

47. <u>Course Specification of System Dynamics and</u> <u>Vibrations</u>

	I.Course Identification and General Information:								
.1	Course Title:		Syster	n Dyna	amics an	d Vibrations.			
.2	Course Code & Number:					MT308.			
			C.H.			TOTAL			
.3	Credit Hours:	Th.	Seminar	Pr.	Tu.	Cr. Hrs.			
		2	-	2	-	3			
.4	Study Level/ Semester at which this Course is offered:	Fourth Year- Second Semester				ond Semester.			
.5	Pre –Requisite (if any):	Mathematics (1), Engineering Workshop, Engineering Mechanics and Theory of Machines.							
.6	Co – Requisite (if any):		System I	Modeli	ng and I	dentification.			
7.	Program (s) in which the Course is offered:	Mechatronics Engineering Program.							
.8	Language of Teaching the Course:				Engli	sh Language.			
.9	Location of Teaching the Course:	Mechatronics Engineering Department.							
.10	Prepared by:		Asst. Prof. Dr.	Abdu	l Salam	Naji Ismaeel.			
11.	Date of Approval:								

II.Course Description:

This course is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts, virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange's equations for systems of particles and rigid bodies in planar motion, and linearization of equations of motion. After this course, students will be able to evaluate forced and free vibration of linear multi-degree of freedom models of mechanical systems and matrix eigenvalue problems.

III.	Course Intended learning outcomes (CILOs) of the	Referenced
	course	PILOs
a1.	Characterize the basic concepts associated with harmonic response functions, vibration transmissibility, system resonance of one and two-	A1

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	degree-of-freedom systems, coordinate coupling and principal coordinates.	
a2.	Identify the natural frequency, damped frequency, logarithmic decrement, and time constant of dynamic systems.	A4
b1.	Investigate the vibration caused by the unbalance in rotating shafts.	B3
b2.	Analyze the response equation of un-damped and viscously damped single-degree-of-freedom systems subjected to different types of harmonic force, including base excitation and rotating unbalance.	B5
c1.	Apply vibration nomographs and vibration criteria to determine the levels of vibration to be controlled or reduced.	C1
c2.	Solve a spring-mass-damper system for different types of free-vibration response depending on the amount of damping manually as well as in MatLab.	C.3
d1.	Co-operate with team work for enhancing skills through homework and team projects.	D1
d2.	Review professional quality design project report and oral presentation.	D2

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies				
Characterize the basic concepts associated with harmonic functions, response vibration transmissibility, system resonance of one and two- degree-of-freedom systems, coordinate coupling and principal coordinates.	 Active Lectures. Tutorials. 	• Written Assessment.				
Identify the natural frequency, a2. damped frequency, logarithmic decrement, and time constant of dynamic systems.	 Active Lectures. Tutorials. Hands on Laboratory Work. 	 Practical Assessment. Simulation.				

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teachi Strategies and Assessment Strategi					
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies			

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Investigate the vibration caused by the unbalance in rotating shafts.	b1.	Design Work and Project.Case Studies.	 Practical Assessment. Reports.
Analyze the response equation of damped and viscously un- single-degree-of- damped subjected freedom systems harmonic to different types of excitation force, including base and rotating unbalance.	b2.	 Active Lectures. The Use of Communication and Information Technology. Case Studies. 	Practical Assessment.Project Reports.

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

	to reaching bil ategies and Assessment bil ategies				
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies			
Apply vibration nomographsc1.vibration criteria to andlevelsof determine theorvibration to be controlledreduced.	 Hands-on Laboratory Work. Design Work. Group Learning. 	Practical Assessment.Laboratory Reports.			
Solve a spring-mass-damper c2. for different system response of free-vibration types of depending on the amount damping manually as well as in MatLab.	 The Use of Communication and Information Technology. Independent Learning. Problem-Based Learning. Computer-Based Learning. 	 Simulations such as Computer Based Learning. 			

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:							
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies					
Co-operate with team work for d1. enhancing skills through homework and team projects.	 Design Work and Projects. Problem-Based Learning. 	• Acquire Team Work Skills through Homework and Team Projects.					
Review professional quality design d2. project report and oral presentation.	• Design Work and Projects.	Generate Professional Quality Design Project					

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

الجمهورية اليمنية وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

• Group Learning.	Report	and	Oral
	Presentat	ion.	

	IV.Course Content:						
	A – Theoretical Aspect:						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours		
1.	Fundamentals of Vibration.	a1, a2 , d1	Basic concepts of vibrations, Classification of vibrations, Vibration analysis procedure, Spring elements, Mass elements, Damping elements.	1	2		
2.	Harmonic Motion.	a1, a2, d1	Vectorial representation of harmonic motion, Complex- number representation of harmonic motion, Complex algebra, Operations on harmonic functions, Definitions and terminology.	1	2		
3.	Harmonic Analysis.	a2, b2, c2, d1	Fourier series expansion, complex Fourier Series, frequency spectrum, Time- and frequency- domain representations, Examples using MATLAB.	1	2		
4.	Free Vibration of Single- Degree-of- Freedom Systems.	a1, a2, b2, d1	Free vibration of an undamped translational systems, Equation of motion using Newton s second law of motion, Equation of motion using other methods, Equation of motion of a spring-mass System in vertical position, Solution, Harmonic motion.	1	2		
5.	Free Vibration of Single-	a2, b1, b2, d1	Free vibration of an undamped	1	2		

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

4.

الجمهورية اليمنية

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	Degree-of- Freedom Systems.		torsional systems, Response of first order systems and time constant, Rayleigh's energy method.		
6.	Free Vibration of Single- Degree-of- Freedom Systems.	a2, b1, b2, d1	Free vibration with viscous damping: Equation of motion, Logarithmic Decrement, Energy dissipated in viscous Damping, Torsional systems with viscous Damping.	1	2
7.	Harmonically Excited Vibration.	b1, b2, c2, d1	Equation of motion, Response of un-damped system under harmonic force.	1	2
8.	Mid Term Exam.	a1, a2, b1, b2, c1, c2.	The First 7 Chapters.	1	2
9.	Harmonically Excited Vibration.	b1, b2, c2, d1.	Response of damped system under harmonic force, Response of damped system under $F(t) = Fe^{i\omega t}$	1	2
10.	Harmonically Excited Vibration.	b1, d1	Response of a damped system under the harmonic motion of the base, Response of a damped system under rotating unbalance.	1	2
11.	Vibration Under General Forcing Conditions.	a2, b1, d1	Response under a general periodic force, First-order systems, Second order systems.	1	2
12.	Vibration Under General Forcing Conditions.	a2, b1, c2, d1	Response under a periodic force of irregular form, Response under a non-periodic force, Response to an impulse, Response to a general forcing condition, Response to Base excitation.	1	2
13.	Two-Degree- of-Freedom Systems.	b1, b2, c2, d1	Introduction, Equations of motion for forced vibration, Free vibration analysis of an un damped system.	1	2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

5.

Ministry of Higher Education & Scientific Research

Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

14.	Two-Degree- of-Freedom Systems.	b1, c1, d1	Torsional system, Coordinate coupling and principal Coordinates, Forced- vibration analysis.	1	2
15.	Review.	a1, a2, b1, b2, c1, c2, d1, d2	All the Chapters.	1	2
16.	Final Exam.	a1, a2, b1, b2, c1, c2	All the Chapters.	1	2
Number of Weeks /and Units Per Semester					32

	B - Practical Aspect:					
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes		
1.	Tutorial (1) for the following subtopics: Basic concepts of vibrations, Classification of vibrations, Vibration analysis procedure, Spring elements, Mass elements, Damping elements. Computer Lab& Experimental Lab.	1	 1 h for Tutorial (1) 1 h for Lab exercises and project design. 	a1, a2 , d1		
2.	Tutorial (2) for the following subtopics: Vectorial representation of harmonic motion, Complex-number representation of harmonic motion, Complex algebra, Operations on harmonic functions, Definitions and terminology. Computer Lab & Experimental Lab.	1	 1 h for Tutorial (2) 1 h for Lab exercises and project design. 	a1, a2, d1		
3.	Tutorial (3) for the following subtopics: Fourier series expansion, complex Fourier Series, frequency spectrum, Time- and frequency- domain representations, Examples using MATLAB. Computer Lab & Experimental Lab.	1	 1 h for Tutorial (3) 1 h for Lab exercises and project design. 	a2, b2, c2, d1		
4.	Tutorial (4) for the following subtopics: Free vibration of an un damped translational systems, Equation of motion using Newton's second law of	1	 1 h for Tutorial (4) 1 h for Lab exercises and project design. 	a1, a2, b2, d1		

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

	motion, Equation of motion using other methods, Equation of motion of a spring-mass System in vertical position, Solution, Harmonic motion. Computer Lab & Experimental Lab.			
5.	Tutorial (5) for the following subtopics: Free vibration of an un damped torsional systems, Response of first order systems and time constant, Rayleigh's energy method. Computer Lab & Experimental Lab.	1	 1 h for Tutorial (5) 1 h for Lab exercises and project design. 	a2, b1, b2, d1, d2
6.	Tutorial (6) for the following subtopics: Free vibration with viscous damping: Equation of motion, Logarithmic Decrement, Energy dissipated in viscous Damping, Torsional systems with viscous Damping. Computer Lab & Experimental Lab.	1	 1 h for Tutorial (6) 1 h for Lab exercises and project design. 	a2, b1, b2, d1
7.	Tutorial (7) for the following subtopics: Equation of motion, Response of un- damped system under harmonic force. Computer Lab & Experimental Lab.	1	 1 h for Tutorial (7) 1 h for Lab exercises and project design 	b1, b2, c2, d1
8.	Tutorial (8) for the following subtopics: Response of damped system under harmonic force, Response of damped system under $F(t) = Fe^{i\omega t}$ Computer Lab& Experimental Lab.	1	 1 h for Tutorial (8) 1 h for Lab exercises and project design 	b1, b2, c2, d1
9.	Tutorial (9) for the following subtopics: Response of a damped system under the harmonic motion of the base, Response of a damped system under rotating unbalance. Computer Lab & Experimental Lab.	1	 1 h for Tutorial (9) 1 h for Lab exercises and project design. 	b1, d1
10.	Tutorial (10) for the following subtopics: Response under a general periodic force, First-order systems, Second order systems. Computer Lab & Experimental Lab.	1	 1 h for Tutorial (10) 1 h for Lab exercises and project design. 	a2, b1, d1
11.	Tutorial (11) for the following subtopics:	1	h for Tutorial (11)	a2, b1, c2, d1

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالى والبحث العلمى

مجلس الاعتماد الأكاديمي وضمان الجودة

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

	Response under a periodic force of irregular form, Response under a non- periodic force, Response to an impulse, Response to a general forcing condition, Response to Base excitation. Computer Lab & Experimental Lab.		1 h for Lab exercises and project design.	
12.	Tutorial (12) for the following subtopics: Introduction, Equations of motion for forced vibration, Free vibration analysis of an un damped system. Computer Lab & Experimental Lab.	1	 1 h for Tutorial (12) 1 h for Lab exercises and project design. 	b1, b2, c2, d1
13.	Tutorial (13) for the following subtopics: Torsional system, Coordinate coupling and principal Coordinates, Forced- vibration analysis. Computer Lab & Experimental Lab.	1	 1 h for Tutorial (13) 1 h for Lab exercises and project design. 	b1, c1, d1
14.	Tutorial (14) for the following subtopics: Vibration monograph and vibration Criteria, Reduction of vibration at the source, Balancing of rotating machines. Computer Lab & Experimental Lab.	1	 1 h for Tutorial (14) 1 h for Lab exercises and project design. 	b1, c1, d1
Numb	oer of Weeks /and Units Per Semester	14	28	

V.Teaching strategies of the course:

- Active Lectures.
- Tutorials.
- Group Learning.
- Independent Learning and Work.
- Case Studies.
- The Use of Communication and Information Technology.
- Hands-on Laboratory Work.
- Design Work.

			VI.Assi	gnments:
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

1.	Project report and Presentation (single/group) and Assignments.	15 th	15	10%	a1, a	2, $b\overline{1}$, $b2$, $c1$, c2, $d1$, $d2$.
No.	Assessment Method	Week Due	Week Due Mark Proportion Final Assessment		of Ali	gned Course Learning Outcomes
	VII.Schedule of Assessmen	t Tasks	for St	udents D	uring the	e Semester:
Total						10
9.	Simulink Applications for Multi degree-of-freedom Systems	imulink Applications for Multi- degree-of-freedom Systems. d2.		11 th	2	
8.	MATLAB Applications for Multi- degree-of-freedom Systems	- a1, a2,	b1, b2,	c1, c2, d1, d2.	10 th	1
7.	Dynamic Vibration Absorbers/MATLAB Applications	a1, a2,	b1, b2,	c1, c2, d1, d2.	9 th	1
6.	MATLAB and Simulink Applications	. a1, a2,	a1, a2, b1, b2, c1, c2, d1, d2.			1
5.	Frequency Response with MATLAB	a1, a2,	b1, b2,	c1, c2, d1, d2.	6 th	1
4.	Damped Free Vibration – MATLAB	a1, a2,	b1, b2,	c1, c2, d1, d2.	5 th	1
3.	Problems, Intro to MATLAB	a1, a2,	b1, b2,	c1, c2, d1, d2.	4^{th}	1
2.	Experimentally measure damping ration in under-damped systems	a1, a2,	a1, a2, b1, b2, c1, c2, d1, d2.			1
1.	Experimentally measure deferent parameters of Harmonic Motion	t a1, a2,	b1, b2,	c1, c2, d1, d2.	2^{nd}	1

				rissessment	Outcomes
1.	Project report and Presentation (single/group) and Assignments.	15 th	15	10%	a1, a2, b1, b2, c1, c2, d1, d2.
2.	Practical and Lab. Tests.	Weekly	7.5	5%	a1, a2, b1, b2, c1, c2
3.	Written Tests (1) and (2).	6^{th} and 12^{th}	7.5	5%	a1, a2, b1, b2, c1, c2
4.	Mid-Term Exam.	8^{th}	15	10 %	a1, a2, b1, b2, c1, c2
5.	Final Exam (practical).	15 th	15	10%	a1, a2, b1, b2, c1, c2.
6.	Final Exam (theoretical)	16 th	90	60%	a1, a2, b1, b2, c1, c2
	Total		150	100%	

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالى والبحث العلمى

مجلس الاعتماد الأكاديمي وضمان الجودة

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

VIII.Learning Resources:

S.S. Rao, (2011), Mechanical Vibrations, 5th Edition, Pearson-Prentice hall,
 William J. Palm III, (2007), Mechanical Vibration, John Wiley & Sons, Inc.

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

		2- Essential References.						
	1	. William J. Bottega, (2014), Engineering Vibration, Second Edition, CRC Press.						
	2. W. T. Thomson, (1998), Theory of Vibration with Applications, Fourth Edition							
		Chapman & Hall,						
	3	. L. Meirovitch, (2001), Fundamentals of Vibrations, McGraw Hill,						
	4	. S. G. Kelly, (1996), Mechanical vibrations, McGraw Hill, Schaums Outlines,						
	5	. J. Inman, (2000), Engineering Vibration, 2 nd Edition, Prentice Hall.						
3- Electronic Materials and Web Sites etc.								
	1. www.pearsonhighered.com/rao.							
	2.	http://www.me.mtu.edu/courses/meem3700/index.htm.						
	3.	www.howstuffworks.com.						
F	Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.						
	By	Barakat.						
		President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi.						
Head of Mechat		Head of Mechatronics Engineering Department: Assoc. Prof. Dr. Abdul-Malik Momin.						
		Assoc. Prof. Dr. Riyadh Muharam.						
		Deputy Rector for Academic Affairs Assoc. Prof. Dr. Ibrahim AlMutaa.						
		Assoc. Prof. Dr. Ahmed Mujahed and Asst. Prof. Munasar Al-Subari.						

Head of the Quality Assurance Dean of the Academic Development Center & Quality Assurance Rector of Sana'a University Department Unit Faculty Assoc. Prof. Dr. Prof. Dr. Assoc. Prof. Dr. Huda Al-Prof. Dr. Al-Qassim Assoc. Prof. Mohammed Abbas Dr. Abdul-Mohammad Mohammed AL-Emad Malik Momin Algorafi Bukhaiti

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

	IX.Course Policies:
.1	Class Attendance: The students should have more than 75 % of attendance according to rules and regulations of the Faculty.
.2	Tardy: The students should respect the timing of attending the lectures. They should attend within 10 minutes from starting of the lecture.
.3	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.
.4	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.
.5	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquiries.
6.	Plagiarism: The student will be terminated from the Faculty, if one student attends the exam on another behalf according to the policy, rules and regulations of the university.
7.	 Other Policies: All the teaching materials should be kept out the examination hall. The mobile phone is not allowed. There should be a respect between the student and his teacher.

Head of the	Quality Assurance	Dean of the	Academic Development	
Department	Unit	Faculty	Center & Quality Assurance	Rector of Sana'a University
Assoc. Prof.	Assoc. Prof. Dr.	Prof. Dr.	Assoc. Prof. Dr. Huda Al-	Prof. Dr. Al-Qassim
Dr. Abdul-	Mohammad	Mohammed AL-	Emad	Mohammed Abbas
Malik Momin	Algorafi	Bukhaiti		

Course Plan of System Dynamics and Vibrations

I.Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Asst. Prof. Dr. Abdulsalam Naji Ismaeel.			Offic	e Hou	urs	
Location& Telephone No.	-	SAT	SUN	MON	TUE	WED	THU
E-mail	-						

II. (II. Course Identification and General Information:						
1.	Course Title:	System Dynamics and Vibrations.					
2.	Course Number & Code:	MT308.					
			C.1	H		TOTAL CR.	
3.	Credit hours:	Th.	Seminar	Pr	Tu.	HRS.	
		2	-	2		3	
4.	Study level/year at which this course is offered:	Fourth Year- Second Semester.					
5.	Pre –requisite (if any):	Mathematics (1), Engineering Workshop, Engineering Mechanics and Theory of Machines.					
6.	Co –requisite (if any):	System	n Modeling	and Iden	tification	1.	
7.	Program (s) in which the course is offered	Mechatronics Engineering Program.					
8.	Language of teaching the course:	English Language.					
9.	System of Study:	Semesters.					
10.	Mode of delivery:	Lectures and Labs.					
11.	Location of teaching the course:	Mecha	atronics Eng	gineering	Departm	nent.	

III.Course Description:

This course is an introduction to the dynamics and vibrations of lumped-parameter models of mechanical systems. Topics covered include kinematics, force-momentum formulation for systems of particles and rigid bodies in planar motion, work-energy concepts, virtual displacements and virtual work. Students will also become familiar with the following topics: Lagrange's equations for systems of particles and rigid bodies in planar motion, and linearization of equations of motion. After this course, students will be able to evaluate free and forced vibration of linear multi-degree of freedom models of mechanical systems and matrix eigenvalue problems.

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

IV.C	Course Intended learning outcomes (CILOs) of the	Referenced	
cou	course		
a1.	Characterize the basic concepts associated with harmonic response functions, vibration transmissibility, system resonance of one and two- degree-of-freedom systems, coordinate coupling and principal coordinates.	A1	
a2.	Identify the natural frequency, damped frequency, logarithmic decrement, and time constant of dynamic systems.	A4	
b1.	Investigate the vibration caused by the unbalance in rotating shafts.	B3	
b2.	Analyze the response equation of un-damped and viscously damped single-degree-of-freedom systems subjected to different types of harmonic force, including base excitation and rotating unbalance.	B5	
c1.	Apply vibration monographs and vibration criteria to determine the levels of vibration to be controlled or reduced.	C1	
c2.	Solve a spring-mass-damper system for different types of free-vibration response depending on the amount of damping manually as well as in MatLab.	C.3	
d1.	Co-operate with team work for enhancing skills through homework and team projects.	D1	
d2.	Review professional quality design project report and oral presentation.	D2	

V.Course Content:						
• D	istribution of Semeste	er Weekly Plan Of course Topics/Items and	Activities.			
A – Th	eoretical Aspect:					
Order	der Topics List Sub Topics List Week Conta Due Hour					
1.	Fundamentals of Vibration.	Basic concepts of vibrations, Classification of vibrations, Vibration analysis procedure, Spring elements, Mass elements, Damping elements.	1	2		
2.	Harmonic Motion.	Vectorial representation of harmonic motion, Complex-number representation of harmonic motion, Complex algebra, Operations on harmonic functions, Definitions and terminology.	2	2		

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

3.	Harmonic Analysis.	Fourier series expansion, complex Fourier Series, frequency spectrum, Time- and frequency- domain representations, Examples using MATLAB.	3	2
4.	Free Vibration of Single-Degree-of- Freedom Systems.	Free vibration of an undamped translational systems, Equation of motion using Newton s second law of motion, Equation of motion using other methods, Equation of motion of a spring- mass System in vertical position, Solution, Harmonic motion.	4	2
5.	Free Vibration of Single-Degree-of- Freedom Systems.	Free vibration of an undamped torsional systems, Response of first order systems and time constant, Rayleigh's energy method.	5	2
6.	Free Vibration of Single-Degree-of- Freedom Systems.	Free vibration with viscous damping: Equation of motion, Logarithmic Decrement, Energy dissipated in viscous Damping, Torsional systems with viscous Damping.	6	2
7.	Harmonically Excited Vibration.	Equation of motion, Response of un- damped system under harmonic force.	7	2
8.	Mid -Term Exam.	The First 7 Chapters.	8	2
9.	Harmonically Excited Vibration.	Response of damped system under harmonic force, Response of damped system under $F(t) = Fe^{i\omega t}$	9	2
10.	Harmonically Excited Vibration.	Response of a damped system under the harmonic motion of the base, Response of a damped system under rotating unbalance.	10	2
11.	VibrationUnderGeneralForcingConditions.	Response under a general periodic force, First-order systems, Second order systems.	11	2
12.	Vibration Under General Forcing Conditions.	Response under a periodic force of irregular form, Response under a non- periodic force, Response to an impulse, Response to a general forcing condition, Response to Base excitation.	12	2

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

13.	Two-Degree-of- Freedom Systems.Introduction, Equations of motion for forced vibration, Free vibration analysis of an un damped system.			13	2
14.	Two-Degree-of- Freedom Systems.	Torsional system, Coordinate and principal Coordinates, vibration analysis.	coupling Forced-	14	2
15.	Review.	All the Chapters.		15	2
16.	Final Exam.	All the Chapters.		16	2
	Number of Week	s /and Units Per Semester		16	32
B - Pra	actical Aspect:				
Order	Tas	ks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes
1.	Tutorial (1) for the following subtopics: Basic concepts of vibrations, Classification of vibrations, Vibration analysis procedure, Spring elements, Mass elements, Damping elements. Computer Lab & Experimental Lab.			2	a1, a2 , d1
2.	Tutorial (2) for the following subtopics: Vectorial representation of harmonic motion, Complex-number representation of harmonic motion, Complex algebra, Operations on harmonic functions, Definitions and terminology. Computer Lab & Experimental Lab.			2	a1, a2, d1
3.	Tutorial (3) for the following subtopics:Fourier series expansion, complex Fourier Series,frequency spectrum, Time- and frequency- domainrepresentations, Examples using MATLAB.Computer Lab & Experimental Lab.			2	a2, b2, c2, d1
4.	Computer Lab & Experimental Lab.Tutorial (4) for the following subtopics:Free vibration of an un damped translationalsystems, Equation of motion using Newton s secondlaw of motion, Equation of motion using othermethods, Equation of motion of a spring-massSystem in vertical position, Solution, Harmonicmotion.Computer Lab & Experimental Lab.		1	2	a1, a2, b2, d1

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

5.	Tutorial (5) for the following subtopics: Free vibration of an un damped torsional systems, Response of first order systems and time constant, Rayleigh's energy method. Computer Lab & Experimental Lab.	1	2	a2, b1, b2, d1, d2
6.	Tutorial (6) for the following subtopics: Free vibration with viscous damping: Equation of motion, Logarithmic Decrement, Energy dissipated in viscous Damping, Torsional systems with viscous Damping. Computer Lab & Experimental Lab.	1	2	a2, b1, b2, d1
7.	Tutorial (7) for the following subtopics: Equation of motion, Response of un-damped system under harmonic force. Computer Lab & Experimental Lab.	1	2	b1, b2, c2, d1
8.	Tutorial (8) for the following subtopics: Response of damped system under harmonic force, Response of damped system under $F(t) = Fe^{i\omega t}$ Computer Lab & Experimental Lab.	1	2	b1, b2, c2, d1
9.	Tutorial (9) for the following subtopics: Response of a damped system under the harmonic motion of the base, Response of a damped system under rotating unbalance. Computer Lab & Experimental Lab.	1	2	b1, d1
10.	Tutorial (10) for the following subtopics: Response under a general periodic force, First-order systems, Second order systems. Computer Lab& Experimental Lab.	1	2	a2, b1, d1
11.	Tutorial (11) for the following subtopics: Response under a periodic force of irregular form, Response under a non-periodic force, Response to an impulse, Response to a general forcing condition, Response to Base excitation. Computer Lab& Experimental Lab.	1	2	a2, b1, c2, d1
12.	Tutorial (12) for the following subtopics: Introduction, Equations of motion for forced vibration, Free vibration analysis of an un damped system. Computer Lab& Experimental Lab.	1	2	b1, b2, c2, d1
13.	Tutorial (13) for the following subtopics:	1	2	b1, c1, d1

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Republic of Yemen Ministry of Higher Education & Scientific Research Council for Accreditation & Quality Assurance

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

	Torsional system, Coordinate coupling and principal Coordinates, Forced-vibration analysis Computer Lab& Experimental Lab.			
14.	Tutorial (14) for the following subtopics: Vibration monograph and vibration Criteria, Reduction of vibration at the source, Balancing of rotating machines. Computer Lab& Experimental Lab.	1	2	b1, c1, d1
Number of Weeks /and Units Per Semester		14	28	

VI.Teaching strategies of the course:

- Active Lectures.
- Tutorials.
- Group Learning.
- Independent Learning and Work.
- Case Studies.
- The Use of Communication and Information Technology.
- Hands-on Laboratory Work.
- Design Work.

VII.Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark	
1.	Experimentally measure deferent parameters of Harmonic Motion.	a1, a2, b1, b2, c1, c2, d1, d2	2^{nd}	1	
2.	Experimentally measure damping ratio in under-damped systems.	a1, a2, b1, b2, c1, c2, d1, d2	3 rd	1	
3.	Problems, Intro to MATLAB,	a1, a2, b1, b2, c1, c2, d1, d2	4 th	1	
4.	Damped Free Vibration – MATLAB.	a1, a2, b1, b2, c1, c2, d1, d2	5 th	1	
5.	Frequency Response with MATLAB.	a1, a2, b1, b2, c1, c2, d1, d2	6 th	1	
6.	MATLAB and Simulink Applications.	a1, a2, b1, b2, c1, c2, d1, d2	8 th	1	
7.	Dynamic Vibration Absorbers/MATLAB Applications.	a1, a2, b1, b2, c1, c2, d1, d2	9 th	1	

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

9.	degree-of-freedom Systems.	a1, a2, b1, b2, c1, c2, d1, d2	9 weeks	10
9	Simulink Applications for Multi-	a1 a2 b1 b2 c1 c2 d1 d2	11 th	2
8.	MATLAB Applications for Multi- degree-of-freedom Systems.	a1, a2, b1, b2, c1, c2, d1, d2	10 th	1

VIII.Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1.	Project report and Presentation (single/group) and Assignments.	15 th	15	10%	a1, a2, b1, b2, c1, c2, d1, d2		
2.	Practical and Lab. Tests.	Weekly	7.5	5%	a1, a2, b1, b2, c1, c2		
3.	Written Tests (1) and (2).	6^{th} and 12^{th}	7.5	5%	a1, a2, b1, b2, c1, c2		
4.	Mid-Term Exam.	8 th	15	10 %	a1, a2, b1, b2, c1, c2		
5.	Final Exam (practical).	15 th	15	10%	a1, a2, b1, b2, c1, c2.		
6.	Final Exam (theoretical)	16 th	90	60%	a1, a2, b1, b2, c1, c2		
	Total		150	100%			

IX.Learning Resources:

• Written in the following order: (Author – Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. S.S. Rao, (2011), Mechanical Vibrations, 5th Edition, Pearson-Prentice hall,
- 2. William J. Palm III, (2007), Mechanical Vibration, John Wiley & Sons, Inc.

2- Essential References.

- 1. William J. Bottega, (2014), Engineering Vibration, Second Edition, CRC Press.
- 2. W. T. Thomson, (1998), Theory of Vibration with Applications, Fourth Edition, Chapman & Hall,
- 3. L. Meirovitch, (2001), Fundamentals of Vibrations, McGraw Hill,
- 4. S. G. Kelly, (1996), Mechanical vibrations, McGraw Hill, Schaums Outlines,
- 5. J. Inman, (2000), Engineering Vibration, 2nd Edition, Prentice Hall,

3- Electronic Materials and Web Sites etc.

Head of the Department Assoc. Prof. Dr. Abdul-Malik Momin Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

وزارة التعليم العالي والبحث العلمي مجلس الاعتماد الأكاديمي وضمان الجودة

X.(Course Policies:
1.	Class Attendance: The students should have more than 75 % of attendance according to rules and regulations of the Faculty.
2.	Tardy: The students should respect the timing of attending the lectures. They should attend within 10 minutes from starting of the lecture.
3.	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.
4.	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.
5.	Cheating : If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquiries.
6.	Plagiarism : The student will be terminated from the Faculty, if one student attends the exam on another behalf according to the policy, rules and regulations of the university.
7.	 Other Policies: All the teaching materials should be kept out the examination hall. The mobile phone is not allowed. There should be a respect between the student and his teacher.
	 www.pearsonhighered.com/rao. http://www.me.mtu.edu/courses/meem3700/index.htm. www.howstuffworks.com.

Head of the	Quality Assurance	Dean of the	Academic Development
Department	Unit	Faculty	Center & Quality Assurance
Assoc. Prof.	Assoc. Prof. Dr.	Prof. Dr.	Assoc. Prof. Dr. Huda Al-
Dr. Abdul-	Mohammad	Mohammed AL-	Emad
Malik Momin	Algorafi	Bukhaiti	

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas