

53. Course Specification of Refrigeration and Air

Conditioning

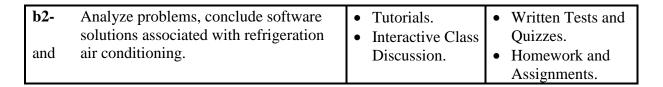
	I. Course Identification and General Information:							
1.	Course Title:	Refri	Refrigeration and Air Conditioning.					
2.	Course Code & Number:	ME3	ME356.					
		C.H Total				Total		
3.	Credit Hours:	Th.	Seminar/Tu.	Pr	Tr.	Cr. Hrs.		
		2	2	2	-	4		
4.	Study level/ semester at which this course is offered:	Fourth Year- Second Semester.						
5.	Pre –requisite (if any):	ME251 (Thermodynamics -I), ME252 (Thermodynamics – II), ME354 (Heat and Mass Transfer) and ME353 (Thermal / Fluid Lab.).						
6.	Co –requisite (if any):	None.						
7.	Program (s) in which the course is offered:	Mecl	nanical Enginee	ering P	rograi	m.		
8.	Language of teaching the course:	English Language.						
9.	Location of teaching the course:	Mechanical Engineering Department.				ment.		
10.	Prepared By:	Asst. Prof. Dr. Eng. Hamoud A. Al-Nehari				Al-		
11.	Date of Approval:							

II. Course Description:

The course is designed to give fundamentals knowledge of types of refrigeration, refrigeration cycles, refrigerants and behavior under various conditions, different air conditioning terms and load calculation, designing of components of air distribution system.

	III. Alignments of the Course Intended learning outcomes (CILOs)	Referenced PILOs
a1	Depict fundamental principles of refrigeration and air conditioning systems.	A1
a2	Describe various refrigeration cycles.	A4
b1	Create Air Conditioning system using cooling load calculations.	
b2	Analyze problems; conclude software solutions associated with refrigeration and air conditioning.	B1
c1	Implement calculations of psychometric properties, processes, heating and cooling load requirements.	C1
c2	Perform various important components of the refrigeration and air conditioning systems.	CI
c3	Prescribe RAC systems for physical systems and predict their performance.	C2
c4	Conduct investigation on complex problems of RAC systems.	
d1	Cooperate in work successfully as a part of a team through training on simulation software and presentations.	D1
d2	Review results and defend his ideas.	D5

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies			
a1- Depict fundamental principles of refrigeration and air conditioning systems.	Lectures.Tutorials.Interactive Class	Written Tests and Quizzes.Homework and Assignments.			
a2- Describe various refrigeration cycles.	Discussion.	Assignments.			


(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:				
	Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies	
b1-	Create Air Conditioning system using cooling load calculations.	• Lectures.		

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching Strategies	Assessment Strategies			
c1- Implement calculations of psychometric properties, processes, heating and cooling load requirements. c2- Perform various important components	Lectures.Exercise and Homework.	 Written Tests and Quizzes. Laboratory			
of the refrigeration and air conditioning systems. c3- Prescribe RAC systems for physical systems and predict their performance.	LaboratoryProjects.Simulation	Reports Evaluation. • Presentations Evaluation.			
c4- Conduct investigation on complex problems of RAC systems.	Tools.	• Project Reports.			

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes Teaching Strategies Assessment Strategies					
d1- Cooperate in work successfully as a part of a team through training on simulation software and presentations.	Lectures.Tutorials.Simulations	Written Tests and Quizzes.Homework and			
d2- Review results and defend his ideas.	using Computer Software.	Assignments.			

IV. Course Content:						
A – Theoretical Aspect: Lectures						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours	
1.	Introduction, Refrigerants and their characteristics	a1, a2, b1, b2	Brief history, need of refrigeration and air conditioning, methods of producing cooling, ton of refrigeration, coefficient of performance, types and application of refrigeration and air condensing systems. Classification, nomenclature, desirable properties, secondary refrigerants, future industrial refrigerants	1	2	
2.	Air Refrigeration.	a1, a2, b1, b2, c1, d1, d2	Reversed Carnot cycle and its limitation, Bell-Coleman cycle, aircraft refrigeration, working and analysis of Simple; Bootstrap; Reduced ambient and Regenerative air refrigeration systems	2	4	

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

3.	Vapor Compression system & Compound Compression System.	a1, a2, b1, b2, c1, d1, d2	Simple system on P-h and T-s diagrams, analysis of the simple cycle, factors affecting the performance of the cycle, actual cycle Compound compression with intercooler, flash gas removal and flash intercooler, multiple evaporators with back pressure valves and with multiple expansion valves without flash inter cooling, analysis of two evaporators with flash intercooler and individual expansion valve and multiple expansion valve, cascade refrigeration system	2	4
4.	Absorption Refrigeration System.	a1, a2, b1, b2, c1, d1, d2	Desirable characteristics of refrigerant, selection of pair, practical H2O -NH3 cycle, LiBr – H2O system and its working, h-x diagram and simple calculation of various process like adiabatic mixing and mixing with heat transfer, throttling, Electrolux refrigeration system.	1	2
5.	Refrigeration System Components.	a1, a2, b1, b2, c1, d1, d2	Types; construction; working; comparison and selection of compressors; condensers; expansion devices; and evaporators, refrigeration piping accessories, evacuation and charging of refrigerant,	1	2

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			properties and classification of thermal insulation.		
6.	Mid-Term Exam.	a1, a2, b1, b2, c1, c2, c3,	The First 5 Chapters.	1	2
7.	Psychrometry.	a1, a2, b1, b2, c1, d1, d2	Dalton's law of partial pressure, Properties of moist air, temperature and humidity measuring instruments, psychrometric chart, psychrometric processes.	1	2
8.	Human Comfort.	a1, a2, b1, b2, c1, d1, d2	Selection of inside design conditions, thermal comfort, heat balance equation for a human being, factors affecting thermal comfort, Effective temperature, comfort chart and factors governing effective temperature, selection of outside design conditions	1	2
9.	Load Analysis.	a1, a2, b1, b2, c1, d1, d2	Site survey, outdoor and indoor design conditions, classification of loads, flywheel effect of building material and its use in design, effect of wall construction on cooling load, instantaneous heat gain (IHG) and instantaneous cooling load (ICL) heat transmission through sunlit and shaded glass using tables, method of reduction of solar heat gain through glass, calculations of cooling load TETD due to sunlit and shaded roof and walls using tables, ventilation and air infiltration, load due to	2	4

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			outside air, heat gain from occupants; electric lights;		
			product; electric motor and		
			appliances, load calculations		
			for automobiles, use of load		
			estimation sheet, introduction		
			of CLTD method		
10.	Air- Conditioning Systems.	a1, a2, b1, b2, c1, d1, d2	Classification, system components, all air; all water; and air-water systems, room air conditioners, packaged air conditioning plant, central air conditioning systems, split air conditioning systems	2	4
11.	Controls and Applications.	a1, a2, b1, b2, c1, d1, d2	Controls – LP/HP cutoff, Thermostats, Humidistats, Interlocking control, Electronic Controllers Applications Refrigeration & A/C Ice plant – food storage plants – diary and food processing plants, Food preservation, Freeze Drying, A/c in textile, printing pharmaceutical industry and Hospitals, Liquefaction of LNG, Liquefaction of gases (cryogenics), Deep sea water air-conditioning	1	2
12.	Final Exam	a1, a2, b1, b2, c1, c2, c3,	All the Chapters.	1	2
	Number of	Weeks /and	Units Per Semester	16	32

B: Tutorial Aspects

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Order	Units/Topics List	Number of Weeks	Contact Hours	Learning Outcomes
1.	Introduction, Refrigerants and their Characteristics.	1	2	a1, a2, b1, b2
2.	Air Refrigeration.	2	4	a1, a2, b1, b2, c1, d1, d2
3.	Vapor Compression System & Compound Compression System.	2	4	a1, a2, b1, b2, c1, d1, d2
4.	Absorption Refrigeration System.	1	2	a1, a2, b1, b2, c1, d1, d2
5.	Refrigeration System Components.	1	2	a1, a2, b1, b2, c1, d1, d2
6.	Psychrometry.	1	2	a1, a2, b1, b2, c1, d1, d2
7.	Human Comfort.	1	2	a1, a2,b1, b2, c1, d1, d2
8.	Load Analysis.	2	4	a1, a2, b1, b2, c1, d1, d2
9.	Air-Conditioning Systems.	2	4	a1, a2, b1, b2, c1, d1, d2
10.	Controls and Applications.	1	2	a1, a2, b1, b2, c1, d1, d2
Tot	al number of weeks and hours	14	28	

C - Pı	C - Practical Aspect:						
Order	Tasks/ Experiments	Number of Weeks	Contact Hours	Learning Outcomes			
1.	Introduction	1	2	a1, a2, b1, b2			
2.	Experiment on Components of VCR System and to Determine its COP.	1	2	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2			

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

3.	Experiment on Electrolux Refrigerator and to Determine its COP.	1	2	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2
4.	Experiment on Working of Reciprocating, Rotary and Centrifugal Compressor used for R&AC.	1	2	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2
5.	Experiment on Different Psychrometric Processes and Analyze the Same using Psychrometric Chart.	1	2	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2
6.	Experiment on Construction and Working of Window Air-Conditioner/ Split Air-Conditioner and to Determine its Capacity.	1	2	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2
7.	Experiment on COP and Apparatus Dew point of an Air Conditioning Test Rig.	1	2	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2
8.	Calculate Cooling Load of a Confined Space-Using Table and Compare the Same with Load Estimation Sheet.	1	2	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2
9.	Study of Domestic Refrigerator and to Determine % Running Time at Different Thermostat Settings.	1	2	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2
10.	Experiment on (COP)C and (COP)H of Heat Pump.	1	2	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2
11.	Experiment on Saturation Efficiency of Air Cooler/Air Washer.	1	2	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2
12.	Study of Packaged Plant.	1	2	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

13.	To Understand Various Tools used for Refrigeration Tubing to Perform Various Operations Like Flaring, Swaging, Bending, Brazing etc.	1	2	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2
14.	Review	1	2	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2
Number of Weeks /and Units Per Semester		14	28	

V. Teaching Strategies of the Course:

- 1. Lectures.
- 2. Tutorials.
- 3. Exercise and Homework.
- 4. Laboratory Projects.
- 5. Simulation Tools.

1	VI. Assignments:							
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark				
1.	Assignment 1: Introduction, Refrigerants and their Characteristics.	a1, a2, b1, b2, c1, c2, d1, d2	1 st	1				
2.	Assignment 2: Air Refrigeration.	a1, a2, b1, b2, c1, c2, d1, d2	3 rd	1				
3.	Assignment 3: Vapor Compression System & Compound Compression System.	a1, a2, b1, b2, c1, c2, d1, d2	5 th	1				
4.	Assignment 4: Absorption Refrigeration System.	a1, a2, b1, b2, c1, c2, d1, d2	6 th	1				
5.	Assignment 5: Refrigeration System Components.	a1, a2, b1, b2, c1, c2, d1, d2	$7^{ m th}$	1				
6.	Assignment 6: Psychrometry.	a1, a2, b1, b2, c1, c2, d1, d2	8 th	1				
7.	Assignment 7: Human Comfort.	a1, a2, b1, b2, c1, c2, d1, d2	9 th	1				
8.	Assignment 8: Load Analysis.	a1, a2, b1, b2, c1, c2, d1, d2	11 th	1				
9.	Assignment 9: Air-Conditioning Systems.	a1, a2, b1, b2, c1, c2, d1, d2	13 th	1				
10.	Assignment 10: Controls and Applications.	a1, a2, b1, b2, c1, c2, d1, d2	14 th	1				
	Tota	l		10				

VII	VII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1.	Assignment	Weekly	10	5 %	a1, a2, b1, b2, c1, d1, d2		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

6.	Practical.	13-14	40	20 %	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2
5.	Mid-Term Exam.	8	20	10 %	с3,
4.	Quiz 2.	12	10	5 %	a1, a2, b1, b2, c1, d1, d2 a1, a2, b1, b2, c1, c2,
3.	Quiz 1.	7	10	5 %	a1, a2, b1, b2, c1, d1, d2
2.	Project (Single /Group).	13	10	5 %	a1, a2, b1, b2, c1, d1, d2

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. C. P. Arora, 2000, "Refrigeration and Air Conditioning", McGraw-Hill.
- 2. Stoecker, W. F.; Jones, J. W. "Refrigeration and Air Conditioning", Published by McGraw-Hill.

2- Essential References.

- 1- Ramesh Arora, 2010, "Refrigeration and Air-Conditioning".
- 2- ASHRAE Refrigeration Handbook.
- 3- Prof. P.L. Ballaney, "Refrigeration and Air Conditioning".

3- Electronic Materials and Web Sites etc.

- 1. http://www.springer.com/engineering/mechanical+engineering/journal/231
- 2. http://nptel.iitm.ac.in/courses/Webcourse-contents/IISc
- 3. http://www.faculty.virginia.edu/ribando/modules/

I. Course Policies:

1 | Class Attendance:

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	- The student should be attending not less than 75% of total contact hours of the subject,
	otherwise he will not able to take exam and be considered as an exam failure. If the student
-	is absent due to illness, he/she should bring an approved statement from university Clinic.
	Tardy:
2	- For lateness in attending the class, the student will be initially notified. If he repeates late
	in attending class he will be considered absent.
	Exam Attendance/Punctuality:
3	- The student should attend the exam on time. He is permitted to attend the exam half one
	hour from exam beginning, after that he/she will not be permitted to take exam and he/she
	is considered absent in the exam.
4	Assignments & Projects:
4	- In general one assignment is given after each chapter of a course. The student should
	submit the assignment on time, mostly one week after giving the assignment
5	Cheating:
3	- For cheating in exam, the student is considered as failure. In case the cheating is repeated
	three times during study the student will be disengaged from the Faculty
	Plagiarism:
_	Plagiarism is the attending of the student the exam of a course instead of other student. If
6	the examination committee proved a plagiarism of a student, he will be disengaged from
	the Faculty. The final disengagement of the student from the Faculty should be confirmed
	from the Student Affair Council of the university.
	Other policies:
_	- The mobile phone is not allowable to be used during class lecture. It must be switched
7	off, otherwise the student will be ordered to leave the lecture room.
	- The mobile phone is not allowed to be taken during the examination time.

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.						
By	<u>Barakat</u>						
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi						
	Name of Reviewer from the Department: Assoc. Prof. Dr. Abdul-Malik Momin						
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa						
	Assoc. Prof. Dr. Ahmed Mujahed						
	Asst. Prof. Dr. Munasar Alsubri						

- Lecture notes and assignments may be given directly to students using soft or hard copy.

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic
Development
Center & Quality
Assurance
Assoc. Prof. Dr.
Huda Al-Emad

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

53. Template for Course Plan of Refrigeration and Air Conditioning

I. Information about Faculty Member Responsible for the							
Course:							
Name of Faculty Asst. Prof. Dr. Eng.							
Member	Hamoud A. Al-Nehari	Office Hours					
Location& Telephone No.		SAT	SUN	MON	TUE	WED	THU
E-mail	h_nahary@hotmail.com						

II.Course Identification and General Information:							
1.	Course Title:	Refri	Refrigeration and Air Conditioning.				
2.	Course Number & Code:	ME3	56.				
			C.H			TOTAL	
3.	Credit Hours:	Th.	Seminar/Tu.	Pr	Tr.	CR. HRS.	
		2	2	2	-	4	
4.	Study level/year at which this course is offered:	Four	th Year- Secon	d Seme	ster.		
5.	Pre –requisite (if any):	ME251 (Thermodynamics -I), ME252 (Thermodynamics – II), ME354 (Heat and Mass Transfer) and ME353 (Thermal / Fluid Lab.).			Heat and		
6.	Co –requisite (if any):	None.					
7.	Program (s) in which the course is offered	Mechanical Engineering Program.					
8.	Language of teaching the course:	English Language.					
9.	System of Study:	Semo	esters.				
10.	Mode of Delivery:	Lecti	ures, Tutorials	and Prac	ctical.		
11.	Location of teaching the course:	Mecl	hanical Engine	ering De	partme	ent.	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description:

The course is designed to give fundamentals knowledge of types of refrigeration, refrigeration cycles, refrigerants and behavior under various conditions, different air conditioning terms and load calculation, designing of components of air distribution system.

IV. Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - 1. Demonstrate fundamental principles of refrigeration and air conditioning systems.
 - 2. Understand various refrigeration cycles.
 - **3.** Design Air Conditioning system using cooling load calculations.
 - **4.** Analyze problems; conclude software solutions associated with refrigeration and air conditioning.
 - **5.** Make calculations of psychometric properties, processes, heating and cooling load requirements.
 - **6.** Identify and locate various important components of the refrigeration and air conditioning systems.
 - 7. Design RAC systems for physical systems and predict their performance.
 - **8.** Conduct investigation on complex problems of RAC systems.
 - **9.** Cooperate in work successfully as a part of a team through training on simulation software and presentations.
 - 10. Discuss results and defend his ideas.

V. Course Content:

A – Theoretical Aspect: Lectures

Order	Units/Topics List	Sub Topics List		Contact Hours
1.	Introduction, Refrigerants and their characteristic s	Brief history, need of refrigeration and air conditioning, methods of producing cooling, ton of refrigeration, coefficient of performance, types and application of refrigeration and air condensing systems.	1 st	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		Classification, nomenclature, desirable properties, secondary refrigerants, future industrial refrigerants		
2.	Air Refrigeration	Reversed Carnot cycle and its limitation, Bell-Coleman cycle, aircraft refrigeration, working and analysis of Simple; Bootstrap; Reduced ambient and Regenerative air refrigeration systems	2 nd , 3 rd	4
3.	Vapor Compression system & Compound Compression System.	Simple system on P-h and T-s diagrams, analysis of the simple cycle, factors affecting the performance of the cycle, actual cycle Compound compression with intercooler, flash gas removal and flash intercooler, multiple evaporators with back pressure valves and with multiple expansion valves without flash intercooling, analysis of two evaporators with flash intercooler and individual expansion valve and multiple expansion valve, cascade refrigeration system	4 th , 5 th	4
4.	Absorption Refrigeration System.	Desirable characteristics of refrigerant, selection of pair, practical H2O -NH3 cycle, LiBr – H2O system and its working, h-x diagram and simple calculation of various process like adiabatic mixing and mixing with heat transfer, throttling, Electrolux refrigeration system.	6 th	2
5.	Refrigeration System Components.	Types; construction; working; comparison and selection of compressors; condensers; expansion devices; and evaporators, refrigeration piping accessories, evacuation and charging of refrigerant, properties and classification of thermal insulation.	7 th	2
6.	Mid-Term Exam.	The First 5 Chapters.	8 th	2
7.	Psychrometr y.	Dalton's law of partial pressure, Properties of moist air, temperature and humidity measuring	9 th	2

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		instruments, psychrometric chart, psychrometric processes.		
8.	Human Comfort.	Selection of inside design conditions, thermal comfort, heat balance equation for a human being, factors affecting thermal comfort, Effective temperature, comfort chart and factors governing effective temperature, selection of outside design conditions	10 th	2
9.	Load Analysis.	Site survey, outdoor and indoor design conditions, classification of loads, flywheel effect of building material and its use in design, effect of wall construction on cooling load, instantaneous heat gain (IHG) and instantaneous cooling load (ICL) heat transmission through sunlit and shaded glass using tables, method of reduction of solar heat gain through glass, calculations of cooling load TETD due to sunlit and shaded roof and walls using tables, ventilation and air infiltration, load due to outside air, heat gain from occupants; electric lights; product; electric motor and appliances, load calculations for automobiles, use of load estimation sheet, introduction of CLTD method	11 th , 12 th	4
10.	Air- Conditioning Systems.	Classification, system components, all air; all water; and air-water systems, room air conditioners, packaged air conditioning plant, central air conditioning systems, split air conditioning systems	13 th , 14 th	4
11.	Controls and Applications.	Controls – LP/HP cutoff, Thermostats, Humidistats, Interlocking control, Electronic Controllers Applications Refrigeration & A/C Ice plant – food storage plants – diary and food processing plants, Food preservation, Freeze Drying, A/c in textile, printing pharmaceutical industry and	15 th	2

Head of
Department
Asst. Prof. Dr.
Adel Ahmed
Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		Hospitals, Liquefaction of LNG, Liquefaction of gases (cryogenics), Deep sea water air-conditioning		
12.	Final Exam	All the Chapters.	16 th	2
	Number of Weeks /and Units Per Semester			32

B: Tutorial Aspects					
Order	Units/Topics List	Week Due	Contact Hours		
1.	Introduction, Refrigerants and their Characteristics.	1 st	2		
2.	Air Refrigeration.	2 nd , 3 rd	4		
3.	Vapor Compression System & Compound Compression System.	4 th , 5 th	4		
4.	Absorption Refrigeration System.	6 th	2		
5.	Refrigeration System Components.	7^{th}	2		
6.	Psychrometry.	9 th	2		
7.	Human Comfort.	10 th	2		
8.	Load Analysis.	11 th , 12 th	4		
9.	Air-Conditioning Systems.	13 th , 14 th	4		
10.	Controls and Applications.	15 th	2		
	Total number of weeks and hours	14	28		

C - Practical Aspect:					
Order	Tasks/ Experiments		Contact Hours		
1.	Introduction	1 st	2		
2.	Experiment on Components of VCR System and to Determine its COP.	2 nd	2		
3.	Experiment on Electrolux Refrigerator and to Determine its COP.	$3^{\rm rd}$	2		
4.	Experiment on Working of Reciprocating, Rotary and Centrifugal Compressor used for R&AC.	4 th	2		
5.	Experiment on Different Psychrometric Processes and Analyze the Same using Psychrometric Chart.	5 th	2		
6.	Experiment on Construction and Working of Window Air-Conditioner/ Split Air-Conditioner and to Determine its Capacity.	6 th	2		
7.	Experiment on COP and Apparatus Dew point of an Air Conditioning Test Rig.	7^{th}	2		
8.	Calculate Cooling Load of a Confined Space-Using Table and Compare the Same with Load Estimation Sheet.	8 th	2		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

9.	Study of Domestic Refrigerator and to Determine % Running Time at Different Thermostat Settings.	9 th	2
10.	Experiment on (COP)C and (COP)H of Heat Pump.	10^{th}	2
11.	Experiment on Saturation Efficiency of Air Cooler/Air Washer.	11 th	2
12.	Study of Packaged Plant.	12 th	2
13.	To Understand Various Tools used for Refrigeration Tubing to Perform Various Operations Like Flaring, Swaging, Bending, Brazing etc.	13 th	2
14.	Review	14^{th}	2
	Number of Weeks /and Units Per Semester	14	28

VI. Teaching Strategies of the Course:

- 1. Lectures.
- 2. Tutorials.
- 3. Exercise and Homework.
- 4. Laboratory Projects.
- 5. Simulation Tools.

VII.	VII. Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark			
1.	Assignment 1: Introduction, Refrigerants and their Characteristics.	a1, a2, b1, b2, c1, c2, d1, d2	1 st	1			
2.	Assignment 2: Air Refrigeration.	a1, a2, b1, b2, c1, c2, d1, d2	3^{rd}	1			
3.	Assignment 3: Vapor Compression System & Compound Compression System.	a1, a2, b1, b2, c1, c2, d1, d2	5 th	1			
4.	Assignment 4: Absorption Refrigeration System.	a1, a2, b1, b2, c1, c2, d1, d2	6^{th}	1			
5.	Assignment 5: Refrigeration System Components.	a1, a2, b1, b2, c1, c2, d1, d2	7 th	1			
6.	Assignment 6: Psychrometry.	a1, a2, b1, b2, c1, c2, d1, d2	8 th	1			
7.	Assignment 7: Human Comfort.	a1, a2, b1, b2, c1, c2, d1, d2	9 th	1			
8.	Assignment 8: Load Analysis.	a1, a2, b1, b2, c1, c2, d1, d2	11 th	1			
9.	Assignment 9: Air-Conditioning Systems.	a1, a2, b1, b2, c1, c2, d1, d2	13 th	1			
10.	Assignment 10: Controls and Applications.	a1, a2, b1, b2, c1, c2, d1, d2	14 th	1			
	Total			10			

	VIII. Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1.	Exercises & Homework.	Weekly	10	5 %	a1, a2, b1, b2, c1, d1, d2			
2.	Project (Single /Group).	13	10	5 %	a1, a2, b1, b2, c1, d1, d2			
3.	Quiz 1.	7	10	5 %	a1, a2, b1, b2, c1, d1, d2			

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

7.	Final Exam (Theoretical). Total	16	100 200	50 % 100 %	a1, a2, b1, b2,c1, c2, c3,
6.	Practical.	13-14	40	20 %	a1, a2, b1, b2, c1, c2, c3,c4, d1, d2
5.	Mid-Term Exam.	8	20	10 %	a1, a2, b1, b2,c1, c2, c3,
4.	Quiz 2.	12	10	5 %	a1, a2, b1, b2, c1, d1, d2

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- 1. C. P. Arora, 2000, "Refrigeration and Air Conditioning", McGraw-Hill.
- 2. Stoecker, W. F.; Jones, J. W. 1982, "Refrigeration and Air Conditioning", Published by McGraw-Hill.

2- Essential References.

- 1. Ramesh Arora, 2010, "Refrigeration and Air-Conditioning".
- 2. ASHRAE Refrigeration Handbook.
- 3. Prof. P.L. Ballaney, "Refrigeration and Air Conditioning".

3- Electronic Materials and Web Sites etc.

- 1. http://www.springer.com/engineering/mechanical+engineering/journal/231
- 2. http://nptel.iitm.ac.in/courses/Webcourse-contents/IISc
- 3. http://www.faculty.virginia.edu/ribando/modules/

II. Course Policies:

Class Attendance:

The student should be attending not less than 75% of total contact hours of the subject, otherwise he will not able to take exam and be considerd as an exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic.

Tardy:

2 - For lateness in attending the class, the student will be initially notified. If he repeates late in attending class he will be considered absent.

3 | Exam Attendance/Punctuality:

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

- The student should attend the exam on time. He is permitted to attend the exam half one hour from exam beginning, after that he/she will not be permitted to take exam and he/she is considered absent in the exam.

Assignments & Projects:

- In general one assignment is given after each chapter of a course. The student should submit the assignment on time, mostly one week after giving the assignment

Cheating:

- For cheating in exam, the student is considered as failure. In case the cheating is repeated three times during study the student will be disengaged from the Faculty

Plagiarism:

Plagiarism is the attending of the student the exam of a course instead of other student. If the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Affair Council of the university.

Other policies:

7

- The mobile phone is not allowable to be used during class lecture. It must be switched off, otherwise the student will be ordered to leave the lecture room.

- The mobile phone is not allowed to be taken during the examination time.

- Lecture notes and assignments may be given directly to students using soft or hard copy.