

42. Course Specification of Thermodynamics - II

	I. Course Identification and General Information:						
1.	Course Title:	Thern	Thermodynamics - II.				
2.	Course Code & Number:	ME 252.					
		C.H TOTAL			TOTAL		
3.	Credit Hours:	Th.	Seminar/Tu	Pr	Tr ·	CR. HRS.	
			2	-	-	3	
4.	Study level/ semester at which this course is offered:	Third Year - Second Semester					
5.	Pre –requisite (if any):	Thermodynamics - I					
6.	Co –requisite (if any):	None.					
7.	Program (s) in which the course is offered:	Mechanical Engineering Program.					
8.	Language of teaching the course:	English Language.					
9.	Location of teaching the course:	Mechanical Engineering Department.			nent.		
10.	Prepared By:	Asst. Prof. Dr. Abduljalil Al-Abidi.					
11.	Date of Approval:						

II. Course Description:

This course covers irreversibility and combustion. Thermodynamic principles are applied to the analysis of gas power generation cycles, steam power cycles, refrigeration, and air-conditioning systems (including Rankine Cycle, vapor compression cycle, Otto cycle, Diesel cycle, Brayton cycle). Thermodynamic analysis of non-reacting and reacting mixtures of Thermodynamic relations. Mixtures and solutions. Chemical reactions and combustion.

	Referenced PILOs	
a1	outcomes (CILOs) Describe the thermodynamics principles of power generation, refrigeration, air-conditioning, and combustion systems.	
a2	Identify general principles of design and analysis of the power generation, refrigeration, air-conditioning, and combustion systems.	A.2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

b1	Analyze process involving energy and mass balances of power generation, refrigeration, air-conditioning, and combustion systems.	B.1
b2	Explore the first law, second law of thermodynamics to engineering processes of the power generation, refrigeration, air-conditioning, and combustion.	B.2
c1	Solve problems in the power generation, refrigeration, air-conditioning, and combustion systems	C.1
c2	Calculate efficiency and coefficient of performance of power generation, refrigeration, air-conditioning, and combustion systems	C.2
d1	Evaluate effective communication skill through oral and written modes.	D.1
d2	Justify ideas and work in a team in an efficient and effective manner under controlled supervision or independently.	D.2

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
a1- Describe the thermodynamics principles of power generation, refrigeration, air- conditioning, and combustion systems.	Lectures, Tutorial. Class Activity, Interactive, Class Discussion. Problem-Based Learning.	Homework and Assignments. Written Tests. (Mid and Final Terms Exam). Coursework Activities. Quizzes.				
a2- Identify general principles of design and analysis of the power generation, refrigeration, airconditioning, and combustion systems.	Lectures, Tutorial Class Activity, Interactive Class Discussion, Exercises and Homework, Problem-Based Learning.	Homework and Assignments. Written Tests. (Mid and Final Terms Exam). Coursework Activities. Quizzes.				

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
b1. Analyze process involving energy and mass balances of power generation, refrigeration, airconditioning, and combustion systems	Lectures, Tutorial Class Activity, Interactive Class Discussion, Exercises and Homework, Problem-Based Learning.	Homework and Assignments. Written Tests. (Mid and Final Terms Exam). Coursework Activities. Quizzes.	
b2. Explore the first law, second law of thermodynamics to engineering processes of the power generation, refrigeration, airconditioning, and combustion.	Lectures, Tutorial Class Activity, Interactive Class Discussion, Exercises and Homework, Problem-Based Learning.	Home Works and Assignments. Written Tests. (Mid and Final Terms Exam). Coursework Activities. Quizzes.	

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Lea Outcomes	rning Tea	ching strategies	Assessment Strategies		
c1 Solve problems in power generation, refrige air-conditioning, a combustion system	Class Interaction, and and H	res, Tutorial Activity, ctive Class ssion, Exercises omework, em-Based ing.	Homeworkand assignments Written Tests. (Mid and Final Terms Exam). Coursework Activities. Quizzes.		
c2 Calculate efficien	·	res, Tutorial	and Assignments. Written Tests.		
of power generation, refrigeration, air conditioning, and	Interac Discus	Activity, ctive Class ssion, Exercises roblem-Based	(Mid and Final Terms Exam). Coursework Activities.		
combustion systems. Learning. Quizzes.					

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d1. Evaluate effective communication skill through oral and written modes.	Lectures, Tutorial Class Activity, Interactive Class Discussion, Exercises and Homework, Problem- Based Learning.	Written Tests. Homework and Assignments Coursework Activities Report/Project/ Practical Lab Sessions.
d2. Justify ideas and work in team in an efficient and effective manner under controlled supervision or independently.	Lectures, Interactive Class Discussion, Self-Study Assignments and Homework.	Written Tests. Homework and Assignments Coursework Activities Report/Project/ Practical Lab Sessions.

IV.	IV. Course Content:						
	A – Theoretical Aspect:						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours		
1.	Gas Power Cycles.	a1,a2,b1.b2, c1,c2 d1,d2	Concepts of Gas Power Cycles and their Applications: Otto cycle, Diesel cycle, Brayton cycle, Jet-propulsion cycles.	3	6		
2.	Steam Power Cycles.	a1,a2,b1.b2, c1,c2 d1,d2	Concepts of Vapor Power Cycles and their Applications: Rankine Cycle for Steam Power Plants, Reheat Rankine Cycle, Regenerative Rankine Cycle.	3	6		
3.	Refrigeration Cycles.	a1,a2,b1.b2, c1,c2 d1,d2	Concepts of Refrigeration Cycles and their Applications: Refrigerators and Heat Pumps,	1	2		

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			Vapor-Compression Refrigeration Cycle. Selection of the Right Refrigerant. Heat Pump Systems. Gas Refrigeration Cycles.		
4.	Mid-Term Exam.	a1,a2,b1.b2, c1,c2	The First 3 Chapters.	1	2
5.	Refrigeration Cycles.	a1,a2,b1.b2, c1,c2 d1,d2	Concepts of Refrigeration Cycles and their Applications: Refrigerators and Heat Pumps, Vapor-Compression Refrigeration Cycle. Selection of the Right Refrigerant. Heat Pump Systems. Gas Refrigeration Cycles.	1	2
6.	Gas Mixtures.	a1,a2,b1.b2, c1,c2 d1,d2	Composition of a Gas Mixture. P-V-T Behavior of Gas Mixtures. Thermodynamic Properties of Gas Mixtures.	2	4
7.	Air Conditioning.	a1,a2,b1.b2, c1,c2 d1,d2	Dry and Atmospheric Air. Specific and Relative Humidity of Air. Dew-point and Wet- Bulb Temperatures. The Psychometric Chart. Air- Conditioning Processes. Wet Cooling Towers.	2	4
8.	Chemical Reactions and Combustion.	a1,a2,b1.b2, c1,c2 d1,d2	Fuels, Combustion and their Applications. Theoretical and Actual Combustion Processes. Enthalpy of Formation and Enthalpy of Combustion. Steady-Flow and Closed Reacting Systems. First law Analysis of Reacting Systems. Adiabatic Flame Temperature.	2	4

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

9.	Final Exam	a1,a2,b1.b2, c1,c2	Second-Law Analysis of Reacting Systems. All the Chapters.	1	2
Numbe	r of Weeks /and	d Units Per Se	mester	16	32

B - Tu	B - Tutorial Aspect:						
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes			
1.	Tutorial: Gas Power Cycles.	3	6	a1, a2, b1, b2, c1, c2, d1, d2			
2.	Tutorial: Steam Power Cycles.	3	6	a1, a2, b1, b2, c1, c2, d1, d2			
3.	Tutorial: Refrigeration Cycles.	2	4	a1, a2, b1, b2, c1, c2, d1, d2			
4.	Tutorial: Gas Mixtures.	2	4	a1, a2, b1, b2, c1, c2, d1, d2			
5.	Tutorial: Air Conditioning.	2	4	a1, a2, b1, b2, c1, c2, d1, d2			
6.	Tutorial: Chemical Reactions and Combustion.	2	4	a1, a2, b1, b2, c1, c2, d1, d2			
Numb	per of Weeks /and Units Per Semest	28					

V. Teaching strategies of the course:

- 1- Lectures.
- 2- Tutorials.
- 3- Team Work (Group Learning).
- 4- Seminar/ Project/Presentation.
- 5- Problem Based Learning.
- 6- Interactive Class Discussions.

7	VI. Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Homework 1	a1, a2, b1, b2, c1, c2, d1, d2	2 nd	0.75
2.	Homework 2	a1, a2, b1, b2, c1, c2, d1, d2	3 rd	0.75
3.	Homework3	a1, a2, b1, b2, c1, c2, d1, d2	4 th	0.75
4.	Homework 4	a1, a2, b1, b2, c1, c2, d1, d2	5 th	0.75
5.	Homework5	a1, a2, b1, b2, c1, c2, d1, d2	6 th	0.75
6.	Homework6	a1, a2, b1, b2, c1, c2, d1, d2	7 th	0.75
7.	Homework7	a1, a2, b1, b2, c1, c2, d1, d2	8 th	0.75
8.	Homework 8	a1, a2, b1, b2, c1, c2, d1, d2	9 th	0.75
9.	Homework9	a1, a2, b1, b2, c1, c2, d1, d2	10 th	0.75
10.	Homework 10	a1, a2, b1, b2, c1, c2, d1, d2	11 th	0.75
·		Total		7.5

VII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Homework.	Weekly	7.5	5 %	b.1,b.2,c1,c2 d.1, d.2	
2.	Project (Single/Group).	13	7.5	5 %	a1,a1,b.1,b.2, d.1, d.2	
3.	Quizzes.	4, 12	15	10 %	a.1, a.2, b1,b.2,	
4.	Mid-Term Exam.	8	30	20 %	a.1, a.2, b1,b.2,	
5.	Final Exam.	16	90	60 %	a.1, a.2, b1,b.2,	
	Total:	150	100 %			

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

1- Required Textbook(s) (maximum two).

- 1- Çengel, Yunus A. Boles, Michael A.| Kanoğlu, Mehmet, 2019-Thermodynamics: An Engineering Approach 9th Edition- United States of America McGraw-Hill Education.
- 2- Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey., 2018- Fundamentals of Engineering Thermodynamics (9 th Edition), John Wiley.

2- Essential References.

- 1-Borgnakke, C. and Sonntag, R. E., 2009. Fundamentals of Thermodynamics, 7 th Ed., John Wiley & Sons.
- 2- T D Eastop; A McConkey, 2009. Applied Thermodynamics for Engineering Technologists
- 5 th Edition, Pearson Education.Ltd.

3- Electronic Materials and Web Sites etc.

1.https://www.coursera.org/learn/thermodynamics-intro#syllabus

I. Course Policies:

Class Attendance:

- The student should be attending not less than 75% of total contact hours of the subject, otherwise he will not able to take exam and be considerd as an exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic.

Tardy:

2 - For lateness in attending the class, the student will be initially notified. If he repeates late in attending class he will be considered absent.

Exam Attendance/Punctuality:

The student should attend the exam on time. He is permitted to attend the exam half one hour from exam beginning, after that he/she will not be permitted to take exam and he/she is considered absent in the exam.

Assignments & Projects:

- In general one assignment is given after each chapter of a course. The student should submit the assignment on time, mostly one week after giving the assignment

Cheating:

- For cheating in exam, the student is considered as failure. In case the cheating is repeated three times during study the student will be disengaged from the Faculty

Plagiarism:

Plagiarism is the attending of the student the exam of a course instead of other student. If the examination committee proved a plagiarism of a student, he will be disengaged from

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

	the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Affair Council of the university.
	Other meltinies
	Other policies:
7	- The mobile phone is not allowable to be used during class lecture. It must be switched off, otherwise the student will be ordered to leave the lecture room.
	- The mobile phone is not allowed to be taken during the examination time.
	- Lecture notes and assignments may be given directly to students using soft or hard copy.

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.
<u>By</u>	<u>Barakat</u>
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi
	Name of Reviewer from the Department: Assoc. Prof. Dr. Abdul-Malik Momin
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
	Assoc. Prof. Dr. Ahmed Mujahed
	Asst. Prof. Dr. Munasar Alsubri

42. Template for Course Plan of Thermodynamics- II

I. Information about Faculty Member Responsible for the							
Course:							
Name of Faculty Member	Asst. Prof. Dr. Abduljalil Al-Abidi			Office	Hour	'S	
Location& Telephone No.	ÿ	SAT	SUN	MON	TUE	WED	THU
E-mail							

	II. Course Identification and	Gene	eral Inforn	nation:		
1.	Course Title:	Thermodynamics – I.				
2.	Course Number & Code:	ME 252.				
			C.H			Total
3.	3. Credit Hours:		Seminar/Tu.	Pr	Tr.	Cr. Hrs.
			2	-	-	3
4.	Study level/year at which this course is offered:	Third Year - Second Semester.				
5.	Pre –requisite (if any):	Thermodynamics – I.				
6.	Co –requisite (if any):	None.				
7.	Program (s) in which the course is offered	Mechanical Engineering Program.				
8.	Language of teaching the course:	English Language.				
9.	System of Study:	Semesters.				
10.	Mode of delivery:	Lectures and Tutorials.				
11.	Location of teaching the course:	Mech	anical Enginee	ring Depa	artmen	t.

III. Course Description:

This course covers irreversibility and combustion. Thermodynamic principles are applied to the analysis of gas power generation cycles, steam power cycles, refrigeration, and airconditioning systems (including Rankine Cycle, vapor compression cycle, Otto cycle, Diesel

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

cycle, Brayton cycle). Thermodynamic analysis of non-reacting and reacting mixtures of Thermodynamic relations. Mixtures and solutions. Chemical reactions and combustion.

IV.Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - 1. Demonstrate an understanding of thermodynamic cycles of power generation, refrigeration, air-conditioning, combustion.
 - **2.** Identify general principles of design and analysis of the power generation, refrigeration, air-conditioning, and combustion systems
 - **3.** Analyze process involving energy and mass balances of power generation, refrigeration, air-conditioning, and combustion systems
 - **4.** Evaluate the thermal performance or coefficient of performance of thermodynamic cycles of power generation, refrigeration, air-conditioning, combustion.
 - **5.** Analyze different combustion processes and apply the first law of Thermodynamics on reacting systems
 - **6.** Characterize and solve problems in thermodynamics in various engineering applications
 - **7.** Conduct effective communication skill through oral and written modes.
 - **8.** Justify ideas and work in a team in an efficient and effective manner under controlled supervision or independently.

V. Course Content:

Distribution of Semester Weekly Plan Of course Topics/Items and Activities.

A – Theoretical Aspect:

Order	Tonica List	Sub Tanias List	Week	Contact
Order	Topics List	Sub Topics List	Due	Hours
1.	Gas Power Cycles.	Concepts of Gas Power Cycles and their Applications: Otto cycle, Diesel cycle, Brayton cycle, Jet-propulsion cycles.	1 st , 2 nd , 3 rd	6
2.	Steam Power Cycles.	Concepts of Vapor Power Cycles and their Applications: Rankine Cycle for Steam Power Plants, Reheat Rankine Cycle, Regenerative Rankine Cycle.	4 th , 5 th , 6 th	6
3.	Refrigeration Cycles.	Concepts of Refrigeration Cycles and their Applications: Refrigerators and Heat Pumps, Vapor-Compression Refrigeration Cycle. Selection of the Right Refrigerant. Heat Pump Systems. Gas Refrigeration Cycles.	7 th	4
4.	Mid-term Exam	The First 3 Chapters.	8 th	2
5.	Refrigeration Cycles.	Concepts of Refrigeration Cycles and their Applications: Refrigerators and Heat Pumps, Vapor-Compression Refrigeration Cycle. Selection of the Right Refrigerant. Heat Pump Systems. Gas Refrigeration Cycles.	9 th	4
6.	Gas Mixtures.	Composition of a Gas Mixture. P-V-T Behavior of Gas Mixtures. Thermodynamic	10 th , 11 th	4

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		Properties of Gas Mixtures.		
7.	Air Conditioning.	Dry and Atmospheric Air. Specific and Relative Humidity of Air. Dew-point and Wet-Bulb Temperatures. The Psychometric Chart. Air-Conditioning Processes. Wet Cooling Towers.	12 th , 13 th	4
8.	Chemical Reactions and Combustion.	Fuels, Combustion and their Applications. Theoretical and Actual Combustion Processes. Enthalpy of Formation and Enthalpy of Combustion. Steady-Flow and Closed Reacting Systems. First law Analysis of Reacting Systems. Adiabatic Flame Temperature. Second-Law Analysis of Reacting Systems.	14 th , 15 th	4
9.	Final Exam	All the Chapters.	16 th	2
Number of Weeks /and Units Per Semester			16	32

B – Tutorial Aspect:					
Order	Topics List	Week Due	Contact Hours		
1.	Tutorial: Gas Power Cycles	1 st , 2 nd , 3 rd	6		
2.	Tutorial: Steam Power Cycles.	4 th , 5 th , 6	6		
3.	Tutorial: Refrigeration Cycles.	7 th , 8 th	4		
4.	Tutorial: Gas Mixtures.	10 th , 11 th	4		
5.	Tutorial: Air Conditioning.	12 th , 13 th	4		
6.	Tutorial: Chemical Reactions and Combustion.	14 th , 15 th	4		
	Number of Weeks /and Units Per Semester 14 28				

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VI. Teaching strategies of the course:

- Lectures.
- Tutorials.
- Team Work (Group Learning).
- Seminar/ Project/Presentation.
- Problem Based Learning.
- Interactive Class Discussions.

VII. Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Homework 1	a1, a2, b1, b2, c1, c2, d1, d2	2 nd	0.75		
2.	Homework 2	a1, a2, b1, b2, c1, c2, d1, d2	3 rd	0.75		
3.	Homework3	a1, a2, b1, b2, c1, c2, d1, d2	4 th	0.75		
4.	Homework 4	a1, a2, b1, b2, c1, c2, d1, d2	5 th	0.75		
5.	Homework5	a1, a2, b1, b2, c1, c2, d1, d2	6 th	0.75		
6.	Homework6	a1, a2, b1, b2, c1, c2, d1, d2	7 th	0.75		
7.	Homework7	a1, a2, b1, b2, c1, c2, d1, d2	8 th	0.75		
8.	Homework 8	a1, a2, b1, b2, c1, c2, d1, d2	9 th	0.75		
9.	Homework9	a1, a2, b1, b2, c1, c2, d1, d2	10 th	0.75		
10.	Homework 10	a1, a2, b1, b2, c1, c2, d1, d2	11 th	0.75		
Total						

VII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1.	Exercises & Homework.	Weekly	7.5	5 %	b.1,b.2,c1,c2 d.1, d.2
2.	Project (Single/Group).	13	7.5	5 %	a1,a1,b.1,b.2, d.1, d.2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

3.	Quizzes.	4, 12	15	10 %	a.1, a.2, b1,b.2,
4.	Mid-Term Exam.	8	30	20 %	a.1, a.2, b1,b.2,
5.	Final Exam.	16	90	60 %	a.1, a.2, b1,b.2,
	Total:		150	100 %	

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1- Çengel, Yunus A. Boles, Michael A. Kanoğlu, Mehmet, – 2019- Thermodynamic Engineering Approach – 9th Edition- United States of America - McGraw-Hill Educat 2- Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey., Fundamentals of Engineering Thermodynamics (9 th Edition), John Wiley.

2- Essential References.

- 1-Borgnakke, C. and Sonntag, R. E., 2009. Fundamentals of Thermodynamics, 7 John Wiley & Sons.
- 2- T D Eastop; A McConkey, 2009. Applied Thermodynamics for Engine Technologists
- 5 th Edition, Pearson Education.Ltd.

3- Electronic Materials and Web Sites etc.

1.https://www.coursera.org/learn/thermodynamics-intro#syllabus

II. Course Policies:

Class Attendance:

- The student should be attending not less than 75% of total contact hours of the subject, otherwise he will not able to take exam and be considerd as an exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic.

Tardy:

- For lateness in attending the class, the student will be initially notified. If he repeates late in attending class he will be considered absent.

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Exam Attendance/Punctuality:

The student should attend the exam on time. He is permitted to attend the exam half one hour from exam beginning, after that he/she will not be permitted to take exam and he/she is considered absent in the exam.

Assignments & Projects:

- In general one assignment is given after each chapter of a course. The student should submit the assignment on time, mostly one week after giving the assignment

Cheating:

- For cheating in exam, the student is considered as failure. In case the cheating is repeated three times during study the student will be disengaged from the Faculty

Plagiarism:

Plagiarism is the attending of the student the exam of a course instead of other student. If the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Affair Council of the university.

Other policies:

7

- The mobile phone is not allowable to be used during class lecture. It must be switched off, otherwise the student will be ordered to leave the lecture room.
- The mobile phone is not allowed to be taken during the examination time.
- Lecture notes and assignments may be given directly to students using soft or hard copy.