

40. Course Specification of Digital Signal Processing

-	I. Course Identification and General Information:					
1.	Course Title:	Digital Signal Processing				
2.	Course Code & Number:	CNE31	7			
			C.	H.		Total
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	C.H.
		2	2	2	-	4
4.	Study level/ semester at which this course is offered:	4 th Level/ 1 st Semester				
5.	Pre –requisite (if any):	Signals and Systems (CNE216), Communications Principles (CNE2211), Programming Language 2 (C/C++) (CCE152) Matlab.			22211), -)	
6.	Co –requisite (if any):	None				
7.	Program (s) in which the course is offered:	Communication and Network Engineering				
8.	Language of teaching the course:	English				
9.	Location of teaching the course:	Faculty	of Engir	ieering, S	ana'a U	niversity
10.	Prepared By:	Assoc. Prof. Dr. Mohammed A. Saeed Al- Mekhlafi			aeed Al-	
11.	Date of Approval	2020				

II. Course Description:

This course introduces the basic concepts and principles of Digital Signal Processing (DSP) and their applications. Topics include: Review of discrete-time (DT) signals and systems; Correlation, convolution, sampling theorem, aliasing, and quantization, frequency-domain representation of discrete-time signals and systems, circular convolution, decimation and interpolation, the discrete-time Fourier transform (DTFT), the discrete Fourier transform (DFT), the fast Fourier transform (FFT), the z-transform, linear phase transfer functions, digital filter structures, finite-impulse response (FIR) digital filter design, infinite-impulse

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

response (IIR) digital filter design, digital processing of continuous-time signals, and applications of digital signal processing in communications.

	III. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Demonstrate the basic signal processing techniques and algorithms and ability to apply them in signal processing and system analysis.	A1
a2	Define the periodic sampling of continuous signals and the relationship between Fourier transforms of the sampled continuous signal and the resulting discrete-time signal.	A1, A2
b1	Analyze the impulse- and frequency-response of a discrete LTI system by using DSP tools such as z-transform and DFT techniques.	B2
b2	Analyze discrete-time signals in time and transform domains, using tools such as FFT and inverse FFT.	В3
c1	Implement different types of digital filters to meet arbitrary specifications.	C2
c2	Use computers and MATLAB to create, analyze, and process signals, and to simulate and analyze systems.	C4
d1	Write signal processing algorithms and methods with minimal supervision and communicate the outcomes as a written report.	D4

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

	-		
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
 a1 – Demonstrate understanding of the basic signal processing techniques and algorithms and ability to apply them in signal processing and system analysis. 	 Interactive Lectures Class Discussions Problem Solving Independent readings 	 Assignments Quizzes Midterm Exam Final Exam 	
a2 – Define the periodic sampling of continuous signals and the relationship between Fourier transforms of	Interactive LecturesClass Discussions	AssignmentsQuizzesMidterm Exam	

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

the	sampled continuous signal and the	 Problem Solving 	 Final Exam
	resulting discrete-time signal.	 Independent 	
		readings	

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

0		
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1 – Analyze the impulse- and	 Interactive Lectures 	 Assignments
frequency- response of a discrete LTI	 Class Discussions 	 Quizzes
system by using DSP tools such as z-	 Problem Solving 	 Midterm Exam
transform and DFT techniques.	 Independent readings 	 Final Exam
b? Analyza discreta tima signals in	 Interactive Lectures 	 Assignments
time and transform domains using	 Class Discussions 	 Quizzes
tools such as EET and inverse EET	 Problem Solving 	 Midterm Exam
tools such as FT-1 and inverse FF1.	 Independent readings 	 Final Exam

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
c1 – Implement different types of digital filters to meet arbitrary specifications.	 Interactive Lectures Class Discussions Problem Solving Matlab Simulations Independent readings 	 Assignments Quizzes Midterm Exam Final Exam Written Reports 			
c2 – Use computers and MATLAB to create, analyze, and process signals, and to simulate and analyze systems.	 Interactive Lectures Class Discussions Computer base Learning Problem Solving Independent readings 	 Assignments Quizzes Midterm Exam Final Exam Written Reports 			

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d1 - Write signal processing algorithms and methods with minimal supervision and communicate the outcomes as a written report.	 Web-based Investigations Independent readings 	 Written Reports

IV. Course Content:							
	A – Theoretical Aspect:						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours		
1.	Review of Discrete-Time Signals and Systems	a1	 Discrete-Time Sequences, - Discrete-Time Systems, Linear Time-Invariant Systems (LTI), Impulse Response, Convolution in Time, Properties of LTI Systems 	1	2		
2.	Sampling and Reconstruction	a2	 Periodic Sampling, the Concept of Aliasing, Quantization, Coding of Quantized Samples, Frequency-Domain Representation of Sampling, Reconstruction of Band- Limited Signals, Changing the Sampling Rate of Discrete Signals, Digital-to-Analog Conversion 	2	4		
3.	z-Transform and its Inverse	a1, b1	 The Direct z-Transform, Properties of the z- Transform, 	3	6		

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

			 Poles and Zeros, Pole Location and Time- Domain Behavior for Causal Signals, The System Function of a Linear Time-Invariant System, The Inverse z-Transform, Analysis of Linear Time- Invariant Systems in the z- 		
4.	Discrete Fourier Transform (DFT)	a1, b1, c1	 Domain Understanding the DFT Equation, The DFT Properties, Inverse DFT, Zero Padding and Frequency- Domain Sampling, Interpreting the DFT Using the Discrete-Time Fourier Transform, Linear and Circular Convolution 	2	4
5.	Fast Fourier Transform (FFT) and FFT analysis	a1, b2, c1	 Relationship of the FFT to the DFT, Hints on Using FFTs in Practice, Block Convolution, The Goertzel Algorithm, Decimation in Time and in Frequency, FFT Analysis. 	2	4
6.	Basic structures of IIR- and FIR filters	a1, c1	 Filter Structures (direct form I & II), Signal Flow Graph Representations, 	2	4

Head of Quality Assurance Dean of the Faculty Academic Rector of Sana'a University Prof. Dr. Mohammed Prof. Dr. Al-Qassim Mohammed Department Unit Development AL-Bukhaiti Asst. Prof. Dr. Assoc. Prof. Dr. Center & Quality Abbas Adel Ahmed Al-Mohammad Algorafi Assurance Shakiri Assoc. Prof. Dr. Huda Al-Emad

			 IIRSystems, 		
			 Transposed Forms, 		
			 FIR Systems 		
7.	Design of Finite Impulse Response (FIR) Filters	a1, c2	 Design of FIR Filters Using the Kaiser Window, The Parks-McClellan Algorithm, Minimum Weighted Mean- 	1	2
			Squared Error Criterion		
8.	Design of Infinite Impulse Response (IIR) Filters	a1, c2	 Design of Butterworth Chebyshev Type I IIR Filters, Comparison of the Performance of FIR and IIR Filters 	1	2
Number of Weeks /and Units Per Semester			14	28	

B - Tutorial Aspect:						
Order	Tutorial Skills List	Number of Weeks	С.Н.	CILOs		
1.	 Discrete-Time Signals and Systems Discrete-Time Sequences Discrete-Time Systems Linear Time-Invariant Systems (LTI) Impulse Response Convolution in Time Properties of LTI Systems 	2	4	al		
2.	 Sampling and Reconstruction Periodic Sampling, the Concept of Aliasing Quantization Coding of Quantized Samples Frequency-Domain Representation of Sampling 	2	4	a2		

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

	Reconstruction of Band-Limited Signals			
	• Changing the Sampling Rate of Discrete			
	Signals			
	Digital-to-Analog Conversion			
	z-Transform and its Inverse			
	• The Direct z-Transform			
	• Properties of the z-Transform			
	• Poles and Zeros			
	• Pole Location and Time-Domain Behavior			
3.	for Causal Signals	2	4	a1, b1
	• The System Function of a Linear Time-			
	Invariant System			
	• The Inverse z-Transform			
	• Analysis of Linear Time -Invariant Systems			
	in the z-Domain			
	Discrete Fourier Transform (DFT)			
	 Understanding the DFT Equation 			
	The DFT Properties			
	• Inverse DFT			a1 b1
4.	 Zero Padding and Frequency-Domain 	2	4	c1
	Sampling			•••
	• Interpreting the DFT Using the Discrete-			
	Time Fourier Transform			
	Linear and Circular Convolution			
	Fast Fourier Transform (FFT) and FFT analysis			
	• Relationship of the FFT to the DFT			
	 Hints on Using FFTs in Practice 			a1 b2
5.	Block Convolution	2	4	c1
	• The Goertzel Algorithm			
	• Decimation in Time and in Frequency			
	FFT Analysis			
	Basic structures of IIR- and FIR filters			
6.	• Filter Structures (direct form I & II)	1	2	a1, c1
	Signal Flow Graph Representations			

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

	• IIRSystems			
	Transposed Forms			
	• FIR Systems			
	Design of Finite Impulse Response (FIR) Filters			
7.	 Design of FIR Filters Using the Kaiser Window The Parks-McClellan Algorithm Minimum Weighted Mean-Squared Error Criterion 	2	4	a1, c2
8.	 Design of Infinite Impulse Response (IIR) Filters Design of Butterworth Chebyshev Type I IIR Filters Comparison of the Performance of FIR and IIR Filters 	1	2	a1, c2
Number	Number of Weeks /and Units Per Semester			

C - Practical Aspect: Computer Laboratory						
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes		
1.	Introduction to MATLAB	1	2	c2		
2.	Write MATLAB codes:i) For verifying sampling theorem.ii) To represent basic signals like: Unit Impulse, Ramp, Unit Step, Exponential.	1	2	a1, c2		
3.	 Write MATLAB codes to: i) Generate discrete sine and cosine signals with given sampling frequency. ii) Represent complex exponential as a function of real and imaginary part. 	1	2	a1, c2		
4.	 Write MATLAB codes to: i) Determine impulse and step response of two vectors using MATLAB. ii) Perform convolution between two vectors using MATLAB. 	1	2	a1, b2, c2, d1		

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

5.	Write a MATLAB code to perform cross correlation between two vectors using MATLAB	1	2	a1, b2, c2, d1
6.	Write a MATLAB code to compute DFT and IDFT of a given sequence using MATLAB.	1	2	a1, b1, b2, c2, d1
7.	Write a MATLAB code to perform linear convolution of two sequence using DFT using MATLAB.	1	2	a1, b1, c2, d1
8.	Write a MATLAB code to determine z-transform from the given transfer function and its ROC using MATLAB.	1	2	a1, b1, c2, d1
9.	Write a MATLAB code to design a Type 1 Chebyshev IIR highpass filter using MATLAB.	1	2	a1, c1, c2, d1
10.	Write a MATLAB code to design an IIR Elliptic low pass filter using MATLAB.	1	2	a1, b1, c2, d1
11.	Write a MATLAB code to design an IIR Butterworth bandpass filter using MATLAB.	1	2	a1, b1, c2, d1
12.	Write MATLAB codes to generate rectangular, Hamming, Hanning, Blackman, and Kaier windows using MATLAB.	1	2	a1, b1, b2, c1, c2, d1
13.	Write a MATLAB code to design low pass filter using the Kaiser window using MATLAB.	1	2	a1, b1, c2, d1
14.	Write a MATLAB code to study coefficient quantization effects on the frequency response of	1	2	a1, a1, b2, c1, c2, d1

V. Teaching strategies of the course:

a cascade form IIR filter using MATLAB.

Number of Weeks /and Units Per Semester

- **Interactive Lectures**
- Class discussions
- **Problem Solving**
- Computer-based Learning
- Independent readings
- Web based Investigations

Unit

Head of Quality Assurance Department Asst. Prof. Dr. Assoc. Prof. Dr. Adel Ahmed Al-Mohammad Algorafi Shakiri

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

14

28

Matlab Simulations

VI. Assignments:					
No	Assignments	Aligned CILOs	Week Due	Mark	
1.	Problems on Discrete-Time Signals and Systems, & Sampling and Reconstruction	a1, a2	3 rd	2	
2.	Problems on z-Transform and its Inverse	a1, b1	6 th	2	
3.	Problems on Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT	a1, b1, b2, c1,d1	10^{th}	2	
4.	Problems on Design of Finite Impulse Response (FIR) Filters	a1, c1, c2,d1	13 th	2	
5.	Problems on Design of Infinite Impulse Response (IIR) Filters	a1, c1, c2,d1	15 th	2	
	Total			10	

VII	VII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1.	Assignments	3 rd , 6 th , 10 th , 13 th , 15 th	10	5%	a1, a2, b1, b2, c1, c2, d1		
2.	Quizzes	4 th , 13 th	20	10%	b1, b2, c1, c2		
3.	Attendance & Participation	Weekly	10	5%	al		
4.	Lab Reports	Weekly	20	10%	b1, b2, c1, c2		
5.	Midterm Exam	7 th	20	10%	a1, a2, b1		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

6.	Final Exam	16 th	120	60%	a1, a2, b1, b2, c1, c2
Total		200	100%		

	VIII. Learning Resources:					
	• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).					
1	1- Required Textbook(s) (maximum two).					
	 Sanjit K. Mitra, 2011, "Digital Signal Processing: A computer-based approach", Fourth Edition, USA, McGraw Hill. 					
2	2- Essential References.					
	1. V. Oppenheim, R. W. Schafer, 1999, "Discrete-Time Signal Processing",					
	Second Edition, USA, Prentice Hall.					
	2. J. G. Proakis and D.G. Manolakis, 2014, "Digital Signal Processing", Fourth					
	Edition, UK, Pearson.					
	3. Richard G. Lyons, 2011, "Understanding digital signal processing", Prentice					
	Hall PTR, Third Edition, USA, Pearson Education.					
3	- Electronic Materials and Web Sites etc.					
	1. Goggling the Internet					

	IX. Course Policies:				
1.	Class Attendance: - The students should have more than 75% of attendance according to rules and regulations of the faculty.				
2.	Tardy:The students should respect the timing of attending the lectures. They should attend within 15 minutes from starting of the lecture.				
3.	 Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam. 				

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

4.	Assignments & Projects:
	- The assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time.
5.	Cheating:
	- If any cheating occurred during the examination, the student is not allowed to
	continue and he has to face the examination committee for enquires.
	Plagiarism:
6.	- If one student attends the exam on another behalf; he will be dismissed from the
	faculty according to the policy, rules and regulations of the university.
	Other policies:
	- All the teaching materials should be kept out the examination hall and mobile
-	phones are not allowed.
7.	- Mutual respect should be maintained between the student and his teacher and also
	among students. Failing in keeping this respect is subject to the policy, rules and
	regulations of the university.

Head of Quality Assurance Dean of the Faculty Academic Rector of Sana'a University Prof. Dr. Mohammed Prof. Dr. Al-Qassim Mohammed Department Unit Development AL-Bukhaiti Asst. Prof. Dr. Assoc. Prof. Dr. Center & Quality Abbas Adel Ahmed Al-Mohammad Algorafi Assurance Shakiri Assoc. Prof. Dr.

Huda Al-Emad

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek			
By	A. Barakat			
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi			
	Name of Reviewer from the Department: Asst. Prof. Dr. Mohammed Al-Suraby			
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa			
	Assoc. Prof. Dr. Ahmed Mujahed			
	<u>Asst. Prof. Dr. Munasar Alsubri</u>			

Head ofQuality AssuranceDean ofDepartmentUnitProf. Dr.Asst. Prof. Dr.Assoc. Prof. Dr.AL-EAdel Ahmed Al-Mohammad AlgorafiShakiriShakiri

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad