

<u>39. Course Specification of Analog Control Systems</u>

	I. Course Identification and General Information:								
1.	Course Title:	Analo	g Control S	Systems					
2.	Course Code & Number:	CCE3	32						
			C.	Н		Total			
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total			
			2	2	-	4			
4	Study level/ semester at which this course	Fourth Vear/ First Semester							
4.	is offered:	Tourun Tean/Thist Semester							
5.	Pre –requisite (if any):	Signal	l and <mark>Syste</mark>	<mark>ms</mark> (CNE	E216)				
6.	Co –requisite (if any):	None.							
7	Program (s) in which the course is offered:	Power Engineering and Electrical							
/•	Program (s) in which the course is offered.		machines						
8.	Language of teaching the course:	Englis	sh						
9.	Location of teaching the course:	Class							
10	Prenared By:	Asst. Prof. Dr. Amin Abdelghani							
10.	riepareu by.	Mahyob							
11.	Date of Approval								

II. Course Description:

This introductory course, with lab, provides a theoretical and practical overview of classical analog control methods such as PID control and lag-lead control on automatic control. Students will learn how to apply the control theory to real engineering problems with Matlab and through laboratory experiments. Topics covered include characteristics, performance and design of feedback control systems in both time and frequency domains and examples of industrial

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	III. Course Intended learning outcomes (CILOs)	Referenced
	of the course	PILOs
a1	Identify the components of the control system, the effects produced by the different controllers and the suitable controller for a specified task	A1,A2,A3
a2	Determine the effect of a control action and its parameters on the stability, sensitivity, steady states and transient responses	A1
b1	Analyze the characteristics of dynamics systems and their performances.	B2,B3
b2	Assess system stability accuracy and sensitivity.	B1,B2,B3
c1	Design the different types of compensators and controllers based on the transient and steady state response criteria	C1,C2
c2	Apply experimentally and computer Aided Tools, (MATLAB, Simulink) in analyzing dynamics control systems and different controllers.	C3,C4
d1	Interact effectively with peers in the group	D1,D4
d2	Present project results to a technical audience and subdivide a project into relevant sub problems and solve it in a given time frame as a team.	D1,D3,D5

(A) A Under	(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes		Teaching strategies	Assessment Strategies			
a1.	Identify the components of the control system, the effects produced by the different controllers and the suitable controller for a specified task	Lectures, Demonstrations, Software Simulation, Interactive class discussion.	Assignments, Oral Presentations, Quizzes, Tests, Written Exams.			
a2. controparam	Determine the effect of a ol action and its neters on the stability,	Lectures, Demonstrations, Software Simulation, Interactive class discussion.	Assignments, Oral Presentations,			

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

sensitivity, steady states	and	Quizzes, Tests,
transient responses		Written Exams.

(**B**) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

	8 8		
Cou	rse Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1.	Analyze the characteristics of dynamics systems and their performances.	Lectures, Demonstrations, Software Simulation, Interactive class discussion.	Assignments, Oral Presentations, Quizzes, Tests, Written Exams.
b2. and	Assess system stability accuracy sensitivity.	Lectures, Demonstrations, Software Simulation, Interactive class discussion.	Assignments, Oral Presentations, Quizzes, Tests, Written Exams.

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
c1. Design the different types of compensators and controllers based on the transient and steady state response criteria	Lectures, Demonstrations, Software Simulation, Interactive class discussion.	Assignments, Oral Presentations, Quizzes, Tests, Written Exams.		
c2.ApplyexperimentallyandcomputerAidedTools,(MATLAB,Simulink)inanalyzingdynamicscontrolsystems anddifferent controllers.	Lectures, Demonstrations, Software Simulation, Interactive class discussion.	Assignments, Oral Presentations, Quizzes, Tests, Written Exams.		

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
d1. Interact effectively with peers in the group	Demonstrations, Software Simulation Interactive class discussion.	Assignments, Oral Presentations			
d2.Presentprojectresultstoatechnicalaudience(Communication) andsubdivide aproject into relevant subproblemsand solve it in a given timeframe as ateam. (Teamwork).	Software Simulation, Interactive class discussion.	Assignments, Oral Presentations.			

]	IV. Course Content:					
	A – Theoretic	cal Aspect:				
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours	
1.	Introduction to Control Systems	a1, a2, b1, b2,	 Examples of Control Systems Regulator control system and position (servomechanism) control system SISO, MIMO systems Closed-Loop Control Versus Open-Loop Control Design of Control Systems 	1	2	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2.	Performance (response) of Control Systems	a1, a2, b1, b2	 Test Input Signals Performance of First-Order Systems Performance of Second- Order Systems Effect of feedback on the performance of the system Control system specifications Effects of adding a new Pole or Zero on the System Response The s-Plane Root Location and the Transient Response The response of high order systems The Simplification of Linear Systems Performance Indices 	2	4
3.	Characteristics of Feedback Control Systems	b1,b2,	 Configurations of feedback control systems Effects of controllers on the control system Stability analysis of control system: Relation between pole locations and stability Routh-Hurwitz criteria for stability Sensitivity of Control Systems to Parameter Variations 	2	4

Prepared byHead of Department
Asst. Prof. Dr. AdelQuality Assurance Unit
Assoc. Prof. Dr.Dean of the Faculty
Prof. Dr. MohammedAcademic Development
Center & Quality Assurance
Assoc. Prof. Dr. Huda Al-EmadAhmed Al-ShakiriMohammad AlgorafiAL-BukhaitiAssoc. Prof. Dr. Huda Al-Emad

Sana'a University Faculty of Engineering Electrical Engineering Department B.Sc. of Computer and Control Engineering

			 Rejection of disturbance 		
	 Control of the Transient 				
			Response		
			Steady-State Error		
			 The Root Locus Concept 		
			(angle and magnitude		
			criteria) and Procedure		
			Stability and the root locus		
	The Root	a1, a2, b1,	Transient response and root	1	2
4.	Locus	b2, d2	locus	1	2
	Allalysis		Negative Gain Root Locus		
			 Implementation of 		
	controllers using operational amplifier				
			amplifier		
			 Frequency Response 		
			Plots:(Bod diagrams, Polar		
			plot, Log Magnitude versus		
			Phase plot)		
			 Frequency Response 		
			Measurements		
	Frequency		 Stability in the Frequency 		
=	response a2, b1, b2,	a2, b1, b2,	Domain (absolute stability	2	C
5.	analysis	d1	"Nyquist criterion", Relative	3	0
			stability)		
			 Performance Specifications 		
			in the Frequency Domain		
			 Closed loop frequency 		
			response		
			 Relations between 		
			performance Specifications		

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			in the time and Frequency		
			Domains		
6.	Feedback Control Design	b1,b2,c1,c2	 Approaches to System Design Design of: Phase lead, phase lag, lag-lead and PID Controllers using the Root Locus Design of: Phase lead, phase lag, lag-lead and PID Controllers using the Frequency Response System Design Using Integration Networks Systems with a Prefilter Design for Deadbeat Response 	3	б
7.	Modern Control Design (State variables design)	All CILO's	 Pole placement design Ackermann's formula State Estimation (observer) Closed loop characteristic equation Reduced order estimator Controllability and Observability Systems with inputs 	2	4
Numbe	r of Weeks /and	Units Per Se	mester	14	28

B – Tutorial Aspect:

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes
1.	 Linear and nonlinear systems Introduction to Control Systems SISO, MIMO systems Open-Loop and Closed-Loop Simple examples of Control Systems. 	a1, a2, b1, b2,	1	2
2.	 2. Performance (response) of Control Systems: Test Input Signals Performance of First-Order Systems Performance of Second-Order Systems Effect of feedback signal on the performance of the system response Control system specifications and pole locations) Effects of a Third Pole and a Zero on the Second-Order System Response The response of high order systems 		2	4
3.	 <u>Characteristics of Feedback Control Systems:</u> Effects of controllers on transient and steady responses) Stability analysis of control system:(, Routh-Hurwitz criterion for stability) Sensitivity of Control Systems Disturbance rejection Steady-State Error 	a1, a2, b1, b2, d1, d2	2	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

-				
4.	 <u>The Root Locus Method:</u> Root locus plot Stability and the root locus Transient response and root locus Negative Gain Root Locus Implementation of controllers using operational amplifier 	a1, a2, b1, b2, d1, d2	1	2
5.	 Frequency Response Methods: Frequency Response Plots:(Bod diagrams, Polar plot, Log Magnitude versus Phase plot) Minimum phase and non-minimum phase systems Frequency Response Measurements Stability in the Frequency Domain (Nyquist criterion, Relative stability margins) 	a1, a2, b1, b2, d1, d2	2	4
6.	 Feedback Control Design Approaches to System Design Design of: Phase lead, phase lag, lag-lead and PID Controllers using the Root Locus Design of: Phase lead, phase lag, lag-lead and PID Controllers using the Frequency Response System Design Using Integration Networks Systems with a Prefilter Design for Deadbeat Response 	a1, a2, b1, b2, c1, c2, d1, d2	2.5	5
7.	<u>Modern Control Design (State variables design)</u> <u>Modern)</u> • Pole placement design • Ackermann's formula • State Estimation (observer) • Closed loop characteristic equation	a1, a2, b1, b2, c1, c2, d1, d2	1.5	3

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Reduced order estimator			
	 Controllability and Observability 			
	• Systems with inputs			
8.	 <u>MatLab – Control Toolbox:</u> Computer Usage MATLAB software with Control Toolbox 	a1, a2, b1, b2, c1, c2, d1, d2	2	4
	Number of Weeks /and Units Per Semester			28

C - Pi	ractical Aspect:			
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes
1.	 Introduction to Control System Lab Lab safety rules and regulations <u>Controlled systems</u> The controlled system, definition of items Types of controlled systems, characteristics, examples 	1	2	a1,b1
2.	 <u>Controllers</u> Definitions, characteristics <u>P Controller</u> Characteristic of P controller The proportional (P) controller response for various controlled system transfer coefficient Relation between reference variable and proportionality coefficient Kp 	1	2	b1,b2,c1,c2
3.	Delayed closed loop control system of first order and second order Definition of elements, Producing delay elements	1	2	b1,b2,c1,c2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Determination of controlled system TF			
	coefficients			
	Controllability of the system			
4.	 PI controller characteristic I element, Response of I controller to positive and negative signals Characteristics of PI controller, Step response of PI controller, Parallel and Series configuration 	1	2	b1,b2,c1,c2
5.	 <u>PD controller</u> Characteristics of PD controller, Explanation of the derivative action, Step response, of PI controller, Parallel and Series configuration 	1	2	a1,b2,c1,c2,d1
6.	 <u>PID controller</u> Characteristics of PID controller step response ramp response parallel series configurations 	1	2	a2,b2,c1,c2,d2
7.	P,PI,PD,PIDcontrollers(stability,optimization)•Stability and stability margins•Stability and stability margins•Maximum overshoot•Settling time•Optimization		2	b1,b2,c1,c2
8.	 P.PI,PD,PID controllers (Ziegler- Nichols recommendations) The critical proportionality coefficient Kpcri The critical oscillation period Tcri Setting recommendations according to Ziegler and Nichols 	1	2	b1,b2,c1,c2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	P,PI,PD,PID controllers (parallel and			
	series configurations)			
	• Advanced calculations for parallel			
9.	configuration (mathematical	1	2	b1,b2,c1,c2
	controller)			
	 Advanced calculations for series 			
	configuration (technical controller)			
	P,PI,PD,PID controllers (closed loop			
	control of fixed value, sequence and			
	<u>program)</u>			
	• Fixed value control, Sequence			
	control, Time Program control			
	• PID controller in a PT-4 controlled		_	
10.	system	1	2	b1,b2,c1,c2
	• PI controller in a PT-4 controlled			
	system			
	• PD controller in a PT-4 controlled			
	system			
	• P controller in a PT-4 controlled			
	system			
	Frequency response measurements:			
	• Measure and plot the frequency			
	response of a RLC circuit,			
11.	• determine the transfer function of	1	2	a2,b2,c1,c2
	the system			
	• determine the parameters of the			
	circuits			
	Using MATLAB, Control Toolbox, and			
12.	<u>Simulink</u> :			
	• Study the time and frequency response			
	of dynamic system	1	2	b1,b2,c1,c2,d2
	• Determine the speed of response and			
	accuracy			
	Root locus and Bode Plots			

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	 Parameter Identification, P, PI, PD/PID Control, Position Control, regulator control Steady State Error and Stability Analysis 			
13.	 Projects: Student make groups of 3-4 students each group is required to choose a lab project (build, simulate, make a proto type) of a control system. The flowing are some examples of industrial control systems Temperature Control with a two-Position Controller Temperature Control with a PID Controller Liquid Level Control with a two-Position Controller Liquid Level Control with a PID Controller DC. Motor Speed Control Voltage Regulation of a dc generator Position Control System Speed Control System 	2	4	b1,b2,c1,c2,d1
Nu	mber of Weeks /and Units Per Semester	14	28	
V. Teaching strategies of the course:				
 Lectures Interactive class discussion Demonstration Software Simulation 				

VI	. Assignments:			
Order	Assignments	Aligned CILOs (symbols)	Week Due	Mark

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

5.	MATLAB Applications	b2, c2, d1, d2	14	10
4.	Pole placement design and Ackermann's formula	b1, c2, d2	12	2.5
3.	Design of: Phase lead, phase lag, lag-lead and PID Controllers using the Frequency Response	c1, d1, d2	8	2.5
2.	Effects of controllers on transient and steady responses)	a2, c2,d2	4	2.5
1.	Open-Loop and closed-Loop	a1, c1,d2	2	2.5

	VII.Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1	Quizzes	4^{th} , 7^{th} , 10^{th} , and 13^{th}	20	10%	a1,a2,b1,b2
2	Assignments	Weekly	20	10%	a1,a2,b1,b2,d2
3	Mid-Term exam	7 th	30	15%	a1,a2,b1,b2
4	Practical exam	15 th	30	15%	b1,b2,c1,c2
5	Final Exam theory	16 th	100	50%	a1,a2,b1,b2
	Total		200	100%	

VIII. Learning Resources:

Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- **1.** Charles L. Philips and Royce Harbor "Feedback control systems", fourth edition, Prentice Hall.
- **2.** Richard C. Dorf and Robert H. Bishop, Modern Control Systems (12th Edition), Prentice Hall.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2- Essential References.

- 1. K. Ogata, 1997, Modern Control Engineering, 3rd Edition, Prentice Hall.-
- 2. Norman S. Nise, 2011, Control Systems Engineering (Sixth edition).
- **3.** Supplemental materials Schaum's outline of theory and problems of feedback and control systems, by McGraw Hill Publisher.

3- Electronic Materials and Web Sites etc.

- 1. Modelica Association (2000). ModelicaTM A Unified Object-Oriented Language for Physical Systems Modeling. Tutorial Version 1.4 (ModelicaTutorial14.pdf). Available from: https://modelica.org/documents/
- **2.** MapleSim Video Tutorial: Modelica Video lectures available form: http://www.youtube.com/watch?v=reehU1dzeDc.
- 3. Simulink-Matlab tutorial for beginners Video lectures available form:
- 4. <u>http://www.youtube.com/results?search_query=simulink+tutorial+for+beginners&oq=simulink&gs_l=youtube.1.9.0110.337429.342148.0.351270.8.8.0.0.0.0738.2481.3j3-2j2j0j1.8.0...0.0...1ac.1.11.youtube.iIK7kMX6hfo-</u>

IX. Course Policies:

	Class Attendance:
1.	-A student should attend not less than 75 % of total hours of the subject; otherwise he
	will not be able to take the exam and will be considered as exam failure. If the student is
	absent due to illness, he/she should bring an approved statement from university Clinic
	Tardy:
2.	- For late in attending the class, the student will be initially notified. If he repeated
	lateness in attending class he will be considered as absent.
	Exam Attendance/Punctuality:
2	- A student should attend the exam on time. He is Permitted to attend an exam half one
з.	hour from exam beginning, after that he/she will not be permitted to take the exam and
	he/she will be considered as absent in exam.
4.	Assignments & Projects:

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	- The assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time.
	Cheating:
5.	- For cheating in exam, a student will be considered as failure. In case the cheating is
	repeated three times during his/her study the student will be disengaged from the Faculty.
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
6.	If the examination committee proved a plagiarism of a student, he will be disengaged
	from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university.
	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed,
7.	otherwise the student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek	
By	A. Barakat	
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi	
	Name of Reviewer from the Department: Assoc. Prof. Dr. Radwan Al bouthigy	
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa	
	Assoc. Prof. Dr. Ahmed Mujahed	
	Asst. Prof. Dr. Munasar Alsubri	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

<u>39. Template for Course Plan of Analog Control Systems</u>

Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Dr. Amin Abdelghani H. Mahyob	Office Hours					
Location& Telephone No.	770249615	SAT	SUN	MON	TUE	WED	THU
E-mail	amin.mahyob@gmail.com						

	II. Course Identification and General Information:							
1.	Course Title:	Analo	g Control S	Systems				
2.	Course Code & Number:	CCE3	32					
			C.	H		Total		
3.	Credit hours:	Th.	Tu.	Pr	Tr.	Total		
			2	2	-	4		
4.	Study level/ semester at which this course is offered:	Fourth year/First Semester						
5.	Pre –requisite (if any):	Signal	and system	ms (CNE	216)			
6.	Co –requisite (if any):	None.						
7.	Program (s) in which the course is offered:	Electrical power and machines						
8.	Language of teaching the course:	English						
9.	System of Study:	Regular						
10.	Mode of delivery:	Semesters.						
11.	Location of teaching the course:	Class						

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description:

This introductory course, with lab, provides a theoretical and practical overview of classical analog control methods such as PID control and lag-lead control on automatic control. Students will learn how to apply the control theory to real engineering problems with Matlab and through laboratory experiments. Topics covered include characteristics, performance and design of feedback control systems in both time and frequency domains and examples of industrial.

IV.Intended learning outcomes (ILOs) of the course:					
• Brie	f summary of the knowledge or skill the course is intended to develop:				
1.	Identify the components of the control system, the effects produced by the				
	different controllers and the suitable controller for a specified task				
2.	Determine the effect of a control action and its parameters on the stability,				
	sensitivity, steady states and transient responses				
3.	Analyze the characteristics of dynamics systems and their performances.				
4.	Assess system stability accuracy and sensitivity.				
5.	Design the different types of compensators and controllers based on the transient				
	and steady state response criteria				
6.	Apply experimentally and computer Aided Tools, (MATLAB, Simulink) in				
	analyzing dynamics control systems and different controllers.				
7.	Interact effectively with peers in the group				
8.	Present project results to a technical audience and subdivide a project into				
	relevant sub problems and solve it in a given time frame as a team.				

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V. Course Content:							
	A – Theoretical Aspect:						
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact hours			
1.	Introduction to Control Systems	 Examples of Control Systems Regulator control system and position (servomechanism) control system SISO, MIMO systems Closed-Loop Control Versus Open- Loop Control Design of Control Systems 	1 st	2			
2.	Performance (response) of Control Systems	 Test Input Signals Performance of First-Order Systems Performance of Second-Order Systems Effect of feedback on the performance of the system Control system specifications Effects of adding a new Pole or Zero on the System Response The s-Plane Root Location and the Transient Response The response of high order systems The Simplification of Linear Systems Performance Indices 	2 nd ,3 rd	4			
3.	Characteristics of Feedback Control Systems	 Configurations of feedback control systems Effects of controllers on the control system Stability analysis of control system: 	4 th , 5 th	4			

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

-				
		 Relation between pole locations and stability Routh-Hurwitz criteria for stability Sensitivity of Control Systems to Parameter Variations Rejection of disturbance Control of the Transient Response Steady-State Error 		
4.	The Root Locus Analysis	 The Root Locus Concept (angle and magnitude criteria) and Procedure Stability and the root locus Transient response and root locus Negative Gain Root Locus Implementation of controllers using operational amplifier 	6 th	2
5.	Midterm exam	•	7 th	2
6.	Frequency response analysis	 Frequency Response Plots:(Bod diagrams, Polar plot, Log Magnitude versus Phase plot) Frequency Response Measurements Stability in the Frequency Domain (absolute stability "Nyquist criterion", Relative stability) Performance Specifications in the Frequency Domain Closed loop frequency response Relations between performance Specifications in the time and Frequency Domains 	8 th ,9 th ,10 th	6
_	Feedback		$11^{\text{th}}.12^{\text{th}}$	-

Prepared by Head of Department

Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

B – Tutorial Aspect:						
Order	Tasks/ Experiments	Contact hours	Learning Outcomes			
	• Linear and nonlinear systems					
	• Introduction to Control Systems	1 st	2			
1.	• SISO, MIMO systems					
	 Open-Loop and Closed-Loop 					
	• Simple examples of Control Systems.					
2	Performance (response) of Control Systems:	2nd 3rd	4			
2.	• Test Input Signals	2,5	4			

Prepared by Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Performance of First-Order Systems		
	• Performance of Second-Order Systems		
	• Effect of feedback signal on the performance of the		
	system response		
	• Control system specifications and pole locations)		
	• Effects of a Third Pole and a Zero on the Second-Order		
	System Response		
	• The response of high order systems		
	• Reduced model of Linear Systems		
	Characteristics of Feedback Control Systems:		
	• Effects of controllers on transient and steady responses)		
	• Stability analysis of control system:(, Routh-Hurwitz		
3.	criterion for stability)	4^{th} , 5^{th}	4
	• Sensitivity of Control Systems		
	• Disturbance rejection		
	Steady-State Error		
	The Root Locus Method:		
	• Root locus plot		
4	• Stability and the root locus	cth	2
4.	• Transient response and root locus	0	Z
	Negative Gain Root Locus		
	• Implementation of controllers using operational amplifier		
	Frequency Response Methods:		
	• Frequency Response Plots:(Bod diagrams, Polar plot, Log		
	Magnitude versus Phase plot)		
5.	• Minimum phase and non-minimum phase systems	7^{th} , 8^{th}	4
	• Frequency Response Measurements		
	• Stability in the Frequency Domain (Nyquist criterion,		
	Relative stability margins)		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Feedback Control Design		
	 Approaches to System Design 		
	• Design of: Phase lead, phase lag, lag-lead and PID		
	Controllers using the Root Locus	oth 1 oth	
6.	• Design of: Phase lead, phase lag, lag-lead and PID	$9^{\rm m}, 10^{\rm m}$	5
	Controllers using the Frequency Response	11"	
	• System Design Using Integration Networks		
	• Systems with a Prefilter		
	• Design for Deadbeat Response		
	Modern Control Design (State variables design) Modern)		
	• Pole placement design		
	• Ackermann's formula		
-	• State Estimation (observer)	11^{th}	2
7.	 Closed loop characteristic equation 	,12 th	3
	Reduced order estimator		
	 Controllability and Observability 		
	• Systems with inputs		
	MatLab – Control Toolbox:	13 th	
8.	 Computer Usage MATLAB software with Control 	14 th	4
	Toolbox	,	
	Number of Weeks /and Units Per Semester	14	28

C - Practical Aspect: (if any)							
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes			
1.	 Introduction to Control System Lab Lab safety rules and regulations <u>Controlled systems</u> The controlled system, definition of items 	1 st	2	a1,b1			

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	• Types of controlled systems, characteristics, examples			
2.	 <u>Controllers</u> Definitions, characteristics <u>P Controller</u> Characteristic of P controller The proportional (P) controller response for various controlled system transfer coefficient Relation between reference variable and proportionality coefficient Kp 	2 nd	2	b1,b2,c1,c2
3.	Delayed closed loop control system of firstorder and second orderDefinition of elements, Producing delayelementsDetermination of controlled system TFcoefficientsControllability of the system	3 rd	2	b1,b2,c1,c2
4.	 PI controller characteristic I element, Response of I controller to positive and negative signals Characteristics of PI controller, Step response of PI controller, Parallel and Series configuration 	4 th	2	b1,b2,c1,c2
5.	PD controller• Characteristics of PD controller,• Explanation of the derivative action,• Step response, of PI controller,Parallel and Series configuration	5 th	2	a1,b2,c1,c2,d1
6.	PID controller • Characteristics of PID controller • step response • ramp response	6 th	2	a2,b2,c1,c2,d2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	 parallel series configurations 			
	P,PI,PD,PID controllers (stability,			
	optimization)			
7	 Stability and stability margins 	7 th	2	h1 h2 c1 c2
/.	Maximum overshoot	/	2	01,02,01,02
	• Settling time			
	Optimization			
	P,PI,PD,PID controllers (Ziegler- Nichols			
	<u>recommendations)</u>			
	• The critical proportionality			
8.	coefficient Kpcri	8^{th}	2	b1,b2,c1,c2
	The critical oscillation period Tcri			
	• Setting recommendations according			
	to Ziegler and Nichols			
	P,PI,PD,PID controllers (parallel and			
	<u>series configurations)</u>			
	• Advanced calculations for parallel	- 41-	_	
9.	configuration (mathematical	9 ^m	2	b1,b2,c1,c2
	controller)			
	• Advanced calculations for series			
	configuration (technical controller)			
	<u>P,PI,PD,PID controllers (closed loop</u>			
	control of fixed value, sequence and			
	<u>program)</u>			
	• Fixed value control, Sequence			
	DID controllor in a DT 4 controlled			
10.	• The controller in a TT-4 controlled	10 th	2	b1 b2 c1 c2
	• PI controller in a PT-4 controlled	10	2	01,02,01,02
	system			
	• PD controller in a PT-4 controlled			
	system			
	• P controller in a PT-4 controlled			
	system			

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Frequency response measurements:			
	• Measure and plot the frequency			
	response of a RLC circuit,			
11.	• determine the transfer function of	11 ^m	2	a2,b2,c1,c2
	the system			
	• determine the parameters of the			
	circuits			
	Using MATLAB, Control Toolbox, and			
	<u>Simulink</u> :			b1,b2,c1,c2,d2
	• Study the time and frequency response			
	of dynamic system		2	
	• Determine the speed of response and			
12.	accuracy	12 th		
12.	Root locus and Bode Plots			
	• Parameter Identification, P, PI,			
	PD/PID Control, Position Control,			
	regulator control			
	• Steady State Error and Stability			
	Analysis			
	Projects:			
	Student make groups of 3-4 students each			
	group is required to choose a lab project			
	(build, simulate, make a proto type) of a			
	control system. The nowing are some			
	Tomperature Control with a two Position			
	Controller			
13.	- Temperature Control with a PID Controller	$13^{th}, 14^{th}$	4	b1,b2,c1,c2,d1
	- Liquid Level Control with a two-Position			
	Controller			
	- Liquid Level Control with a PID Controller			
	- DC. Motor Speed Control			
	- Voltage Regulation of a dc generator			
	- Position Control System			
	- Speed Control System			

Prepared byHead of Department
Asst. Prof. Dr. AdelQuality Assurance Unit
Assoc. Prof. Dr.Dean of the Faculty
Prof. Dr. Mohammed
AL-BukhaitiAhmed Al-ShakiriMohammad AlgorafiAL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Number of Weeks /and Units Per Semester	14	28	
---	----	----	--

VI. Teaching strategies of the course:

- Lectures
- Interactive class discussion
- Demonstration
- Software Simulation

VII. Assignments:					
Order	Assignments	Aligned CILOs (symbols)	Week Due	Mark	
1.	Open-Loop and closed-Loop	a1, c1,d2	2	2.5	
2.	Effects of controllers on transient and steady responses)	a2, c2,d2	4	2.5	
3.	Design of: Phase lead, phase lag, lag-lead and PID Controllers using the Frequency Response	c1, d1, d2	8	2.5	
4.	Pole placement design and Ackermann's formula	b1, c2, d2	12	2.5	
5.	MATLAB Applications	b2, c2, d1, d2	14	10	
Total					

•	VIII. Schedule of Assessment Tasks for Students During the					
	Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment		
1.	Quizzes	4th,7th,10th, and 13th	20	10%		
2.	Assignments	Weekly	20	10%		
3.	Mid-Term exam	7 th	30	15%		

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

4.	Practical exam	15 th	30	15%
5.	Final Exam theory	16 th	100	50%
	Total		200	100%

IX. Learning Resources:			
Written in the following order: (Author - Year of publication – Title – Edition – Place of publication –			
1- Required Textbook(s) (maximum two) .			
 Charles L. Philips and Royce Harbor "Feedback control systems", fourth edition, Prentice Hall. Richard C. Dorf and Robert H. Bishop, Modern Control Systems (12th Edition), Prentice Hall 			
2- Essential References.			
 K. Ogata, 1997, Modern Control Engineering, 3rd Edition, Prentice Hall Norman S. Nise, 2011, Control Systems Engineering (Sixth edition). Supplemental materials - Schaum's outline of theory and problems of feedback and control systems, by McGraw Hill Publisher. 			
3- Electronic Materials and Web Sites etc.			
1. Modelica Association (2000). ModelicaTM - A Unified Object-Oriented Language for Physical Systems Modeling. Tutorial Version 1.4 (ModelicaTutorial14.pdf). Available from: https://modelica.org/documents/			
2. MapleSim Video Tutorial: Modelica Video lectures available form: http://www.youtube.com/watch?v=reehU1dzeDc.			
 3. Simulink-Matlab tutorial for beginners Video lectures available form: 4. <u>http://www.youtube.com/results?search_query=simulink+tutorial+for+beginners&oq</u> 			
<u>=simulink&gs_l=youtube.1.9.0110.337429.342148.0.351270.8.8.0.0.0.0.738.2481.3j3</u> -2j2j0j1.8.00.01ac.1.11.youtube.iIK7kMX6hfo-			

X. Course Policies:

1. Class Attendance:

Prepared by Head of Department Qu Asst. Prof. Dr. Adel Ahmed Al-Shakiri M

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	-A student should attend not less than 75 % of total hours of the subject; otherwise he				
	will not be able to take the exam and will be considered as exam failure. If the student is				
	absent due to illness, he/she should bring an approved statement from university Clinic				
	Tardy:				
2.	- For late in attending the class, the student will be initially notified. If he repeated				
	lateness in attending class he will be considered as absent.				
	Exam Attendance/Punctuality:				
2	- A student should attend the exam on time. He is Permitted to attend an exam half one				
з.	hour from exam beginning, after that he/she will not be permitted to take the exam and				
	he/she will be considered as absent in exam.				
	Assignments & Projects:				
4.	- The assignment is given to the students after each chapter; the student has to submit				
	all the assignments for checking on time.				
	Cheating:				
5.	- For cheating in exam, a student will be considered as fail. In case the cheating is				
	repeated three times during his/her study the student will be disengaged from the Faculty.				
	Plagiarism:				
	Plagiarism is the attending of a student the exam of a course instead of another student.				
6.	If the examination committee proved a plagiarism of a student, he will be disengaged				
	from the Faculty. The final disengagement of the student from the Faculty should be				
	confirmed from the Student Council Affair of the university.				
	Other policies:				
	- Mobile phones are not allowed to use during a class lecture. It must be closed,				
7	otherwise the student will be asked to leave the lecture room				
/ ·	- Mobile phones are not allowed in class during the examination.				
	Lecture notes and assignments my given directly to students using soft or hard conv				
	Lecture notes and assignments my given directly to students using soft of hard copy				

40. Course Specification of Computer Architecture and Organization

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	I. Course Identification and General Information					
1.	Course Title:	Computer Architecture and Organization				
2.	Course Code &Number:	CCE31	5			
		TermationComputer Architecture and OrganizationCCE315C.HTOTALTh. Tu. Pr. Tr.22223Fourth Year/ First SemesterMicroprocessors & Assembly Language (CCE214)None.B.Sc. of Computer and Control EngineeringArabic & EnglishClass Room (Faculty of Engineering)				
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	IOIAL
		2	2	-	-	3
4.	Study level/ semester at which this course is offered:	Fourth Year/ First Semester				
5.	Pre –requisite (if any):	Microprocessors & Assembly Language (CCE214)			У	
6.	Co –requisite (if any):	None.				
7.	Program (s) in which the course is offered:	B.Sc. of Computer and Control Engineering		rol		
8.	Language of teaching the course:	Arabic & English				
9.	Location of teaching the course:	Class Room (Faculty of Engineering)			ineering)	
10.	Prepared By:	Prof. Abdul Raqib Abdo Asaad				
11.	Date of Approval					

II. Course Description

This course covers computer architecture, organization, performance, computer components, computer memory system, I/O modules, instruction sets, processor structure and function, control unit operation, and parallel organization.

This course depends on lectures and tutorials parts. In addition, it depends on Microprocessor and Assembly Language, and Programming Language (II) as prerequisites.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Aims

This course aims to:

- 1. Understand the difference between computer organization and computer architecture.
- **2.** Understand the concepts of computer performance and how to evaluate the performance of a digital computer.
- 3. Gain knowledge about computer memory system and I/O subsystems.
- 4. Understand the structure and function of computer processor.
- 5. Have knowledge of parallel organization and parallel processing.

	IV.Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Classify and list the different types of computer organizations and architectures.	A1 (E)
a2	Recognize the efficiency design of a digital computer and its units.	A2 (E)
b1	Compose the main units of a digital computer.	B1 (E)
b2	Evaluate the different solutions to enhance computer performance.	B2, B4 (E)
c1	Design the main units of a digital computer according to the selected instruction set, and to meet desired performance.	C2 (E)
c2	Use simulation programs to design digital computer units.	C4 (E)
d 1	Perform specific tasks individually and make a discussion group.	D1, D2, D4, D5
d2	Follow the standards to achieve his reports and presentations.	(E)

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies

Course Intended Learning	Tooching stratogies	Assessment Stratogies
Outcomes	reaching strategies	Assessment Strategies

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

al Classify and list the different types of computer organizations and architectures.	 Lectures Dialogue and discussion Self-learning 	 Written Test and Quizzes Reports evaluation Presentations evaluation
a2 Recognize the efficiency design of a digital computer and its units.	LecturesTutorials	Written Test and QuizzesReports evaluation

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies

	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1	Compose the main units of a digital computer.	 Lectures Dialogue and discussion Tutorials 	 Written Test and Quizzes Reports evaluation
b2	Evaluate the different solutions to enhance computer performance.	LecturesProblems solving	 Written Test and Quizzes Reports evaluation

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies

Course Intended Learning Outcomes		Teaching strategies	Assessment Strategies	
c1	Design the main units of a	Lectures	Written Test and	
	digital computer according to	 Dialogue and 	Quizzes	
the	selected instruction set, and to	discussion.	Coursework	
	meet desired performance.	 Design exercises 	assignments	

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		Lectures	Written Test and
c2	Use simulation programs to	Dialogue and	Quizzes
	design digital computer units.	discussion.	Coursework
		Design exercises	assignments

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
d1 Perform specific tasks individually and make a discussion group.	TutorialsSelf-learningDialogue and discussion	 Observation and interviews Presentations evaluation Reports evaluation 			
d2Followthestandardstoachievehisreportsandpresentations.	 Presentation Self- learning 	Report, Presentations evaluationReports evaluation			

V.	Course Cont	ent			
A – The	eoretical Aspect				
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours
1.	Introduction to Computer Architecture and Design	a1, a2, b1, b2, c1	 Computer organization Architecture Function Designing for performance Computer component Interconnection structure 	2	4
2.	Computer Memory System	a1, a2, b1, b2, c1, d1, d2	 Memory system (Internal Memory, External Memory) Cache memory principle Elements of cache design 	3	6

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Sana'a University Faculty of Engineering Electrical Engineering Department B.Sc. of Computer and Control Engineering

3.	I/O subsystems	a1, a2, b1, b2, c1, d1, d2	Input subsystemOutput subsystem	2	4
4.	Instruction Sets	a1, a2, b1, b2, c1	 Characteristics Function Addressing modes Format 	2	4
5.	Processor Structure and Functions	a1, a2, b1, b2, c1	Processor organizationRegister organization	2	4
6.	Control Unit Operations	a2, b1, b2, c1	 Fetch cycle Indirect cycle Execute cycle Interrupt cycle Instruction cycle 	2	4
7.	Introduction to Parallel Organization and Processing	a1, a2, b1, b2	 Parallel organization Parallel processing 	1	2
Number of Weeks /and Units Per Semester			14	28	

B - Tu	B - Tutorial Aspect					
Order	Topics List	Number of Weeks	Contact hours	Learning Outcomes		
1.	Introduction to Computer Architecture and Design (Computer organization, Architecture, Function, Designing for performance, Computer component, Interconnection structure)	2	4	a1, a2, b1, b2, c1		
2.	Computer Memory System (Memory system (Internal Memory, External Memory), Cache memory principle, Elements of cache design)	3	6	a1, a2, b1, b2, c1, d1, d2		

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

3.	Input / Output subsystems	2	4	a1, a2, b1, b2, c1, d1, d2
4.	Instruction Sets (Characteristics, Function, Addressing modes, Format)	2	4	a1, a2, b1, b2, c1, c2
5.	Processor Structure and Functions (Processor organization, Register organization)	2	4	a1, a2, b1, b2, c1
6.	Control Unit Operations (Fetch cycle, Indirect cycle, Execute cycle, Interrupt cycle, Instruction cycle)	2	4	a2, b1, b2, c1, c2
7.	Introduction to Parallel Organization and Processing	1	2	a1, a2, b1, b2
Number of Weeks /and Units Per Semester		14	28	

VI. Teaching strategies of the course

- Lectures
- Dialogue and discussion
- Lectures
- Tutorials
- Problems solving
- Design exercises
- Self-learning

	VII. Assignments			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1	Project Researches	a1, d1, d2	3 rd	5
2	Problems and Exercises Reports	a2, b1, b2, c1, c2, d1, d2	Weekly	5
	Total			10

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V	VIII. Schedule of Assessment Tasks for Students during the					
	Semester					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Researches	3 rd	7.5	5%	a1, d1, d2	
2.	Problems and Exercises Reports	Weekly	7.5	5%	a2, b1, b2, c1, c2, d1, d2	
3.	Quizzes	$4^{th}, 6^{th},$ and 14^{th}	15	10%	a1, a2, b1, b2, c1	
4.	Midterm Exam	8 th	30	20%	a1, a2, b1, b2, c1	
5.	Final Exam	16 th	90	60%	a1, a2, b1, b2, c1	
	Total 150 100%					

IX.Learning Resources
Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).
1- Required Textbook(s) (maximum two)
 W. Stalling, (2003), "Computer Organization & Architecture: Designing for Performance", Prentice Hall. M. Morris R. Mano (1992), "Computer System Architecture", Third Edition, Pearson.
2- Essential References
 John P. Hayes (1997), "Computer Architecture and Organization", Third Edition. McGraw-Hill.
3- Electronic Materials and Web Sites etc.

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	X. Course Policies
1.	Class Attendance: The regulations are applied, which state that a student who desires more than 25% of
	attending lectures is deprived of the final examination.
2.	If the student is late for attending the lecture time, his degree will be deducted for each delay in the attendance grades.
3	Exam Attendance/Punctuality:
5.	The student must rely on himself for exam.
4.	Assignments & Projects:
	None.
5.	Cheating: If the student is caught cheating, he will be deprived of the exam in the subject.
	Plagiarism:
6.	In the case of student impersonation, the Vice Dean foe Student Affairs will be referred to
	the College's Student Affairs Committee the necessary action.
	Other Policies:
7.	If the student dose not attend more than 75% in the process, he will be deprived of the
	practical exam.

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr.
By	Tarek A. Barakat
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi
	Name of Reviewer from the Department: Asst. Prof. Dr. Adel Ahmed Al-Shakiri
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
	Assoc. Prof. Dr. Ahmed Mujahed
	Asst. Prof. Dr. Munasar Alsubri

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad