Plan of Mechanical Vibrations

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Asst. Prof. Dr. Abdullah Dhaiban Office Hours						
Location& Telephone No.	774581887	37 SAT SUN MON TUE		WED	THU		
E-mail a,dhaiban@eng- sa.edu.ye adaiban2@gmail.com							

II. Course Identification and General Information:							
1.	Course Title:	Mech	Mechanical Vibrations				
2.	Course Number & Code:	ME22	22				
			C.H			TOTAL	
3.	Credit hours:	Th.	Seminar/Tu	Pr	Tr.	CR. HRS.	
		2	-	1	1	3	
4.	Study level/year at which this course is offered:	Third Year- Second Semester.					
5.	Pre –requisite (if any):	Mech	anics of Mach	ines.			
6.	Co –requisite (if any):	None					
7.	Program (s) in which the course is offered	Mechanical Engineering Program.					
8.	Language of teaching the course:	English Language.					
9.	System of Study:	Semesters.					
10.	Mode of delivery:	Lectures, Tutorials and Lab.					
11.	Location of teaching the course:	Mech	anical Engined	ering Dep	partme	ent.	

Head of Department	Quality Assurance Unit	Dean of the Faculty Prof. Dr. Mohammed	Academic Development	Rector of Sana'a University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

III. Course Description:

•

The aims of this course are to provide students with the basic knowledge and skills of analysis and/or use of computer software of various mechanical systems, such as Matlab, and formulation of mathematical models of problems in vibrations. This course will also provide students with the ability to select and design the appropriate isolation, absorption, and control system of vibration for the application of various mechanical systems.

IV. Intended learning outcomes (ILOs) of the course:

Brief summary of the knowledge or skill the course is intended to:

- **1.** Recognize fundamental principles of mathematics, science and engineering necessary to solve vibration problems relevant to mechanical engineering fields.
- **2.** Explain concepts and principles of mechanical vibrations and characteristics of free and force damped and undamped vibration systems.
- **3.** Create equations of motions and develop models for a free and force damped and undamped vibration systems, find engineering solutions and realize physical systems in innovative ways.
- **4.** Solve problems of one- and multi-DOF systems, free and force (harmonic) vibration, viscous and hysteric damping under general forcing condition.
- **5.** Use analytical and/or computational methods, such as Matlab, to determine response of single-degree-of-freedom or two-degree of freedom vibration systems.
- **6.** Apply vibration principles and analytical tools in the design of various engineering systems and devices.
- 7. Inspect the mechanical vibration systems used in daily life.
- 8. Show communication skills both orally and in writing technical reports.

V.	Course Content:					
•	• Distribution of Semester Weekly Plan Of course Topics/Items and Activities.					
A – Theoretical Aspect:						
Orde r	Topics List	Sub Topics List	Week Due	Contact Hours		

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

1.	Fundamentals of Vibration	 Basic Concepts of Vibrations Classification of Vibrations Vibration Analysis Procedure Spring Elements, Mass Elements, Damping Elements. 	1 st week	2
2.	Harmonic Motion	 Vectorial Representation of Harmonic Motion Complex-Number Representation of Harmonic Motion, Complex Algebra, Operations on Harmonic Functions, Definitions and Terminology. 	2 nd week	2
3.	Harmonic Analysis	 Fourier Series Expansion, Complex Fourier Series Frequency Spectrum, Time- and Frequency- Domain Representations, Examples Using MATLAB. 	3 rd week	2
4.	Free Vibration of Single-Degree-of- Freedom Systems	 Free Vibration of an Undamped Translational System, Equation of Motion Using Newton S Second Law of Motion, Equation of Motion Using Other Methods, Equation of Motion of a Spring- Mass System in Vertical Position, Solution, Harmonic Motion. 	4 th week	2
5.	Free Vibration of Single-Degree-of- Freedom Systems	 Free Vibration of an Undamped Torsional System, Response of First Order Systems and Time Constant, Rayleigh's Energy Method. 	5 th week	2
6.	Free Vibration of Single-Degree-of- Freedom Systems	 Free Vibration with Viscous Damping: Equation of Motion Logarithmic Decrement Energy Dissipated in Viscous Damping 	6 th week	2

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

		 Torsional Systems with Viscous Damping. 		
7.	Harmonically Excited Vibration	 Equation of Motion Response Of Un-Damped System Under Harmonic Force. 	7 th week	2
8.	Mid Term Exam	All Previous Topics	8 th week	2
9.	Harmonically Excited Vibration	 Response of Damped System Under Harmonic Force Response of Damped System Under F(t) = Fe^{iωt} 	9 th week	2
10.	Harmonically Excited Vibration	 Response of a Damped System Under the Harmonic Motion of the Base, Response of a Damped System Under Rotating Unbalance. 	10 th week	2
11.	Vibration Under General Forcing Conditions	 Response Under a General Periodic Force First-Order Systems Second Order Systems. 	11 th week	2
12.	Vibration Under General Forcing Conditions	 Response Under a Periodic Force of Irregular Form Response Under a Nonperiodic Force Response to an Impulse Response to a General Forcing Condition Response to Base Excitation. 	12 th week	2
13.	Two-Degree-of- Freedom Systems	 Introduction Equations of Motion for Forced Vibration Free Vibration Analysis of an Undamped System. 	13 th week	2
14.	Two-Degree-of- Freedom Systems	 Torsional System Coordinate Coupling and Principal Coordinates Forced-Vibration Analysis 	14 th week	2
15.	Vibration Control	 Vibration Nomograph and Vibration Criteria Reduction of Vibration at the Source 	15 th week	2

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

		 Balancing of Rotating Machines. 		
16.	Final Exam	All Topics	16 th week	2
Number of Weeks /and Units Per Semester			16	32

Head of Quality Assurance Dean of the Faculty Academic Prof. Dr. Mohammed Department Unit Development AL-Bukhaiti Asst. Prof. Dr. Assoc. Prof. Dr. Center & Quality Adel Ahmed Mohammad Assurance Al-Shakiri Algorafi Assoc. Prof. Dr.

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

Huda Al-Emad

B – Tutorial Aspect:				
Order	Topics List	Week Due	Contact Hours	
1.	Fundamentals of Vibration	1 st week	1	
2.	Harmonic Motion	2 nd - 3 rd weeks	2	
3.	Harmonic Analysis	4 th week	1	
4.	Free Vibration of Single-Degree-of-Freedom Systems	5 th - 6 th weeks	2	
5.	Harmonically Excited Vibration	7 th - 8 th weeks	2	
6.	Vibration Under General Forcing Conditions	9 th - 10 th weeks	2	
7.	Two-Degree-of-Freedom Systems	11 th - 12 th weeks	2	
8.	Vibration Control	$\frac{13^{th}-14^{th}}{week}$	2	
N	Number of Weeks /and Units Per Semester1414			

C – Practical Aspect:					
Order	Tasks/ Experiments	Week Due	Contact hours		
1.	Matlab Lab 1: Harmonic Analysis	2 nd week	1		
2.	Matlab Lab 2: Free Vibration of Single- Degree-of-Freedom Systems	3 th -4 th weeks	2		
3.	Matlab Lab 3: Harmonically Excited5th-6th weeksVibration5th-6th weeks		2		
4.	Matlab Lab 4: Vibration Under General Forcing Conditions	7 th -8 th weeks	2		
5.	Matlab Lab 5: Two-Degree-of-Freedom Systems	9 th -10 th weeks	2		
6.	Matlab Lab 6: Vibration Control	11 th -13 th weeks	3		
7.	Review	14 th week			
8.	Final Practical Exam	15 th week	1		
Nı	Number of Weeks /and Units Per Semester1414				

Head of	Quality Assurance	Dean of the Faculty
Department	Unit	Prof. Dr. Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti
Adel Ahmed	Mohammad	
Al-Shakiri	Algorafi	

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

VI. Teaching strategies of the course:

- Lectures,
- Tutorials,
- Self-Learning Assignments
- Seminars
- Computer Laboratory, and
- Projects

VII. Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark	
1	Exercises and Homework	a1, a2,b1,b2, c2, d1, d2	Weekly	10	
2	Projects	a1, a2,b1,b2, c1,c2, d1, d2	14 th week	15	
3	Laboratory Reports	c1, c2, d1, d2	weekly	10	
4	Class Attendance & Participation.	a1, a2,b1,b2, c2, d1, d2	Weekly	5	
	Total			40	

VIII. Schedule of Assessment Tasks for Students During the Semester:

No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment%
1	Assignments	Weekly	40	27%
2	Mid-Term Exam	8 th week	20	13%
3	Final Exam (Practical)	15 th week	15	10%
4	Final Exam (Theoretical)	16 th week	75	50 %
	Total			100

IX. Learning Resources:

• Written in the following order: (Author – Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

- 1. Rao, S.S. 2011, Mechanical Vibrations, 5th Edition, Pearson-Prentice Hall.
- 2. Grover, G. K., 2009, Mechanical Vibrations, Nem Chand and Bros, Roorkee.

2- Essential References.

1. Ambekar, A. G., 2006, Mechanical Vibrations and Noise Engineering, Prentice Hall of

India, New Delhi.

2. Kelly, S. G., Mechanical Vibrations, Schaum's Outlines, Tata McGraw Hill, New Delhi (2007).

3- Electronic Materials and Web Sites etc.

- 1. Dynamics and Vibrations Home Page.
- 2. <u>https://webcache.googleusercontent.com/search?q=cache:9VINJBNdpgEJ:https://c</u> osmolearning.org/courses/mechanical-vibrations-537/+&cd=15&hl=en&ct=clnk

Π	. Course Policies:
1	Class Attendance: - The student should be attending not less than 75% of total contact hours of the subject, otherwise he will not able to take exam and be considerd as an exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic.
2	Tardy: - For lateness in attending the class, the student will be initially notified. If he repeates late in attending class he will be considered absent.
3	Exam Attendance/Punctuality: - The student should attend the exam on time. He is permitted to attend the exam half one hour from exam beginning, after that he/she will not be permitted to take exam and he/she is considered absent in the exam.
4	Assignments & Projects: - In general one assignment is given after each chapter of a course. The student should submit the assignment on time, mostly one week after giving the assignment
5	Cheating:For cheating in exam, the student is considered as failure. In case the cheating is repeated three times during study the student will be disengaged from the Faculty
6	Plagiarism: Plagiarism is the attending of the student the exam of a course instead of other student. If the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Affair Council of the university.

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

Other policies:

7

- The mobile phone is not allowable to be used during class lecture. It must be switched off, otherwise the student will be ordered to leave the lecture room.
- The mobile phone is not allowed to be taken during the examination time.
- Lecture notes and assignments may be given directly to students using soft or hard copy.

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	