

43. Course Specification of Digital Signal Processing

	I. Course Identification and General Information:							
1.	Course Title:	Digital	Digital Signal Processing					
2.	Course Code & Number:	CNE317						
			C.	H.		Total		
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	C.H.		
		2	2	2	-	4		
4.	Study level/ semester at which this course is offered:	4 th Level/ 1 st Semester						
5.	Pre –requisite (if any):	Signals and Systems (CNE216), Communications Principles (CNE221), Programming Language 2 (C/C++) (CCE143) Matlab.				* *		
6.	Co –requisite (if any):	None						
7.	Program (s) in which the course is offered:	Communication and Network Engineering						
8.	Language of teaching the course:	English						
9.	Location of teaching the course:	Faculty of Engineering, Sana'a University				niversity		
10.	Prepared By:	Assoc. Prof. Dr. Mohammed A. Saeed Al-Mekhlafi				aeed Al-		
11.	Date of Approval	2020						

II. Course Description:

This course introduces the basic concepts and principles of Digital Signal Processing (DSP) and their applications. Topics include: Review of discrete-time (DT) signals and systems; Correlation, convolution, sampling theorem, aliasing, and quantization, frequency-domain representation of discrete-time signals and systems, circular convolution, decimation and interpolation, the discrete-time Fourier transform (DTFT), the discrete Fourier transform (DFT), the fast Fourier transform (FFT), the z-transform, linear phase transfer functions,

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

digital filter structures, finite-impulse response (FIR) digital filter design, infinite-impulse response (IIR) digital filter design, digital processing of continuous-time signals, and applications of digital signal processing in communications.

	III. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Demonstrate the basic signal processing techniques and algorithms and ability to apply them in signal processing and system analysis.	A1
a2	Define the periodic sampling of continuous signals and the relationship between Fourier transforms of the sampled continuous signal and the resulting discrete-time signal.	A1, A2
b1	Analyze the impulse- and frequency-response of a discrete LTI system by using DSP tools such as z-transform and DFT techniques.	B2
b2	Analyze discrete-time signals in time and transform domains, using tools such as FFT and inverse FFT.	В3
c1	Implement different types of digital filters to meet arbitrary specifications.	C2
c2	Use computers and MATLAB to create, analyze, and process signals, and to simulate and analyze systems.	C4
d1	Write signal processing algorithms and methods with minimal supervision and communicate the outcomes as a written report.	D4

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:						
Co	ourse Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
a1 –	Demonstrate understanding of the	Interactive	Assignments			
basic	signal processing techniques and	Lectures	Quizzes			
	algorithms and ability to apply them	Class Discussions	Midterm Exam			
in	signal processing and system analysis.	Problem Solving	Final Exam			

Prepared by	Head of Department	
	Asst. Prof. Dr. Adel	

Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Independent readings	
a2 – Define the periodic sampling of continuous signals and the relationship between Fourier transforms of the sampled continuous signal and the resulting discrete-time signal.	 Class Discussions 	AssignmentsQuizzesMidterm ExamFinal Exam

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
b1 – Analyze the impulse- and	 Interactive Lectures 	Assignments				
frequency- response of a discrete LTI	 Class Discussions 	Quizzes				
system by using DSP tools such as z-	Problem Solving	Midterm Exam				
transform and DFT techniques.	Independent readings	Final Exam				
b2 – Analyze discrete-time signals in	 Interactive Lectures 	Assignments				
b2 – Analyze discrete-time signals in time and transform domains, using	 Class Discussions 	Quizzes				
tools such as FFT and inverse FFT.	Problem Solving	Midterm Exam				
tools such as FF1 and inverse FF1.	 Independent readings 	Final Exam				

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes Teaching strategies Assessment Strategie					
c1 – Implement different types of digital filters to meet arbitrary specifications.	Interactive LecturesClass DiscussionsProblem SolvingMatlab Simulations	AssignmentsQuizzesMidterm ExamFinal Exam			

Prepared by Head of Department Asst. Prof. Dr. Adel Al-Shakiri Mohammad Algorafi Development Dean of the Faculty Academic Development Academic Development Center & Quality Assurance Assoc. Prof. Dr. Mohammad Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Independent readings	Written Reports
c2 – Use computers and MATLAB	 Interactive Lectures 	Assignments
to create, analyze, and process	Class Discussions	Quizzes
	 Computer base Learning 	Midterm Exam
signals, and to simulate and	Problem Solving	Final Exam
analyze systems.	Independent readings	 Written Reports

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
d1 - Write signal processing algorithms and methods with minimal supervision and communicate the outcomes as a written report.	Investigations	Written Reports				

IV. Course Content:								
	A – Theoretical Aspect:							
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours			
1.	Review of Discrete-Time Signals and Systems	a1	 Discrete-Time Sequences, - Discrete-Time Systems, Linear Time-Invariant Systems (LTI), Impulse Response, Convolution in Time, Properties of LTI Systems 	1	2			
2.	Sampling and Reconstruction	a2	 Periodic Sampling, the Concept of Aliasing, 	2	4			

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 Quantization, Coding of Quantized Samples, Frequency-Domain Representation of Sampling, Reconstruction of Band-Limited Signals, Changing the Sampling Rate of Discrete Signals, Digital-to-Analog Conversion 		
3.	z-Transform and its Inverse	a1, b1	 The Direct z-Transform, Properties of the z-Transform, Poles and Zeros, Pole Location and Time-Domain Behavior for Causal Signals, The System Function of a Linear Time-Invariant System, The Inverse z-Transform, Analysis of Linear Time-Invariant Systems in the z-Domain 	3	6
4.	Discrete Fourier Transform (DFT)	a1, b1, c1	 Understanding the DFT Equation, The DFT Properties, Inverse DFT, Zero Padding and Frequency-Domain Sampling, 	2	4

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

5.	Fast Fourier Transform (FFT) and FFT analysis	a1, b2, c1	 Interpreting the DFT Using the Discrete-Time Fourier Transform, Linear and Circular Convolution Relationship of the FFT to the DFT, Hints on Using FFTs in Practice, Block Convolution, The Goertzel Algorithm, Decimation in Time and in Frequency, FFT Analysis. 	2	4
6.	Basic structures of IIR- and FIR filters	al, cl	 Filter Structures (direct form I & II), Signal Flow Graph Representations, IIRSystems, Transposed Forms, FIR Systems 	2	4
7.	Design of Finite Impulse Response (FIR) Filters	a1, c2	 Design of FIR Filters Using the Kaiser Window, The Parks-McClellan Algorithm, Minimum Weighted Mean-Squared Error Criterion 	1	2
8.	Design of Infinite Impulse	a1, c2	Design of ButterworthChebyshev Type I IIR Filters,Comparison of the	1	2

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Response		Performance of FIR and IIR		
	(IIR) Filters		Filters		
Numbe	r of Weeks /and	Units Per S	Semester	14	28

B - Tu	B - Tutorial Aspect:				
Order	Tutorial Skills List	Number of Weeks	С.Н.	CILOs	
1.	Discrete-Time Signals and Systems Discrete-Time Sequences Discrete-Time Systems Linear Time-Invariant Systems (LTI) Impulse Response Convolution in Time Properties of LTI Systems	2	4	al	
2.	 Sampling and Reconstruction Periodic Sampling, the Concept of Aliasing Quantization Coding of Quantized Samples Frequency-Domain Representation of Sampling Reconstruction of Band-Limited Signals Changing the Sampling Rate of Discrete Signals Digital-to-Analog Conversion 	2	4	a2	
3.	 z-Transform and its Inverse The Direct z-Transform Properties of the z-Transform Poles and Zeros 	2	4	a1, b1	

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Pole Location and Time-Domain Behavior			
	for Causal Signals			
	The System Function of a Linear Time-			
	Invariant System			
	• The Inverse z-Transform			
	 Analysis of Linear Time -Invariant Systems 			
	in the z-Domain			
	Discrete Fourier Transform (DFT)			
	 Understanding the DFT Equation 			
	 The DFT Properties 			
	• Inverse DFT			a1, b1,
4.	 Zero Padding and Frequency-Domain 	2	4	c1
	Sampling			
	 Interpreting the DFT Using the Discrete- 			
	Time Fourier Transform			
	 Linear and Circular Convolution 			
	Fast Fourier Transform (FFT) and FFT analysis			
	 Relationship of the FFT to the DFT 			
	 Hints on Using FFTs in Practice 			1.10
5.	Block Convolution	2	4	a1, b2, c1
	The Goertzel Algorithm			
	 Decimation in Time and in Frequency 			
	• FFT Analysis			
	Basic structures of IIR- and FIR filters			
	• Filter Structures (direct form I & II)			
	Signal Flow Graph Representations			
6.	• IIRSystems	1	2	a1, c1
	Transposed Forms			
	• FIR Systems			
	· ~ J ~			

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Number	Number of Weeks /and Units Per Semester		28	
	 Comparison of the Performance of FIR and IIR Filters 			
8.	 Chebyshev Type I IIR Filters 	1	2	a1, c2
	 Design of Butterworth 			
	Design of Infinite Impulse Response (IIR) Filters			
	Criterion			
	Minimum Weighted Mean-Squared Error		2 4	
7.	• The Parks-McClellan Algorithm	2		a1, c2
_	Window		4	1 0
	 Design of FIR Filters Using the Kaiser 			
	Design of Finite Impulse Response (FIR) Filters			

C - P :	C - Practical Aspect: Computer Laboratory				
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes	
1.	Introduction to MATLAB	1	2	c2	
2.	Write MATLAB codes: i) For verifying sampling theorem. ii) To represent basic signals like: Unit Impulse, Ramp, Unit Step, Exponential.	1	2	a1, c2	
3.	 Write MATLAB codes to: i) Generate discrete sine and cosine signals with given sampling frequency. ii) Represent complex exponential as a function of real and imaginary part. 	1	2	a1, c2	
4.	Write MATLAB codes to: i) Determine impulse and step response of two vectors using MATLAB.	1	2	a1, b2, c2, d1	

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	ii) Perform convolution between two vectors using MATLAB.			
5.	Write a MATLAB code to perform cross correlation between two vectors using MATLAB	<u> </u>		a1, b2, c2, d1
6.	Write a MATLAB code to compute DFT and IDFT of a given sequence using MATLAB.	1	2	a1, b1, b2, c2, d1
7.	I convolution of two sequence using DFT using I I I / I		a1, b1, c2, d1	
8.	Write a MATLAB code to determine z-transform from the given transfer function and its ROC using MATLAB.	1	2	a1, b1, c2, d1
9.	Write a MATLAB code to design a Type 1 Chebyshev IIR highpass filter using MATLAB.	1	2	a1, c1, c2, d1
10.	Write a MATLAB code to design an IIR Elliptic low pass filter using MATLAB.	1	2	a1, b1, c2, d1
11.	Write a MATLAB code to design an IIR Butterworth bandpass filter using MATLAB.	1	2	a1, b1, c2, d1
12.	Write MATLAB codes to generate rectangular, Hamming, Hanning, Blackman, and Kaier windows using MATLAB.	1	2	a1, b1, b2, c1, c2, d1
13.	Write a MATLAB code to design low pass filter using the Kaiser window using MATLAB.	1	2	a1, b1, c2, d1
14.	Write a MATLAB code to study coefficient quantization effects on the frequency response of a cascade form IIR filter using MATLAB.	1	2	a1, a1, b2, c1, c2, d1
	Number of Weeks /and Units Per Semester	14	28	

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V. Teaching strategies of the course:

- Interactive Lectures
- Class discussions
- Problem Solving
- Computer-based Learning
- Independent readings
- Web based Investigations
- Matlab Simulations

7	VI. Assignments:			
No	Assignments	Aligned CILOs	Week Due	Mark
1.	Problems on Discrete-Time Signals and Systems, & Sampling and Reconstruction	a1, a2	3 rd	2
2.	Problems on z-Transform and its Inverse	a1, b1	6 th	2
3.	Problems on Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT	a1, b1, b2, c1,d1	10 th	2
4.	Problems on Design of Finite Impulse Response (FIR) Filters	a1, c1, c2,d1	13 th	2
5.	Problems on Design of Infinite Impulse Response (IIR) Filters	a1, c1, c2,d1	15 th	2
	Total			10

VII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

1.	Assignments	3 rd , 6 th , 10 th , 13 th , 15 th	10	5%	a1, a2, b1, b2, c1, c2, d1
2.	Quizzes	4 th , 13 th	20	10%	b1, b2, c1, c2
3.	Attendance & Participation	Weekly	10	5%	a1
4.	Lab Reports	Weekly	20	10%	b1, b2, c1, c2
5.	Midterm Exam	7 th	20	10%	a1, a2, b1
6.	Final Exam	16 th	120	60%	a1, a2, b1, b2, c1, c2
		Total	200	100%	

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1. Sanjit K. Mitra, 2011, "Digital Signal Processing: A computer-based approach", Fourth Edition, USA, McGraw Hill.

2- Essential References.

- 1. V. Oppenheim, R. W. Schafer, 1999, "Discrete-Time Signal Processing", Second Edition, USA, Prentice Hall.
- 2. J. G. Proakis and D.G. Manolakis, 2014, "Digital Signal Processing", Fourth Edition, UK, Pearson.
- 3. Richard G. Lyons, 2011, "Understanding digital signal processing", Prentice Hall PTR, Third Edition, USA, Pearson Education.

3- Electronic Materials and Web Sites etc.

1. Goggling the Internet

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	IX. Course Policies:
1.	Class Attendance: - The students should have more than 75% of attendance according to rules and regulations of the faculty.
2.	Tardy: - The students should respect the timing of attending the lectures. They should attend within 15 minutes from starting of the lecture.
3.	Exam Attendance/Punctuality: - The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.
4.	Assignments & Projects: - The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.
5.	Cheating: - If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquiries.
6.	Plagiarism: - If one student attends the exam on another behalf; he will be dismissed from the faculty according to the policy, rules and regulations of the university.
7.	Other policies: - All the teaching materials should be kept out the examination hall and mobile phones are not allowed. - Mutual respect should be maintained between the student and his teacher and also among students. Failing in keeping this respect is subject to the policy, rules and regulations of the university.

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek
$\mathbf{B}\mathbf{y}$	A. Barakat
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Name of Reviewer from the Department: Asst. Prof. Dr. Mohammed Al-Suraby
Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
Assoc. Prof. Dr. Ahmed Mujahed
Asst. Prof. Dr. Munasar Alsubri

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

43. Template for Course Plan of Digital Signal Processing

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Assoc. Prof. Dr. Mohammed A. Saeed Al- Mekhlafi			Office	Hour	'S	
Location& Telephone No.	Faculty of Engineering	SAT	SUN	MON	TUE	WED	THU
E-mail	almekmasee@hotmail.com						

II. Course Identification and General Information:						
1.	Course Title:	Digital	l Signal i	Processin	g	
2.	Course Number & Code:	CNE3	17			
			(C.H		Total
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	C.H.
		2	2	2	-	4
4.	Study level/year at which this course is offered:	3rd Level/ 1st Semester				
5.	Pre –requisite (if any):	Signals and Systems (CNE216), Communications Principles (CNE221), Programming Language 2 (C/C++) (CCE143) 'Matlab.			age 2	
6.	Co –requisite (if any):	None				
7.	Program (s) in which the course is offered	Communication and Network Engineering				
8.	Language of teaching the course:	Englis	h			
9.	System of Study:	Regular				
10.	Mode of delivery:	Lectures				
11.	Location of teaching the course:	Faculty Univer		ineering,	Sana'a	

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description:

This course introduces the basic concepts and principles of Digital Signal Processing (DSP) and their applications. Topics include: Review of discrete-time (DT) signals and systems; Correlation, convolution, sampling theorem, aliasing, and quantization, frequency-domain representation of discrete-time signals and systems, circular convolution, decimation and interpolation, the discrete-time Fourier transform (DTFT), the discrete Fourier transform (DFT), the fast Fourier transform (FFT), the z-transform, linear phase transfer functions, digital filter structures, finite-impulse response (FIR) digital filter design, infinite-impulse response (IIR) digital filter design, digital processing of continuous-time signals, and applications of digital signal processing in communications.

IV.Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - 1. Demonstrate understanding of the basic signal processing techniques and algorithms and ability to apply them in signal processing and system analysis.
 - 2. Define the periodic sampling of continuous signals and the relationship between Fourier transforms of the sampled continuous signal and the resulting discrete-time signal.
 - **3.** Analyze the impulse- and frequency-response of a discrete LTI system by using DSP tools such as z-transform and DFT techniques.
 - **4.** Analyze discrete-time signals in time and transform domains, using tools such as FFT and inverse FFT.
 - 5. Implement different types of digital filters to meet arbitrary specifications.
 - **6.** Use computers and MATLAB to create, analyze, and process signals, and to simulate and analyze systems.
 - **7.** Write signal processing algorithms and methods with minimal supervision and communicate the outcomes as a written report.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V. (V. Course Content:					
	A – Theoretica	l Aspect:				
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
1.	Review of Discrete-Time Signals and Systems	 Discrete-Time Sequences, - Discrete-Time Systems, Linear Time-Invariant Systems (LTI), Impulse Response, Convolution in Time, Properties of LTI Systems 	1 st	2		
2.	Sampling and Reconstruction	 Periodic Sampling, the Concept of Aliasing, Quantization, Coding of Quantized Samples, Frequency-Domain Representation of Sampling, Reconstruction of Band-Limited Signals, Changing the Sampling Rate of Discrete Signals, Digital-to-Analog Conversion 	2 nd , 3 rd	4		
3.	z-Transform and its Inverse	 The Direct z-Transform, Properties of the z-Transform, Poles and Zeros, Pole Location and Time-Domain Behavior for Causal Signals, The System Function of a Linear Time-Invariant System, The Inverse z-Transform, 	4 th , 5 th , 6 th	6		

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		 Analysis of Linear Time-Invariant 		
		Systems in the z-Domain		
4.	Mid Term Exam	 All previous topics 	7 th	2
5.	Discrete Fourier Transform (DFT)	 Understanding the DFT Equation, The DFT Properties, Inverse DFT, Zero Padding and Frequency-Domain Sampling, Interpreting the DFT Using the Discrete-Time Fourier Transform, Linear and Circular Convolution 	8 th , 9 th	4
6.	Fast Fourier Transform (FFT) and FFT analysis	 Relationship of the FFT to the DFT, Hints on Using FFTs in Practice, Block Convolution, The Goertzel Algorithm, Decimation in Time and in Frequency, FFT Analysis. 	10 th , 11 th	4
7.	Basic structures of IIR- and FIR filters	 Filter Structures (direct form I & II), Signal Flow Graph Representations, IIRSystems, Transposed Forms, FIR Systems 	12 th , 13 th	4
8.	Design of Finite Impulse Response (FIR) Filters	 Design of FIR Filters Using the Kaiser Window, The Parks-McClellan Algorithm, Minimum Weighted Mean-Squared Error Criterion 	14 th	2
9.	Design of Infinite Impulse	■ Design of Butterworth	15 th	2

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Response (IIR)	 Chebyshev Type I IIR Filters, 		
	Filters	Comparison of the		
		Performance of FIR and IIR Filters		
10.	Final Exam	All topics	16 th	2
Number	Number of Weeks /and Units Per Semester			32

B - Tu	itorial Aspect:		
Order	Tutorial Skills List	Number of Weeks	С.Н.
1.	 Discrete-Time Signals and Systems Discrete-Time Sequences Discrete-Time Systems Linear Time-Invariant Systems (LTI) Impulse Response Convolution in Time Properties of LTI Systems 	2 nd , 3 rd	4
2.	 Sampling and Reconstruction Periodic Sampling, the Concept of Aliasing Quantization Coding of Quantized Samples Frequency-Domain Representation of Sampling Reconstruction of Band-Limited Signals Changing the Sampling Rate of Discrete Signals Digital-to-Analog Conversion 	4 th , 5 th	4
3.	z-Transform and its Inverse • The Direct z-Transform • Properties of the z-Transform • Poles and Zeros	6 th , 7 th	4

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Pole Location and Time-Domain Behavior for Causal		
	Signals		
	• The System Function of a Linear Time-Invariant System		
	• The Inverse z-Transform		
	 Analysis of Linear Time -Invariant Systems in the z- 		
	Domain		
	Discrete Fourier Transform (DFT)		
	 Understanding the DFT Equation 		
	• The DFT Properties		
4.	• Inverse DFT	8 th , 9 th	4
4.	 Zero Padding and Frequency-Domain Sampling 	0,9	4
	• Interpreting the DFT Using the Discrete-Time Fourier		
	Transform		
	Linear and Circular Convolution		
	Fast Fourier Transform (FFT) and FFT analysis		
	 Relationship of the FFT to the DFT 		
	 Hints on Using FFTs in Practice 		
5.	Block Convolution	10 th , 11 th	4
	The Goertzel Algorithm		
	 Decimation in Time and in Frequency 		
	FFT Analysis		
	Basic structures of IIR- and FIR filters		
	• Filter Structures (direct form I & II)		
	 Signal Flow Graph Representations 	12 th ,13 th	2
6.	• IIRSystems	12",13"	2
	Transposed Forms		
	• FIR Systems		
7	Design of Finite Impulse Response (FIR) Filters	14 th	1
7.	 Design of FIR Filters Using the Kaiser Window 	14***	4

Prepared by Head of Department Asst. Prof. Dr. Adel Al-Shakiri Assoc. Prof. Dr. Dean of the Faculty Academic Development Prof. Dr. Mohammed Al-Shakiri Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Numbe	Comparison of the Performance of FIR and IIR Filters r of Weeks /and Units Per Semester	14	28
0.	 Chebyshev Type I IIR Filters 	13	2
8.	 Design of Butterworth 	15 th	2
	Design of Infinite Impulse Response (IIR) Filters		
	 Minimum Weighted Mean-Squared Error Criterion 		
	The Parks-McClellan Algorithm		

C - Practical Aspect: Computer Laboratory					
Order	Order Tasks/ Experiments		Contact hours		
1.	Introduction to MATLAB	1^{st}	2		
2.	Write MATLAB codes: iii) For verifying sampling theorem. iv) To represent basic signals like: Unit Impulse, Ramp, Unit Step, Exponential.	2 nd	2		
3.	Write MATLAB codes to: iii) Generate discrete sine and cosine signals with given sampling frequency. iv) Represent complex exponential as a function of real and imaginary part.	3 rd	2		
4.	Write MATLAB codes to: iii) Determine impulse and step response of two vectors using MATLAB. iv) Perform convolution between two vectors using MATLAB.	4 th	2		
5.	Write a MATLAB code to perform cross correlation between two vectors using MATLAB	5 th	2		
6.	Write a MATLAB code to compute DFT and IDFT of a given sequence using MATLAB.	6 th	2		

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Number of Weeks /and Units Per Semester	14	28
14.	Write a MATLAB code to study coefficient quantization effects on the frequency response of a cascade form IIR filter using MATLAB.	14 th	2
13.	Write a MATLAB code to design low pass filter using the Kaiser window using MATLAB.	13 th	2
12.	Write MATLAB codes to generate rectangular, Hamming, Hanning, Blackman, and Kaier windows using MATLAB.	12 th	2
11.	Write a MATLAB code to design an IIR Butterworth bandpass filter using MATLAB.	11 th	2
10.	Write a MATLAB code to design an IIR Elliptic low pass filter using MATLAB.	10 th	2
9.	Write a MATLAB code to design a Type 1 Chebyshev IIR highpass filter using MATLAB.	9 th	2
8.	Write a MATLAB code to determine z-transform from the given transfer function and its ROC using MATLAB.	8 th	2
7.	Write a MATLAB code to perform linear convolution of two sequence using DFT using MATLAB.	7 th	2

VI. Teaching strategies of the course:

- Interactive Lectures
- Class discussions
- Problem Solving
- Computer-based Learning
- Independent readings
- Web based Investigations
- Matlab Simulations

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VII. Assignments:						
No	Assignments	Aligned CILOs	Week Due	Mark		
1.	Problems on Discrete-Time Signals and Systems, & Sampling and Reconstruction	a1, a2	3 rd	2		
2.	Problems on z-Transform and its Inverse	a1, b1	6 th	2		
3.	Problems on Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT	a1, b1, b2, c1,d1	10 th	2		
4.	Problems on Design of Finite Impulse Response (FIR) Filters	a1, c1, c2,d1	13 th	2		
5.	Problems on Design of Infinite Impulse Response (IIR) Filters	a1, c1, c2,d1	15 th	2		
	Total			10		

VII	VIII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment		
1.	Assignments	3 rd , 6 th , 10 th , 13 th , 15 th	10	5%		
2.	Quizzes	4 th , 13 th	20	10%		
3.	Attendance & Participation	Weekly	10	5%		
4.	Lab Reports	Weekly	20	10%		
5.	Midterm Exam	7 th	20	10%		
6.	Final Exam	16 th	120	60%		
	Total			100%		

IX. Learning Resources:

• Written in the following order: (Author - Year of publication - Title - Edition - Place of publication - Publisher).

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

$\hbox{\bf 1- Required Textbook} (s) \ (maximum \ two \).$

1. Sanjit K. Mitra, 2011, "Digital Signal Processing: A computer-based approach", Fourth Edition, USA, McGraw Hill.

2- Essential References.

- 1. A. V. Oppenheim, R. W. Schafer, 1999, "Discrete-Time Signal Processing", Second Edition, USA, Prentice Hall.
- 2. J. G. Proakis and D.G. Manolakis, 2014, "Digital Signal Processing", Fourth Edition, UK, Pearson.
- 3. Richard G. Lyons, 2011, "Understanding digital signal processing", Prentice Hall PTR, Third Edition, USA, Pearson Education.

3- Electronic Materials and Web Sites etc.

1. Goggling the Internet

X. Course Policies:	
1.	Class Attendance: - The students should have more than 75% of attendance according to rules and regulations of the faculty.
2.	Tardy:The students should respect the timing of attending the lectures. They should attend within 15 minutes from starting of the lecture.
3.	Exam Attendance/Punctuality: - The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.
4.	Assignments & Projects: - The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.
5.	Cheating: - If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquiries.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Plagiarism: If one student attends the exam on another behalf; he will be dismissed from the faculty according to the policy, rules and regulations of the university. Other policies: All the teaching materials should be kept out the examination hall and mobile phones are not allowed. Mutual respect should be maintained between the student and his teacher and also among students. Failing in keeping this respect is subject to the policy, rules and regulations of the university.

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad