Title of the Program: Electrical Power and Machines Engineering

47. Course Specification of Electrical Drives

I.	I. Course Identification and General Information:						
1.	Course Title:	Electrical Drives					
2.	Course Code & Number:	PME327					
			C.	H		Total	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
			2	2	_	4	
4.	Study level/ semester at which this course is offered:	Fourth Year/ Second Semester					
5.	Pre –requisite (if any):	PME221, PME224, PME244					
6.	Co –requisite (if any):	None.					
7.	Program (s) in which the course is offered:	Electrical Power and Machines					
/•	110grain (s) in which the course is offered.	Engineering					
8.	Language of teaching the course:	English					
9.	Location of teaching the course:	Class & lab					
10.	Prepared By:	Assoc. Prof. Dr. Radwan Al bouthigy				higy	
11.	Date of Approval	2020					

II. Course Description:

Electrical drives circuits are a subject where a student will deal with various types of electric drives machines which are employed in industries, power stations, domestic and commercial appliances etc. It gives students the skills in the definitions, analysis, and solving problems related to electric variable speed drive. The course enables students to analyzes and discuss the basic characteristics, types, operating modes of DC motors, induction motor, synchronous motor, stepper motor and theirs methods speed control with special emphasis on Computer simulations are used for understanding electric drives-based power-electronics converters and the design of feedback controllers. Laboratory experiments and MATLB simulation tool are carried out for different types of power electronics elements to verify the theoretical concepts.

III.	Course Intended learning outcomes (CILOs)	Referenced
	of the course	PILOs

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines Engineering

a1	Demonstrate the mechanical system requirements for electric drives and the switch -mode power electronic converters in electric drives	A1
a2	Define the dynamic modeling of Induction motor drive, volt - herts, vector control and speed control of synchronous motors.	A2
b1	Identify the DC-motor drives, electronically-commutated motor drives and energy efficiency of electric drives and inverter-motor interactions.	B1
b2	Differentiate between different AC/DC drive for solving engineering problems and selection the appropriate solution according to needed specification.	В3
c1	Apply a variety of device models and circuit analysis theorems to analysis, design and implementing power control systems for engineering systems applications.	C2
c2	Carry out practical hands-on work in the field.	C3
d1	Work in teams to conduct experiments, analyze results, and develop technically sound reports of outcomes.	D1
d2	Use computer and Internet to extract information related to field of study.	D2, D5

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
a1- Demonstrate an understanding the mechanical system requirement for electric drives and the switch - mode power electronic converters in electric drives	LecturesTutorialsSelf-learningDialogue and discussion	 written exam Oral discussion Reports evaluation Presentations and evaluation 		
a2- Define the dynamic modeling of Induction motor drive, volt - hertz, vector control and speed control of synchronous motors.	LecturesTutorialsSelf-learningDialogue and discussion	 written exam Oral discussion Reports evaluation Presentations and evaluation 		

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

Title of the Program: Electrical Power and Machines Engineering

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
b1- Identify the DC-motor drives, electronically-commutated motor drives and energy efficiency of electric drives and inverter-motor interactions.	 Lectures Analysis and Problem solving Tutorials Project 	 Written Test and Quizzes Laboratory reports evaluation Project reports Presentations 		
b2- Differentiate between different AC/DC drive for solving engineering problems and selection the appropriate solution according to needed specification.	 Lectures Analysis and Problem solving Tutorials Project 	 Written Test and Quizzes Laboratory reports evaluation Project reports Presentations 		

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
c1- Apply a variety of device models and circuit analysis theorems to analysis, design and implementing power control systems for engineering systems applications.	 Lectures Laboratory Projects Design exercises Simulation tools 	 Written Test and Quizzes Laboratory reports evaluation Presentations evaluation Project reports Observation of performance 			
c2- Carry out practical hands-on work in the field.	 Lectures Laboratory Projects Design exercises Simulation tools 	 Written Test and Quizzes Laboratory reports evaluation Presentations evaluation Project reports Observation of performance 			

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines Engineering

Cour	se Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d1- and report	Work in teams to conduct experiments, analyze results, develop technically sounds of outcomes.	LaboratoryProjectsPresentationsResearch	 Observation and interviews Laboratory reports evaluation Research reports Presentations
d2-	Use computer and Internet to extract information related to field of study.	LaboratoryProjectsPresentationsResearch	 Observation and interviews Laboratory reports evaluation Research reports Presentations

Title of the Program: Electrical Power and Machines Engineering

IV. Course Content:

A – Theoretical Aspect:

Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours
1.	Introduction of Drives	a1,a2,b1,b2	 Basic characteristics and operating modes of DC Motor Drives Performance characteristics of Induction Motor Performance characteristics Synchronous motors Stepper motor 	2	4
2.	DC drives	a1, b1, c1,c2,d2	 Single phase drives Three phase drive Chopper drives Closed loop control of DC motor 	4	8
3.	Induction motor drives	b1,b2,c1,c2,d2	 Stator voltage control Rotor voltage control Frequency control Voltage frequency control Current control Voltage, current and frequency control Closed loop control of induction motor 	4	8
4.	Vector control	a1, b1,b2,c1,d2	 Basic Principle of Vector Control Direct and Quadrature- Axis Transformation Indirect Vector Control Direct Vector Control 	1	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines Engineering

Number of Weeks /and Units Per Semester			14	28	
6.	Stepper motor drives	b1,b2,c1,c2,d2	 Stepper motor control Variable Reluctance stepper motors Permanent Magnetic stepper motors 	1	2
5.	Synchronous motor drives	a2, b2,c1,c2,d2	 Cylindrical rotor motors Salient pole motors Reluctance motors Permanent magnetic motors Switched reluctance motors Closed loop control of synchronous motor 	2	4

B- Tutorial Aspect:						
Order	Tasks/ Tutorial	No. of Weeks	Contact Hours	Learning Outcomes		
1.	 Operation and c Basic Characteristics of Dc Motors Operating Modes of Separately Excited Dc Motor Operating Modes of Series Excited Dc Motor 	1	2	a1,b1,d1,d2		
2.	 Operation and characteristics of Single-Phase Semi converter Drives. Operation and characteristics of Single-Phase Full-Converter Drives Operation and characteristics of Single-Phase Dual-Converter Drives Simulating single phase drives by using MATLAB 	2	4	a1,a2,b1,b2, d1,d2		
3.	 Operation and characteristics of three- Phase Semi converter Drives. 	2	4	a1,a2,b1,b2, c1,d1,d2		

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines Engineering

	Phase Full-Converter Drives			
	 Operation and characteristics of three- Phase Dual-Converter Drives 			
	Simulating three phase drives by using			
	MATLAB			
	 Principle of Power Control Principle of Power Control 			
	 Principle of Regenerative Brake Control 			
	 Principle of Rheostatic Brake Control 			
	 Principle of Combined Regenerative 			
	and Rheostatic Brake control			
	■ Two- and Four-Quadrant Dc–dc			b1,b2,c1,d1,d2
4.	Converter Drives	2	4	
	 Open-Loop Transfer Function of 			
	Separately Excited motors			
	 Open-Loop Transfer Function of 			
	Series Excited Motors			
	Closed-Loop Transfer FunctionSimulating DC-DC drives by using			
	MATLAB			
	 Performance Characteristics of 			
	induction motors			
	 Torque–Speed Characteristics 			
	Stator Voltage Control			
	 Rotor Voltage Control 			
	• Frequency Control			
_	Voltage and Frequency Control 789	2		1 2 1 11 12
5.	Current Control Constant Slip Speed Control	3	6	a1,a2, c1,d1,d2
	Constant Slip-Speed ControlVoltage, Current, and Frequency			
	Control			
	 Closed-Loop Control of Induction 			
	Motors			
	 Simulating induction motors drives by 			
	Simulating made them instead and the con-			
	using MATLAB			

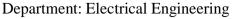
Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines Engineering



Number of Weeks /and Units Per Semester:		14	28	
8.	 Control characteristics of Variable-Reluctance Stepper Motors Control characteristics of Permanent-Magnet Stepper Motors 	1	2	a2,b1,c1,d1,d2
7.	 Control characteristics of synchronous motor and the methods for speed control Simulating ac synchronous motor using MATLAB 	2	4	b1,b2,c1,d1,d2
	 Operation of Direct and Quadrature- Axis Transformation Operation of Indirect Vector Control Operation of Direct Vector Control 			

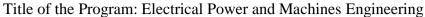
C - Practical Aspect:						
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes		
1.	 Single phase semi converter drive 	1	2	a1,b1,c1,c2		
2.	 Single phase full wave converter drive 	1	2	a1,b1,c1,c2,d1,d2		
3.	 Single phase dual converter drive 	1	2	b1,b2,c1,c2,d1,d2		
4.	 Three phase half wave converter drive 	1	2	a1,a2,b1,b2,c1,c2,d1,d2		
5.	 Three phase semi converter drive 	2	4	a1,a2,b1,b2,c1,c2		
6.	 Three phase full wave converter drive 	2	4	b1,b2,c1,c2,d1,d2		
7.	 Power control drive 	1	2	a1,a2,b1,b2,c1,c2, d2		
8.	Regenerative brake control	1	2	a1,a2,b1,b2,c1,c2,d1		
9.	 Induction motors control used AC voltage control 	1	2	a1,a2,b2,c1,c2,d1,d2		

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines Engineering

10.	Induction motors control used invertersSlip power control of wound	1	2	a1, b2,c1,c2,d1,d2
11.	rotor induction motors	1	2	a1,a2,b2,c1,c2
12.	Review	1	2	a1,a2,b1,b2,c1,c2
Number of Weeks /and Units Per Semester		14	28	


V. Teaching strategies of the course:

- Lectures
- Problem Solving
- Design exercises
- Laboratory works
- Homework
- Project work
- Simulation Tools
- Presentations

VI. Assignments:							
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark			
1.	Comparison between types of modes operation	a1,a2,b1,b2,d2	3 rd	4			
2.	Design and implementation of power control circuits using MATLAB tools	a1,a2,b1,b2,c1	4 th	4			
3.	Design and implementation of dynamic brake control circuits using MATLAB tools	a1,a2,b1,b2,c1	6 th	4			
4.	Design and implementation of closed loop control of S.E.D.C. motor circuits using MATLAB tools	a1,a2,b1,b2,c1	8 th	4			
5.	Design and implementation of volt- hertz control of induction motor using MATLAB tools	a1,a2,b1,b2,c1	10 th	4			
	Total						

VII. Schedule of Assessment Tasks for Students During the Semester:

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1.	Quizzes	4 th ,7 th ,10 th , and 13 th	20	10%	a1,a2,b1,b2
2.	Assignments	Weekly	20	10%	a1,a2,b1,b2,c1,d1
3.	Mid-Term exam	7 th	20	10%	a1,a2,b1,b2
4.	Final exam practical	15 th	40	20%	a1,a2,b1,b2,c1,c2
5.	Final Exam theory	16 th	100	50%	a1,a2,b1,b2
	Total		200	100%	

VIII. Learning Resources:

 Written in the following order: (Author - Year of publication - Title - Edition - Place of publication -Publisher).

1- Required Textbook(s) (maximum two).

- **1.**M. H. Rashid, 2014, "Power electronics: circuits, devices, and applications," fourth edition, Prentice Hall
- **2.** Austin Hughes, (2006) Electric Motors and Drives Fundamentals, Types and Applications, 3rd Edition, Elsevier Ltd.

2- Essential References.

- 1. Cyril W. Lander, 1993, "Power electronics", 3rd edition, McGraw-Hill.
- **2.** B. W. Williams, 1992, Power Electronics, Devices, Drivers, Application and Passive components
- **3.** Fang Lin Luo, Hong Ye, Muhammad Rashid, "Digital Power Electronics and Applications", 2005, Elsev USA
- **4.** E. Acha, Power Electronics control in Electrical system, 1st, 2002, Newnes.

3- Electronic Materials and Web Sites etc.

- 1. www.goelectricdrive.com/
- 2. www.electricmachinery.com/
- **3.** www.goelectricdrive.com/

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines Engineering

4. http://www.ece.tamu.edu/~empelab/

D	X. Course Policies:
1.	Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic
2.	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	Exam Attendance/Punctuality: A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam-
4.	Assignments & Projects: The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time-
5.	Cheating: For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty-
6.	Plagiarism: Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university.
7.	Other policies: - Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room - Mobile phones are not allowed in class during the examination.

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek
By	A. Barakat
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi

Lecture notes and assignments my given directly to students using soft or hard copy

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad


Sana'a University
Faculty of Engineering
Department: Electrical Engineering

Department. Electrical Engineering	
Title of the Program: Electrical Power and Machines Engineering	

Name of Reviewer from the Department: Asst. Prof. Dr. Adel Ahmed Al-Shakiri
Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
Assoc. Prof. Dr. Ahmed Mujahed
Asst. Prof. Dr. Munasar Alsubri

47. Template for Course Plan of Electrical Drives

I. Information about Faculty Member Responsible for the							
Course:							
Name of Faculty Member	Assoc. Prof. Dr. Radwan Al bouthigy	Office Hours					
Location& Telephone No.	775284933	SAT SUN MON TUE WED THU				THU	
E-mail	radwan006@yahoo.com						

	II. Course Identification and General Information:						
1.	Course Title:	Electric	cal Drives				
2.	Course Number & Code:	PME327					
			C.	Н		Total	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
		2	2	2	-	4	
4.	Study level/year at which this course is offered:	Fourth Year/ Second Semester					
5.	Pre –requisite (if any):	PME22	21, PME22	4, PME2	44		
6.	Co –requisite (if any):	NA					
7.	Program (s) in which the course is offered	POWER & Machines program					
8.	Language of teaching the course:	English					
9.	System of Study:	Semester					
10.	Mode of delivery:	semester					
11.	Location of teaching the course:	Class &	k lab	•			

III. Course Description:

Electrical drives circuits are a subject where a student will deal with various types of electric drives machines which are employed in industries, power stations, domestic and commercial appliances etc. It gives students the skills in the definitions, analysis, and solving problems related to electric variable speed drive. The course enables students to analyzes and discuss the basic characteristics, types, operating modes of DC motors, induction motor, synchronous

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

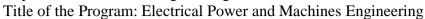
Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines Engineering

motor, stepper motor and theirs methods speed control with special emphasis on Computer simulations are used for understanding electric drives-based power-electronics converters and the design of feedback controllers. Laboratory experiments and MATLB simulation tool are carried for different types of power electronics elements to verify the theoretical concepts.

IV. Intended learning outcomes (ILOs) of the course:

Brief summary of the knowledge or skill the course is intended to develop:


- 1. Demonstrate the mechanical system requirements for electric drives and the switch mode power electronic converters in electric drives
- **2.** Define the dynamic modeling of Induction motor drive, volt herts, vector control and speed control of synchronous motors.
- **3.** Identify the DC-motor drives, electronically-commutated motor drives and energy efficiency of electric drives and inverter-motor interactions.
- **4.** Differentiate between different AC/DC drive for solving engineering problems and selection the appropriate solution according to needed specification.
- **5.** Apply a variety of device models and circuit analysis theorems to analysis, design and implementing power control systems for engineering systems applications.
- 6. Carry out practical hands-on work in the field.
- **7.** Work in teams to conduct experiments, analyze results, and develop technically sound reports of outcomes.
- **8.** Use computer and Internet to extract information related to field of study.

V. Course Content:						
	A – Theoretical A	Aspect:				
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact hours		
1.	Introduction of Drives	 Basic characteristics and operating modes of DC Motor Drives Performance characteristics of Induction Motor Performance characteristics Synchronous motors Stepper motor 	1 st ,2 nd	4		

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Department: Electrical Engineering

	Synchronous	Indirect Vector ControlDirect Vector ControlCylindrical rotor motors		
	C 1	Direct Vector Control		
5.	Vector control	Basic Principle of Vector ControlDirect and Quadrature-AxisTransformation	12 th	2
4.	Induction motor drives	 Stator voltage control Rotor voltage control Frequency control Voltage frequency control Current control Voltage, current and frequency control Closed loop control of induction motor 	8 th ,9 th ,10 th ,11 th	8
3.	Midterm exam	Stator voltage control Stator voltage control	7 th	2
2.	DC drives	 Single phase drives Three phase drive Chopper drives Closed loop control of DC motor 	3 rd ,4 th ,5 th ,6 th	8

B- Tutorial Aspect:					
Order	Tasks/ Tutorial	No. of Weeks	Contact Hours		
1.	 Operation and c Basic Characteristics of Dc Motors Operating Modes of Separately Excited Dc Motor Operating Modes of Series Excited Dc Motor 	1 st	2		

Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Sana'a University
Faculty of Engineering
Department: Floatrical Engine

Department: Electrical Engineering

Title of the Program: Electrical Power and Machines Engineering

2.	 Operation and characteristics of Single-Phase Semi converter Drives. Operation and characteristics of Single-Phase Full-Converter Drives Operation and characteristics of Single-Phase Dual-Converter Drives Simulating single phase drives by using MATLAB 	2 nd ,3 rd	4
3.	 Operation and characteristics of three-Phase Semi converter Drives. Operation and characteristics of three-Phase Full-Converter Drives Operation and characteristics of three-Phase Dual-Converter Drives Simulating three phase drives by using MATLAB 	4 th ,5 th	4
4.	 Principle of Power Control Principle of Regenerative Brake Control Principle of Rheostatic Brake Control Principle of Combined Regenerative and Rheostatic Brake control Two- and Four-Quadrant Dc-dc Converter Drives Open-Loop Transfer Function of Separately Excited motors Open-Loop Transfer Function of Series Excited Motors Closed-Loop Transfer Function Simulating DC-DC drives by using MATLAB 	6 th ,7 th	4
5.	 Performance Characteristics of induction motors Torque—Speed Characteristics Stator Voltage Control Rotor Voltage Control Frequency Control Voltage and Frequency Control 789 Current Control Constant Slip-Speed Control Voltage, Current, and Frequency Control Closed-Loop Control of Induction Motors Simulating induction motors drives by using MATLAB 	8 th ,9 th ,10 th	6
6.	 Basic Principle of Vector Control Operation of Direct and Quadrature-Axis Transformation 	11 th	2

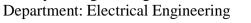
Head of
Department
Asst. Prof. Dr.
Adel Ahmed Al-
Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines Engineering

	Operation of Indirect Vector ControlOperation of Direct Vector Control		
7.	 Control characteristics of synchronous motor and the methods for speed control Simulating ac synchronous motor using MATLAB 	12 th ,13 th	4
8.	 Control characteristics of Variable-Reluctance Stepper Motors Control characteristics of Permanent-Magnet Stepper Motors 	14 th	2
Number of Weeks /and Units Per Semester:		14	28


Order	Tasks/ Experiments	Number of Weeks	Contact hours
1.	■ Single phase semi converter drive	1 st	2
2.	 Single phase full wave converter drive 	2^{nd}	2
3.	■ Single phase dual converter drive	$3^{\rm rd}$	2
4.	■ Three phase half wave converter drive	4 th	2
5.	■ Three phase semi converter drive	5 th ,6 th	4
6.	■ Three phase full wave converter drive	7 th ,8 th	4
7.	 Power control drive 	9 th	2
8.	 Regenerative brake control 	10 th	2
9.	 Induction motors control used AC voltage control 	11 th	2
10.	 Induction motors control used inverters 	12 th	2
11.	 Slip power control of wound rotor induction motors 	13 th	2
12.	Review	14 th	2
Numbe	r of Weeks /and Units Per Semester	14	28

VI. Teaching strategies of the course:

- Lectures
- Problem Solving
- Design exercises

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines Engineering

- Laboratory works
- Homework
- Project work
- **Simulation Tools**
- Presentations

VII. Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark	
1.	Comparison between types of modes operation	a1,a2,b1,b2,d2	3 rd	4	
2.	Design and implementation of power control circuits using MATLAB tools a1,a2,b1,b2,c1		4 th	4	
3.	Design and implementation of dynamic brake control circuits using MATLAB tools	a1,a2,b1,b2,c1	6 th	4	
4.	Design and implementation of closed loop control of S.E.D.C. motor circuits using MATLAB tools	a1,a2,b1,b2,c1	8 th	4	
5.	Design and implementation of volt- hertz control of induction motor using MATLAB tools	a1,a2,b1,b2,c1	10 th	4	
	Total		20		

	VIII. Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment				
1.	Quizzes	4 th ,7 th ,10 th , and 13 th	20	10%				
2.	Assignments	Weekly	20	10%				
3.	Mid-Term exam	7 th	20	10%				
4.	Final exam practical	15 th	40	20%				
5.	Final Exam theory	16 th	100	50%				
	Total		200	100%				

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the Program: Electrical Power and Machines Engineering

IX. Learning Resources:

Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- **1.** M. H. Rashid, 2014, "Power electronics: circuits, devices, and applications," fourth edition, Prentice Hall
- **2.** Austin Hughes, (2006) Electric Motors and Drives Fundamentals, Types and Applications, 3rd Edition, Elsevier Ltd.

2- Essential References.

- 1. Cyril W. Lander, 1993, "Power electronics", 3rd edition, McGraw-Hill.
- **2.** B. W. Williams, 1992, Power Electronics, Devices, Drivers, Application and Passive components
- **3.** Fang Lin Luo, Hong Ye, Muhammad Rashid, "Digital Power Electronics and Applications", 2005, Elsev USA
- **4.** E. Acha, Power Electronics control in Electrical system, 1st, 2002, Newnes.

3- Electronic Materials and Web Sites etc.

- 1. www.goelectricdrive.com/
- 2. www.electricmachinery.com/
- **3.** www.goelectricdrive.com/
- 4. http://www.ece.tamu.edu/~empelab/

X. Course Policies:

Class Attendance:

1. A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic

Tardy:

2. For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.

Exam Attendance/Punctuality:

A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam-

4. | Assignments & Projects:

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Sana'a University
Faculty of Engineering
Department: Electrical Engineering

Title of the Program: Electrical Power and Machines Engineering

The assignment is given to the students after each chapter; the student has to submit all
the assignments for checking on time-
Cheating:
For shooting in every a student will be considered as follows. In case the shooting is

5. For cheating in exam, a student will be considered as failure. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty-

Plagiarism:

Plagiarism is the attending of a student the exam of a course instead of another student.

6. If the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university.

Other policies:

- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room
 - Mobile phones are not allowed in class during the examination.

Lecture notes and assignments my given directly to students using soft or hard copy

Sana'a University
Faculty of Engineering
Department: Electrical Engineering

Title of the Program: Electrical Power and Machines Engineering

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad