

44. Course Specification of Embedded Systems

	I. Course Identification and General Information:						
1.	Course Title:	Embedo	led System	IS			
2.	Course Code & Number:	CCE33	4				
			C.H	ł		T (1	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
		2	-	2	-	3	
4.	Study level/ semester at which this course is offered:	Fourth Level / First Semester					
5.	Pre –requisite (if any):	Microprocessors & Assembly Language (CCE214), Programming Language 2 (C/C++) (CCE143), Logic Circuits 2 (CCE112), Electronics 2 (PME214)			uage 2 2		
6.	Co –requisite (if any):	None.					
7.	Program (s) in which the course is offered:	Computer & Control Engineering					
8.	Language of teaching the course:	English					
9.	Location of teaching the course:	Electrical Engineering Department Classes & Labs.					
10.	Prepared By:	Assoc. Prof. Dr. Farouk Al-Fuhaidy					
11.	Date of Approval	2020					

II. Course Description:

This course in an introductory course to Embedded Systems & Interfacing which become the next inevitable wave of technology, and finding application in diverse disciplines of engineering. The aim of the course is to provide students with the basic principles and concepts about embedded systems which can be defined as a control system or computer system designed to perform a specific task. It includes the theory and concepts of control system engineering, the basis of microcontrollers architecture and its assembly and/or Micro-

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

C Programming within embedded systems, designing, programming, and implementing of embedded & interfacing systems based on microcontrollers, sensors and actuators for measuring and controlling different marketing and industrial environments. Laboratory work including, designing, simulating, and conducting practical control engineering experiments. Finally, this course is an introduction to robotics systems and advanced IoT.

	III. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Explain the principles and architectural hardware and software co- design issues related to embedded, interfacing, and control engineering systems.	A2
b1	Identify, formulate, and solve embedded & interfacing systems problems using suitable hardware equipment & software tools.	B1
b2	Construct embedded & interfacing systems considering economic, social, and industrial environments issues and constraints.	B4
c1	Design and interface advanced I/O features to embedded & control systems to meet desired specifications and constraints.	C2
c2	Conduct laboratory experiments and verify theoretical learned concepts of microcontroller-based systems.	C3
d1	Function effectively individually or within teams while designing, implementing, or communicating idea related to embedded systems.	D1, D4

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes		Teaching strategies	Assessment Strategies
a1-	Explain the principles and architectural hardware and software co-design issues related to embedded,	 Lectures, Laboratory experimental work, Projects. 	Examinations,HomeworkPresentations,

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Sana'a University Faculty of Engineering Electrical Engineering Department B.Sc. of Computer and Control Engineering

interfacing, and control	 Use of Information and 	Individual and
engineering systems.	Communication	group project
	Technologies.	reports

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
 b1- Identify, formulate, and solve embedded & interfacing systems problems using suitable hardware equipment & software tools. 	 Lectures, Laboratory Experimental work, Assignments, Seminars, Group work, Projects. Use of Information and Communication Technologies. 	 Examinations, Homework, Laboratory reports presentations, Individual and group project reports 				
b2- Construct embedded & interfacing systems considering economic, social, and industrial environments issues and constraints.	 Lectures, Laboratory Experimental work, Assignments, Seminars, Group work, Projects. Use of Information and Communication Technologies. 	 Examinations, Homework, Laboratory reports presentations, Individual and group project reports 				

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
c1- Design and interface advanced I/O features to	• Lectures,	Examinations,Homework,				

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

embedded & control systems to meet desired specifications and constraints.	 Laboratory Experimental work, Assignments, Seminars, Group work, Projects. Use of Information and Communication Technologies. 	 Laboratory reports presentations, Individual and group project reports
c2- Conduct laboratory experiments and verify theoretical learned concepts of microcontroller-based systems.	 Lectures, Laboratory Experimental work, Assignments, Seminars, Group work, Projects. Use of Information and Communication Technologies. 	 Examinations, Homework, Laboratory reports presentations, Individual and group project reports

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to						
Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes Teaching strategies Assessment Strategies						
	- 0 -					

	 Seminars, 	
d1- Function effectively	 Assignments, 	Dresentations
individually or within teams while	 Laboratory Work, 	 Tresentations, Laboratory Reports
designing, implementing, or	 Projects, 	 Laboratory Reports, Individual and Group
communicating idea related to	 Use of Information 	project Peports
embedded systems.	and Communication	project Reports
	Technologies.	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

IV. Course Content:							
	A – Theoretical Aspect:						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours		
1.	Course Orientations and Introduction to Embedded Systems & Interfacing	a1	 Course Orientations Introduction to Embedded Systems, Definition, Components and Software Requirements, Importance & Applications fields, marketing, industrially, and different environments. 	1	2		
2.	Microcontroller Architectures	a1, b1	 Microcontroller Vs. Microprocessors, Architectures & Applications, High-level & Mid-Level Programming Techniques, PIC Microcontrollers Family, overview on PIC 16 family, different versions, their features & IC interfacing, Introduction to PIC16F84 Mc architecture and Features. 	1	2		
3.	PIC16 Microcontroller's Ports, Instruction Set, and	a1, b1	 PIC16F84 microcontroller IC & Pins functions & Interfacing, 	3	6		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Addressing	 Parallel Input / Output 	
Mode	Ports architectures design	
	and their works as I/O	
	ports, Ports configurations,	
	and functioning,	
	 Different types of Switches 	
	& LEDs and their	
	interfacing in CC/CA	
	Connections.	
	 Different Memories On- 	
	Chip, Program Memory,	
	Data Memories, RAM &	
	EEPROM, architectures &	
	Access, Memory	
	Addressing, Direct and	
	Indirect and Immediate	
	operations,	
	The PIC16 Family's	
	Instruction Set, the 35-	
	Assembly Instructions,	
	Syntax & Functions	
	illustrated using Examples.	
	 Layout of Assembly 	
	Program referenced to	
	Program memory's	
	organization, start point of	
	program code, section of	
	interrupts, initialization &	
	Configuration of a system,	
	main code and different	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 user subroutines (functions), Simple I/O examples to interface LEDs & Switches with PIC16F84-Mc. Introduction to the systematic Design concepts 		
4.	Embedded System's Design, Building, and programming using Structured Program Concepts	a1, b1, b2	 for Embedded Systems, brief Review on Structured Programming concepts, flow-char and state chart system-based design, Design & Implementation of Simple Embedded Systems using assembly structured programming concepts, building software delay Subroutine and Lookup tables in assembly, Simple embedded system examples for interfacing many LEDs (e.g., 8-Leds) and many Switches, hardware connection of elements to the PIC16F84, Building assembly program to function LEDs to work in variant fashions employing Delay subroutine and Lookup tables. 	2	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 Introduction to Interrupts. 		
			definition, classifications		
			and their automation of		
			works in embedded system		
			by their Self-Reaction-to-		
			Events caused by external		
			Hardware connected to an		
			embedded system,		
			 PIC16F84-Mc Interrupts 		
			types, explanation the		
			mechanism of operation &		
			applications of these		
	Control &		introduced types of		
	Automation of		interrupts,		
	Embedded	al h1 h0	 Interrupts Programming, 		
5.	Systems using	a1, 01, 02, c1	demonstration of how-to	2	4
	Interrupt's	01	assembly program		
	Signals and		embedded systems with		
	Timers		single / multiple interrupts,		
			interrupt programming		
			conflicts and solving using		
			different methods like		
			context switching,		
			 Embedded Systems 		
			examples for illustration of		
			interrupts		
			 PIC16F84 Timer0, block 		
			diagram for Timer0,		
			applications, explanation its		
			work as timers or as a		
			counter, and example.		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 Brief introduction to 		
			PIC16F877-Mc, additional		
			features, On-chip Modules		
			and I/O Ports,		
			 Inter of PIC16F877-Mc 		
			with Keypad, Seven-		
			Segments and LCD,		
			hardware design &		
			connection of Keypad, 7-		
			Segment and LCD,		
			algorithms for reading &		
			identifying Keypad's Keys		
	Embedded		and programming using		
	System		interrupts, example		
	Interfacing with	a1, b1, b2,	illustrating the interfacing		
6.	Human	c1	of Keypad, 7-Segment &	2	4
	Flements and		LCD.		
	Circuits		 PIC16F8//-Mc Interfacing 		
			starting by brief		
			starting by brief		
			problems like distortions		
			spikes offsets etc then		
			introduce dc motors and		
			servo-motors and their		
			applications and		
			differences use of power		
			transistors to drive motors		
			& actuators, and use of H-		
			bridge drive circuits like		
			L293D-IC.		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

7.	More on PIC16F877-Mc On-Chip Modules, Timers and CCP Modules	a1, b1, b2, c1	 PIC16F877-Mc On-Chip Timers and CCP, their use and applications, Timers 1,2, and 3, their organizations, mechanism of operations, mechanism of operations, and applications, and applications, CCP Module, its internal organization, operation and configuration in Capture, Compare, or PWM modes of operations, applications of CCP illustrated with assembly programs. 	1 1/2	3
8.	Embedded Systems and Acquisition & Communication with Peripherals	a1, b1, b2, c1, d1	 Introduction to Data Acquisition Systems elements and functions, Acquisition of analog signals, brief review on analog-to-digital and digital-to-analog electronics circuits and basic principles, Sample and Hold circuit use as ADC circuit, ADC Module in PIC16F877-Mc, hardware circuit, channels and pins associated with ADC, operations and 	1 1/2	3

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

B - Pr	B - Practical Aspect:						
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes			
1.	 Laboratory Equipment and Tools Orientations, Installing Microcontroller Development Tools 	1	2	a1, b1, c2, d1			
2.	 PIC16F84-Mc Assembly instructions Set using MPLAP Simulator to verify work of each instruction 	1	2	a1, b1, d1			
3.	PIC16-Mcs Assembly structured programing,Generating software delay subroutine,	4	8	a1, b1, c1, c2, d1			

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	 writing simple assembly program and 			
	debugging it through the simulator and			
	downloading simple codes into the chip;			
	 writing simple assembly program and 			
	debugging it through the simulator and			
	downloading simple codes into the chip to			
	interface LEDs & Switches building different			
	ideas of operation			
	 Design of a Microprocessor-based systems 			
	including RAM and EPROM interfacing and			
	program memory lookup tables			
	 Parallel Ports Interfacing 			
	• Installing a C Compiler, writing C code and			a1 b1 c2
4.	debugging it using the simulator and the	1	2	$\frac{d1}{d1}$
	emulator			uı
5	 Interrupts, Timers hardware Interfacing and 	1	2	a1, b1, b2,
5.	Programming using Assembly and MicroC	1	2	c1, c2, d1
6	Keynad & 7-Segment Interfacing	1	2	a1, b1, b2,
0.	- Reypau & 7-Segment interfacing	1	2	c1, c2, d1
7	Keynad & I CD Interfacing	1	2	a1, b1, b2,
7.	Reypad & LED Internating	1	2	c1, c2, d1
Q	 Analog-Digital module configuration and 	1	2	a1, b1, b2,
0.	programming	1	2	c1, c2, d1
0	 Serial communications (UART, SPI and I2C) 	1	2	a1, b1, b2,
9.	and Low-Power Design	1	2	c1, c2, d1
10	Paviaw	1	2	a1, b1, b2,
10.		1	Δ	c2, d1
11	Project Presentation	1	2	a1, b1, b2,
11.		1		c1, c2, d1
Number of Weeks /and Units Per Semester		14	28	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V. Teaching strategies of the course:

- Lectures,
- Laboratory experimental work,
- Projects works,
- Assignments,
- Seminars,
- Group work,
- Use of Communication and Information Technology.

	VI. Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	PIC Assembly, embedded Systems Development and Programming	a1, b1, b2, c1, c2, d1	3 rd to 7 th	3
2.	Interrupts and Timers	a1, b1, b2, c1, c2, d1	$rac{8^{ ext{th}}}{9^{ ext{th}}}$	3
3.	Human Interfacing	a1, b1, b2, c1, c2, d1	10^{th}	3
4.	Timers and CCP	a1, b1, b2, c1, c2, d1	11 th & 12 th	3
5.	ADC and Serial Communications	a1, b1, b2, c1, c2, d1	13 th to 15 th	3
	Total			15

VII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Assignments	3^{rd} to 15^{th}	15	10%	a1, b1, b2, c1, d1	

Prepared by

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2.	Laboratory Experimental Works	3 rd to 12 th	15	10%	a1, b1, b2, c1, c2, d1
3.	Project Work & Presentation	14^{th}	15	10%	a1, b1, b2, c1, c2, d1
4.	Mid-term Exam (Th.)	8 th	15	10%	a1, b1, b2
5.	Final Exam (Pr.)	15 th	15	10%	a1, b1, b2, c2, d1
6.	Final Exam (Th.)	16 th	75	50%	a1, b1, b2, c1
	Total		150	100%	

V	III. Learning Resources:
• Wr Pul	itten in the following order: (Author - Year of publication – Title – Edition – Place of publication – blisher).
1- Rec	uired Textbook(s) (maximum two).
	1- 1 -Tim Wilmshurst, 2010, Designing Embedded Systems with PIC Microcontroll
	Principles and applications, 2 nd edition, Elsevier Ltd, USA
	2- Park & Mackay, 2003, Practical Data Acquisition for Instrumentation and
	Control Systems, Newnes, ISBN 978-0750657969
	3- Kevin James, 2000, PC Interfacing and Data Acquisition: Techniques for
	Measurement, Instrumentation and Control, Newnes, ISBN 0 7506 4624 1
2- E	ssential References.
	1- 1-Steve Heath, 2002, Embedded Systems Design, (2nd ed.), Newnes,
	(ISBN:9780750655460)
	2- Programming Embedded Systems in C and C++, Michael Barr, O'Reilly Media,
	(ISBN:9781565923546)
	3- John Essick, 2008, Hands On Introduction to LabVIEW for Scientist and
	Engineers, 1ed, Oxford University Press
	4- Muhamad Ali Mazidi, 2012, Embedded Systems Design Using PIC18", 1 st , Pren
	Hall
3- E	lectronic Materials and Web Sites <i>etc</i> .
	1- 1- <u>http://www.ocw.mit.edu/courses</u> .

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Г

1

	2- Lecture notes prepared by the Lecturer.
]	IX. Course Policies:
	Class Attendance:
1.	A student should attend not less than 75 % of total hours of the subject; otherwise he will not he able to take the even and will be considered as even foilure. If the student is
	not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic
	Tardy.
2.	For late in attending the class, the student will be initially notified. If he repeated lateness
	in attending class he will be considered as absent.
	Exam Attendance/Punctuality:
3	A student should attend the exam on time. He is Permitted to attend an exam half one
5.	hour from exam beginning, after that he/she will not be permitted to take the exam and
	he/she will be considered as absent in exam-
	Assignments & Projects:
4.	The assignment is given to the students after each chapter; the student has to submit all
	the assignments for checking on time-
5	Cheating: For chasting in exam is student will be considered as failure. In case the chasting is
5.	repeated three times during his/her study the student will be disengaged from the Faculty-
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
6.	If the examination committee proved a plagiarism of a student, he will be disengaged
	from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university.
	Other policies:
7	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise
/.	- Mobile phones are not allowed in class during the examination
	Lecture notes and assignments my given directly to students using soft or hard copy

Prepared by Head of Department Quality Assurance Unit Dean of the Faculty Academic Development Asst. Prof. Dr. Adel Assoc. Prof. Dr. Prof. Dr. Mohammed Center & Quality Assurance Ahmed Al-Shakiri Mohammad Algorafi AL-Bukhaiti Assoc. Prof. Dr. Huda Al-Emad

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek
By	A. Barakat
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi
	Name of Reviewer from the Department: Asst. Prof. Dr. Adel Ahmed Al-Shakiri
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
	Assoc. Prof. Dr. Ahmed Mujahed
	Asst. Prof. Dr. Munasar Alsubri

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad