

49. Course Specification of Power System Analysis 2

I. (I. Course Identification and General Information:							
1.	Course Title:	Power	Power System Analysis 2					
2.	Course Code & Number:	PME3	33					
			C.]	H.		TOTAL		
3.	Credit hours:	Th.	Tu.	Pr	Tr.	C.R.		
		2	2	-	-	3		
4.	Study level/ semester at which this course is offered:	Fifth Year/ First Semester						
5.	Pre –requisite (if any):	Power	System Ana	alysis I (P	ME332)			
6.	Co –requisite (if any):	NA						
7.	Program (s) in which the course is offered:	Electrical Power and Machines Engineering			neering			
8.	Language of teaching the course:	English Language.						
9.	Location of teaching the course:	Class						
10.	Prepared By:	Dr. M	uhammad A	l-yadoum	i			
11.	Date of Approval:							

II. Course Description:

This course prepares students to work professionally in the area of Electric power Engineering and power related fields. The subjects focus on the study of the power system components behavior during normal and up-normal operating conditions when subjected to disturbances. The course includes the following topics:symmetrical components and sequence networks Analysis, fault Analysis, stability Analysis, economic operation of power system operation, economic dispatch problem, automatic Generation Control (AGC) and unit commitment. In addition, the course includes a group-based term project in which students will choose any subject covered throughout the course to model and study the performance of a choosing small power system using one of the very common software packages used in power system analysis such as ETAB and MATLAB.

III	I. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1.	Define the theoretical and mathematical aspects of power systems analysis.	A1
a2.	Demonstrate knowledge of the effect of parameters design on the power system performance.	A2

Head of Quality Assurance Dean of the Faculty Academic Rector of Sana'a University Prof. Dr. Mohammed Department Unit Development Prof. Dr. Al-Qassim Mohammed AL-Bukhaiti Asst. Prof. Dr. Assoc. Prof. Dr. Center & Quality Abbas Adel Ahmed Al-Mohammad Algorafi Assurance Shakiri Assoc. Prof. Dr.

b1.	Study the behavior of power system components during normal and up-normal operating conditions.	B1, B2
b2.	Compare between alternative mathematical, and computation techniques used in power system analysis and select the appropriate one according to the needed specifications.	B3
c1.	Use simulation tools to perform comprehensive short circuit, transient, stability, economic operation, and automatic power generation studies commonly practiced in power systems analysis.	C4
c2.	Perform analysis of power systems subject to normal and up-normal operation conditions to assess the effect of parameter design on the system performance.	C2
d1.	Develop student's cooperative work though efficient team works, through projects work.	D1
d2.	Communicate effectively to professionals and non-specialists alike through reports and presentations	D4

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
a1. Define the theoretical and mathematical aspects of power systems analysis.	Active Lectures.Tutorials.Computer AnalysisDiscussion	Written ExamsHomeworkComputer Analysis Results
a2. Demonstrate knowledge of the effect of parameters design on the power system performance.	 Active Lectures. Tutorials. Computer Analysis Discussion 	 Written Exams Homework Class activities. Computer Analysis Results

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes Teaching strategies Assessment Strategies						
b1.	Study the behavior of power	• Active Lectures.	• Written Exams			
system components during • Tutorials. • Homework			• Homework			
	Brainstorming • Class activities.					

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

-					
	normal	and	up-normal	Computer Analysis	Computer Analysis
	operating	condition	IS.		Results
b2.	Compare mathemati techniques system an appropriat the needed	between ical, and s used alysis ar e one a l specific	alternative computation in power ad select the according to ations.	Active Lectures.Tutorials.Computer AnalysisDiscussion	 Written Exams Homework Class activities. Computer Analysis Results

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1.	Use simulation tools to perform comprehensive short circuit, transient, stability, economic operation, and automatic power generation studies commonly practiced in power systems analysis.	 Active Lectures. Analysis and Problem solving Computer simulations 	 Written Exams Homework Class activities. Computer Analysis Results
c2.	Perform analysis of power systems subject to normal and up-normal operation conditions to assess the effect of parameter design on the system performance.	 Active Lectures. Analysis and Problem solving Computer simulations 	 Homework Simulations reports Class activities.

(D) Alignment Course Intended Learning Outcomes of Transferable Skillsto Teaching Strategies and Assessment Strategies:

	0		
	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d1.	Develop student's cooperative work though efficient team works, through projects work.	Group worksProjects	 Project reports Presentation
d2.	Communicateeffectivelytoprofessionalsandnon-specialistsalikethrough reportsandpresentations	Group worksProjects	 Presentations Project reports Homwork reports

IV. Course Content: A – Theoretical Aspect:

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours
1.	Introduction	a1, d1, d2	 Overview of the course: learning objectives and outcomes Course organization Methods and measures of assessment Course requirements, guidelines to comply with the course, and Course Policies Project 	1	2
2.	Symmetrical Components Analysis	a1, b1	 Introduction, a operator Synthesis of Unsymmetrical Phasors from Their Symmetrical Symmetrical Y and Δ. Circuits Power in Terms of Symmetrical Components Sequence Impedances of Transmission Lines, Transformers, and Synchronous machines Sequence Networks: Positve, Negative, and Zero 	1	2
3.	Unsymmetrica l Fault Analysis	a1, a2, b1, b2, c1, c2	 Review of Three Phase Symmetrical faults Unsymmetrical faults: Single line to ground (LG), Line to line (LL) fault, Double line to ground (LLG) faults, Open Conductor faults. Bus impedance matrix methods for analyzing of unsymmetrical faults. 	2	4
4.	Economic Operation of Power Systems	a1, a2	 Distribution of Load between Units within a Plant System constraints Distribution of Load between Plants, penalty factor The Transmission-Loss Equation 	2	4

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

			 Classical Economic Dispatch 		
			including transmission losses		
5.	Automatic Generation Control	a1, a2, b1, b2, c1	 Speed-governing characteristic Of Synchronous Generator Frequency-Power Characteristics of a Synchronous Generator Operation of Generators in Parallel with Large Power Systems Operation of Generators in Parallel with Other Generators of the Same Size The house diagram Single area Load frequency control Block diagram of load frequency Multi area load frequency control Area Control Error (ACE). 	2	4
6.	Unit Commitment	a1, b2, c1, d1, d2	 Unit Commitment Definition Dynamic Programming: Solving the Unit Commitment Problem Unit Commitment Example 	2	4
7.	Transient in Power System Elements	a1, a2, b1, b2, c1,c2	 Transients in transmission line Transient in synchronous machines, Suptransient, Transient, and steady state Transient in Transformer 	1	2
8.	Power system Stability:	a1, a2, b1, b2, c1,c2	 Definition of the Stability Problem Classification of Power System Stability steady state stability Dynamics of Synchronous Machine and the Swing Equation Power Angle Equation Synchronizing Power Coefficients Transient Stability: single Machine- Infinite Bus case, Equal area Criterion Analysis 	2	4

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

			 Multi Machines Stability studies, Numerical Solution of Swing Equation Factors Affecting Transient Stability Voltage Stability 		
9.	Project	a1, a2, b1, b2, c1,c2, d1, d2	 Project Dissections 	1	2
Number of Weeks /and Units Per Semester				14	28

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

B - Tu	B - Tutorial Aspect:				
Order	Tutorial	Learning Outcomes	Number of Weeks	Contac t Hours	
1.	Symmetrical Components Analysisa operator, Synthesis of Unsymmetrical Phasorsfrom Their Symmetrical, Symmetrical Y and Δ .Circuits, Power in Terms of SymmetricalComponent	a1, b1	1	2	
2.	 Sequence Impedances and Sequence Networks Sequence Impedances of Transmission Lines, Transformers and Synchronous Machines Sequence Networks: Positve, Negative, and Zero 	a1, a2, b1, b2, c1,c2	1	2	
3.	 <u>Unsymmetrical Fault Analysis part 1</u> Review of Three Phase Symmetrical faults Single line to ground (LG) fault, 	a1, a2, b1, b2, c1,c2	1	2	
4.	 <u>Unsymmetrical Fault Analysis part 2</u> Line to line (LL) fault, Double Line to Ground (LLG) fault, Open Conductor Faults. Unsymmetrical Faults Analysis using Bus Impedance Matrix Methods 	a1, a2, b1, b2, c1,c2	1	2	
5.	 Economic Operation of Power Systems Distribution of Load between Units within a Plant System Constraints Distribution of Load between Plants, Penalty factor The Transmission-Loss Equation Classical Economic Dispatch including Transmission Losses 	a1, a2	2	4	
6.	Automatic Generation Control • Load Frequency Control	a1, a2, b1, b2, c1	1	2	

TT 1 C				
Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

	 Single area Load frequency control Block diagram of load frequency Multi area load frequency control 			
	• Area Control Error (ACE).			
7.	Mid-Term Exam Solution	a1,a2, b1, b2, c1, d2	1	2
8.	 <u>Unit Commitment</u> Dynamic Programming: Solving the Unit Commitment Problem Unit Commitment Example 	a1, b2, c1, d1, d2	1	2
9.	 Transient in Power System Elements Transients in Transmission Line Transient in Synchronous Machines, Sup- Transient, Transient, and Steady state Transient in Transformer 	a1,a2, b1, b2, c2	1	2
10.	 <u>Power system Stability part1:</u> Steady State Stability Dynamics of Synchronous Machine and the Swing Equation Power Angle Equation Synchronizing Power Coefficients 	a1, a2, b1, b2, c2	1	2
11.	 Power system Stability part 2: Single Machine-Infinite Bus case, Equal Area Criterion Analysis Multi Machines Stability studies, Numerical Solution of the Swing equation Factors Affecting Transient Stability Voltage Stability 	a1,a2,b1,b2 ,,c1, c2.	2	4
12.	• Projects presentation and discussion	a1,a2,b1,b2 ,c1 , c2, d1, d2	1	2
	Number of Weeks /and Units Per Semester		14	28
V.	Teaching strategies of the course:			
	Active Lectures. Tutorials. The use of Computer and Web-Based Learning.			

Head of Quality Department Asst. Prof. Dr. Assoc Adel Ahmed Al- Moham Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

- Directed Self Study.
- Group Learning and Problem Based Learning.
- laboratory works
- Self and cooperative learning
- Dialogue, discussion and class activities
- Analysis and Problem solving.
- Project work
- Simulation tools (ETAP, Matlab With Simulink)
- Brainstorming

VI.	Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Problem set NO. 1 Symmetrical Components Analysis	a1, b2, d1	2^{nd}	1.5
2.	Problem set NO. 2 Sequence Impedances and Sequence Networks	a1, b2, d1	3 rd	1.5
3.	Problem set NO. 3 Unsymmetrical Fault Analysis part 1	a1, b2,,c2, d1	4 th	1.5
4.	Problem set NO. 4 Unsymmetrical Fault Analysis part 2	a1, a2, b1, b2, c2, d1	5 th	1.5
5.	Problem set NO. 5 Economic Operation of Power Systems	a1,a2, b1, b2, d1	6 th	1.5
6.	Problem set NO. 6 Automatic Generation Control	a1, a2, b1, b2, c2, d1	8 th	1.5
7.	Problem set NO. 7 Unit Commitment	a1, a2, b1, b2, c2, d1	11^{th}	2
8.	Problem set NO. 8 Transient in Power System Elements	a1,a2, b1, b2, c2, d1	12 th	2
9.	Problem set NO.9 Power system Stability part	a1, a2, b1, b2, c2, d1	14 th	2
	Total			15

VII. Schedule of Assessment Tasks for Students During the Semester:

No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

1.	Attendance and Class activities	Every Class	15	10%	a1, b1, b2, d1, d2.
2.	Assignments	2^{nd} to 14^{th}	15	10 %	a1, a ₂ , b1,b2, c1, d1,d2.
4.	Course Project	15 th	15	10%	a1, b1,b2, c1, c2, d1,d2.
5.	Midterm exam	7 th	30	20%	a1,a2, b1, b2
6.	Final Exam	16 th	75	50%	a1,,a2 b1, b2
	Total		150	100%	

VIII.	Learning Resources:
•	Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).
1- Req	quired Textbook(s) (maximum two).
	1. John.J.Grainger, William D. Stevenson, Jr, "Power System Analysis", Mc Graw
	Hill Education (India) Private Limited, New Delhi, 2015.
	2. Hadi Sadat, "Power System Analysis", Tata Mc Graw Hill Publishing company,
	New Delhi, 2002.
2- Ess	ential References.
	1. Nagarath I.J. and Kothari D.P., "Modern Power System Analysis", Fourth
	Edition, Mc Graw Hill Education (India) Private Limited, New Delhi, 2015.
	2. Stephen J. Chapman "ELECTRIC MACHINERY FUNDAMENTALS" FIFTH
	EDITION, McGraw HILL, 2012
3- Elec	ctronic Materials and Web Sites etc.
	1. <u>All About : Matlab</u> Package
	2. www.mathworks.com

IX. Course Policies:

	Class Attendance:
1	-A student should attend not less than 75 % of total hours of the subject; otherwise he
1.	will not be able to take the exam and will be considered as exam failure. If the student is
	absent due to illness, he/she should bring an approved statement from university Clinic
	Tardy:
2.	- For late in attending the class, the student will be initially notified. If he repeated
	lateness in attending class he will be considered as absent.
	Exam Attendance/Punctuality:
2	- A student should attend the exam on time. He is Permitted to attend an exam half one
э.	hour from exam beginning, after that he/she will not be permitted to take the exam and
	he/she will be considered as absent in exam.

Head of	Quality Assurance	Dean of the Faculty
Department	Unit	Prof. Dr. Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti
Adel Ahmed Al-	Mohammad Algorafi	
Shakiri		

Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Academic

	Assignments & Projects:
4.	- The assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time.
	Cheating:
5.	- For cheating in exam, a student will be considered as failure. In case the cheating is
	repeated three times during his/her study the student will be disengaged from the Faculty.
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
6.	If the examination committee proved a plagiarism of a student, he will be disengaged
	from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university.
	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed,
7.	otherwise the student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek
By	A. Barakat
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi
	Name of Reviewer from the Department: Assoc. Prof. Dr. Radwan Al bouthigy
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
	Assoc. Prof. Dr. Ahmed Mujahed
	Asst. Prof. Dr. Munasar Alsubri

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

49. Template for Course Plan of Power System Analysis 2

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Asst. Prof. Dr. Muhammad Al-yadoumi	Office Hours					
Location& Telephone No.	Electrical Engineering Department 777811668	SAT	SUN	MON	TUE	WED	THU
E-mail	Alyadoumi@hotmail.com						

II.	II. Course Identification and General Information:							
1.	Course Title:	Power S	System Ana	lysis 2				
2.	Course Number & Code:	PME33	3					
			C.1	H		Total		
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total		
		2	2	-	-	3		
4.	Study level/year at which this course is offered:	Fifth Year/ First Semester						
5.	Pre –requisite (if any):	Power S	System Ana	lysis I (PN	AE332)			
6.	Co –requisite (if any):	NA						
7.	Program (s) in which the course is offered	Electric	al Power an	d Machin	es Engine	ering		
8.	Language of teaching the course:	English	Language.					
9.	System of Study:	Regular	•					
10.	Mode of delivery:	Semeste	ers.					
11.	Location of teaching the course:	Class						

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	

III. Course Description:

This course prepares students to work professionally in the area of Electric power Engineering and power related fields. The subjects focus on the study of the power system components behavior during normal and up-normal operating conditions when subjected to disturbances. The course includes the following topics:symmetrical components and sequence networks Analysis, fault Analysis, stability Analysis, economic operation of power system operation, economic dispatch problem, automatic Generation Control (AGC) and unit commitment. In addition, the course includes a group-based term project in which students will choose any subject covered throughout the course to model and study the performance of a choosing small power system using one of the very common software packages used in power system analysis such as ETAB and MATLAB.

IV. Intended learning outcomes (ILOs) of the course:

Brief summary of the knowledge or skill the course is intended to develop:

- 1. Define the theoretical and mathematical aspects of power systems analysis .
- 2. Demonstrate knowledge of the effect of parameters design on the power system performance .
- **3.** Study the behavior of power system components during normal and up-normal operating conditions.
- **4.** Compare between alternative mathematical, and computation techniques used in power system analysis and select the appropriate one according to the needed specifications .
- 5. Use simulation tools to perform comprehensive short circuit, transient, stability, economic operation, and automatic power generation studies commonly practiced in power systems analysis.
- **6.** Perform analysis of power systems subject to normal and up-normal operation conditions to assess the effect of parameter design on the system performance .
- 7. Develop student's cooperative work though efficient team works, through projects work.
- 8. Communicate effectively to professionals and non-specialists alike through reports and presentations

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University	
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed	
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas	
Adel Ahmed Al-	Mohammad Algorafi		Assurance		
Shakiri	Assoc. Prof. Dr.				

V. Course Content:							
	A – Theoretical Aspect:						
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours			
1.	Introduction	 Overview of the course: learning objectives and outcomes Course organization Methods and measures of assessment Course requirements, guidelines to comply with the course, and Course Policies Project 	1 st	2			
2.	Symmetrical Components Analysis	 Introduction, a operator Synthesis of Unsymmetrical Phasors from Their Symmetrical Symmetrical Y and Δ. Circuits Power in Terms of Symmetrical Components Sequence Impedances of Transmission Lines, Transformers, and Synchronous machines Sequence Networks: Positve, Negative, and Zero 	2 nd	2			
3.	Unsymmetric al Fault Analysis	 Review of Three Phase Symmetrical faults Unsymmetrical faults: Single line to ground (LG), Line to line (LL) fault, Double line to ground (LLG) faults, Open Conductor faults. Bus impedance matrix methods for analyzing of unsymmetrical faults. 	3 rd ,4 th	4			
4.	Economic Operation of Power Systems	 Distribution of Load between Units within a Plant System constraints Distribution of Load between Plants, penalty factor The Transmission-Loss Equation Classical Economic Dispatch including transmission losses 	5 th ,6 th	4			
5.	Mid-Term Exam	 Topics Covered in the previous Lectures 	7 th	2			

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

6.	Automatic Generation Control	 Speed-governing characteristic Of Synchronous Generator Frequency-Power Characteristics of a Synchronous Generator Operation of Generators in Parallel with Large Power Systems Operation of Generators in Parallel with Other Generators of the Same Size The house diagram Single area Load frequency control Block diagram of load frequency Multi area load frequency control Area Control Error (ACE). 	8 th ,9 th	4
7.	Unit Commitment	 Unit Commitment Definition Dynamic Programming: Solving the Unit Commitment Problem Unit Commitment Example 	10 th ,11 th	4
8.	Transient in Power System Elements	 Transients in transmission line Transient in synchronous machines, Sup-transient, Transient, and steady state Transient in Transformer 	12 th	2
9.	Power system Stability:	 Definition of the Stability Problem Classification of Power System Stability steady state stability Dynamics of Synchronous Machine and the Swing Equation Power Angle Equation Synchronizing Power Coefficients Transient Stability: single Machine-Infinite Bus case, Equal area Criterion Analysis Multi Machines Stability studies, Numerical Solution of Swing Equation Factors Affecting Transient Stability Voltage Stability 	13 th ,14 th	4
10.	Project	 Project Dissections 	15 th	2
11.	Final Exam	 Topics Covered throughout the course 	16 th	2
Number of Weeks /and Units Per Semester			16	32

Head of	Quality Assurance	Dean of the Faculty	Academic
Department	Unit	Prof. Dr. Mohammed	Development
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality
Adel Ahmed Al-	Mohammad Algorafi		Assurance
Shakiri			Assoc. Prof. Dr.
			Huda Al-Emad

B - Tutorial Aspect:					
Order	Tutorial	Number of Weeks	Contact Hours		
1.	Symmetrical Components Analysis a operator, Synthesis of Unsymmetrical Phasors from Their Symmetrical, Symmetrical Y and Δ . Circuits, Power in Terms of Symmetrical Component	1 st	2		
2.	 <u>Sequence Impedances and Sequence Networks</u> Sequence Impedances of Transmission Lines, Transformers and Synchronous Machines Sequence Networks: Positve, Negative, and Zero 	2 nd	2		
3.	 <u>Unsymmetrical Fault Analysis part 1</u> Review of Three Phase Symmetrical faults Single line to ground (LG) fault, 	3 rd	2		
4.	 Unsymmetrical Fault Analysis part 2 Line to line (LL) fault, Double Line to Ground (LLG) fault, Open Conductor Faults. Unsymmetrical Faults Analysis using Bus Impedance Matrix Methods 	4 th	2		
5.	 Economic Operation of Power Systems Distribution of Load between Units within a Plant System Constraints Distribution of Load between Plants, Penalty factor The Transmission-Loss Equation Classical Economic Dispatch including Transmission Losses 	5 th ,6 th	4		
6.	 <u>Automatic Generation Control</u> Load Frequency Control Single area Load frequency control Block diagram of load frequency Multi area load frequency control Area Control Error (ACE). 	7 th	2		
7.	Mid-Term Exam Solution	8 th	2		
8.	 <u>Unit Commitment</u> Dynamic Programming: Solving the Unit Commitment Problem 	9 th	2		

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

	Unit Commitment Example		
9.	 Transient in Power System Elements Transients in Transmission Line Transient in Synchronous Machines, Sup-Transient, Transient, and Steady state Transient in Transformer 	10 th	2
10.	 Power system Stability part1: Steady State Stability Dynamics of Synchronous Machine and the Swing Equation Power Angle Equation Synchronizing Power Coefficients 	11 th	2
11.	 Power system Stability part 2: Single Machine-Infinite Bus case, Equal Area Criterion Analysis Multi Machines Stability studies, Numerical Solution of the Swing equation Factors Affecting Transient Stability Voltage Stability 	12 th ,13 th	4
12.	Projects presentation and discussion	14 th	2
Number of Weeks /and Units Per Semester1428			

VI. Teaching strategies of the course:

- Active Lectures.
- Tutorials.
- The use of Computer and Web-Based Learning.
- Directed Self Study.
- Group Learning and Problem Based Learning.
- laboratory works
- Self and cooperative learning
- Dialogue, discussion and class activities
- Analysis and Problem solving.
- Project work
- Simulation tools (ETAP, Matlab With Simulink)
- Brainstorming

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

Ţ	VII. Assignments:				
No	Assignments	Week Due	Mark		
1.	Problem set NO. 1 Symmetrical Components Analysis	2 nd	1.5		
2.	Problem set NO. 2 Sequence Impedances and Sequence Networks	3 rd	1.5		
3.	Problem set NO. 3 Unsymmetrical Fault Analysis part 1	4 th	1.5		
4.	Problem set NO. 4 Unsymmetrical Fault Analysis part 2	5 th	1.5		
5.	Problem set NO. 5 Economic Operation of Power Systems	6 th	1.5		
6.	Problem set NO. 6 Automatic Generation Control	8 th	1.5		
7.	Problem set NO. 7 Unit Commitment	11 th	2		
8.	Problem set NO. 8 Transient in Power System Elements	12 th	2		
9.	Problem set NO.9 Power system Stability part	14 th	2		
	Total 15				

V	VIII. Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	
1.	Attendance and Class activities	Every Class	15	10%	
2.	Assignments	2^{nd} to 14^{th}	15	10 %	
4.	Course Project	15 th	15	10%	
5.	Midterm exam	7 th	30	20%	
6.	Final Exam	16 th	75	50%	
	Total		150	100%	

Head of	Quality Assurance	Dean of the Faculty	
Department	Unit	Prof. Dr. Mohammed	
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	(
Adel Ahmed Al-	Mohammad Algorafi		
Shakiri			

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

IX.	Learning Resources:		
•	Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).		
1- Rec	uired Textbook(s) (maximum two).		
	1. John.J.Grainger, William D. Stevenson, Jr, "Power System Analysis", Mc Graw		
	Hill Education (India) Private Limited, New Delhi, 2015.		
	2. Hadi Sadat, "Power System Analysis", Tata Mc Graw Hill Publishing company,		
	New Delhi, 2002.		
2- Ess	ential References.		
	1. Nagarath I.J. and Kothari D.P., "Modern Power System Analysis", Fourth		
	Edition, Mc Graw Hill Education (India) Private Limited, New Delhi, 2015.		
	2. Stephen J. Chapman "ELECTRIC MACHINERY FUNDAMENTALS" FIFTH		
	EDITION, McGraw HILL, 2012		
3- Ele	3- Electronic Materials and Web Sites etc.		
	1. <u>All About : Matlab</u> Package		
	2. www.mathworks.com		

X. Course Policies: **Class Attendance:** -A student should attend not less than 75 % of total hours of the subject; otherwise he 1. will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic Tardy: - For late in attending the class, the student will be initially notified. If he repeated 2. lateness in attending class he will be considered as absent. **Exam Attendance/Punctuality:** - A student should attend the exam on time. He is Permitted to attend an exam half one 3. hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam. **Assignments & Projects:** 4. - The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time. Cheating: 5. - For cheating in exam, a student will be considered as failure. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	

6.	Plagiarism : Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proved a plagiarism of a student, he will be disengaged
	from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university.
	Other policies:
7.	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Head of Quality Assurance Dean of the Faculty Academic Rector of Sana'a University Prof. Dr. Mohammed Prof. Dr. Al-Qassim Mohammed Department Unit Development AL-Bukhaiti Asst. Prof. Dr. Assoc. Prof. Dr. Center & Quality Abbas Adel Ahmed Al-Mohammad Algorafi Assurance Shakiri Assoc. Prof. Dr.

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad