

7. Course Specification of Engineering Mechanics -Statics

	Course Identification and General Information:						
1.	Course Title:	Engi	Engineering Mechanics – Statics				
2.	Course Code & Number:	BRO)1				
			C.H			TOTAL	
3.	Credit hours:	Th.	Seminar/Tu	Pr	Tr.	IUIAL	
		2	2	-	-	3	
4.	Study level/ semester at which this course is offered:	First Year – First Semester					
5.	Pre –requisite (if any):	None	\$				
6.	Co –requisite (if any):	Math	ematics				
7.	Program (s) in which the course is offered:	Mechanical Engineering					
8.	Language of teaching the course:	English					
9.	Location of teaching the course:	Mechanical Engineering Department					
10.	Prepared By:	Prof.Dr.Eng. Mohammed Ahmed Al- Bukahiti				41-	
11.	Date of Approval						

II. Course Description:

This course provides a basic understanding of the part of mechanics which is concerned with the equilibrium of bodies under the action of forces. It lays the foundation and framework for subsequent courses, namely Dynamics, Strength of Materials, Theory of Machines, Design of Machine Elements. Topics covered include basic concepts of mechanics and vectors; forces and force systems and their external effects on bodies, principally the condition of equilibrium of two-and three-dimensional systems; free-body diagrams and equilibrium of particles and bodies; moments; couples; structural analysis and trusses; distributed forces; center of mass; centroids; friction and application of frictional forces. The formulation and solution of mechanics problems will help the students develop the ability of logical thinking and effective communication. In each chapter, the complete theory and the method of analysis will be introduced in the beginning followed by solved examples and assignments.

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

II	. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Define the fundamental concepts used in engineering mechanics such as vectors, forces, moments, static equilibrium, structures, center of mass, center of gravity, and centroids.	A1
a2	Identify the appropriate tools and analytical methods in solving engineering mechanics problems.	A4
b1	Explain, describe and apply principles and components of Engineering Mechanics including vectors, forces, moments, mass and inertia in two and three dimensions, and equilibrium conditions.	B1
c1	Perform free-body diagrams of bodies, calculate forces, and do equilibrium analysis for a mechanical system in static rest.	C1
d1	Develop logical and creative thinking by defining their own methodologies for problem solution.	D3

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

8 8 8	0	
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
a1. Define the fundamental concepts used in engineering mechanics such as vectors, forces, moments, static equilibrium, structures, center of mass, center of gravity, and centroids.	Active Lectures. Tutorials. Self-learning from textbooks.	Written tests Homework and written assignments
a2. Identify the appropriate tools and analytical methods in solving engineering mechanics problems.	Active Lectures. Tutorials. Self-learning from textbooks.	Written tests Homework and written assignments

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes

Teaching strategies

Assessment Strategies

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

b1. Explain, describe and apply principles	Active Lectures.	
and components of Engineering	Tutorials.	Written tests.
Mechanics including vectors,	Interactive class	Homework and
forces, moments, mass and inertia in	discussions.	written
two and three dimensions, and	Self-learning from	assignments.
equilibrium conditions.	textbooks.	

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1. Perform free-body diagrams of bodies, calculate forces, and do equilibrium analysis for a mechanical system in static rest.		Written tests. Homework and written assignments.

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes Teaching strategies Assessment Strategies Strategies				
d1.	Develop logical and creative	Active Lectures.	Written tests.	
	thinking by defining their own	Tutorials.	Homework and	
methodologies for problem		Interactive class discussions.	written	
	solution.	Self-learning from textbooks.	assignments.	

I.	I. Course Content:						
	A – Theoretical Aspect:						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours		
1.	Introduction to Statics	a1, a2	MechanicsBasic Concepts	1	2		

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

Sana'a University Faculty of Engineering Mechanical Engineering Department Mechanical Engineering Program

			 Scalar & vector quantities Newton's law, system of units, laws of gravitations 		
2.	Two Dimensional Force Systems	a1, a2, b1, c1,d1	 Force, Force classifications, Concurrent forces Vector components Rectangular components Moment Couple Resultants 	3	6
3.	Three Dimensional Force Systems	a1, a2, b1, c1,d1	 Rectangular components Dot product Angle between two vectors Moment and couple Resultants 	3	6
4.	Mid-term exam 1	a1, a2, b1, c1, d1	- The first six lectures	1	2
5.	Equilibrium in Two Dimensions	a1, a2, b1, c1,d1	 Mechanical system isolation and free-body diagram Equilibrium conditions 	2	4
6.	Equilibrium in Three Dimensions	a1, a2, b1, c1,d1	 Free-body diagrams Equilibrium conditions Constraints and statical determinacy 	1	2
7.	Structures	a1, a2, b1, c1,d1	 Plane trusses, simple trusses Internal and external redundancy 	1	2

Head of Quality Assurance Dean of the Faculty Academic Rector of Sana'a Unit Prof. Dr. Mohammed Department Development University AL-Bukhaiti Asst. Prof. Dr. Assoc. Prof. Dr. Center & Quality Prof. Dr. Al-Qassim Adel Ahmed Mohammad Mohammed Abbas Assurance Al-Shakiri Algorafi Assoc. Prof. Dr. Huda Al-Emad

Numbe	er of Weeks /and U	Jnits Per Semest	er	16	32
10.	Final Exam			1	2
9.	Friction	a1, a2, b1, c1,d1	Frictional phenomenonTypes of frictionDry friction	1	2
8.	Distributed Forces	a1, a2, b1, c1,d1	 Special Conditions Centre of mass, center of gravity, and centroids Centroids of lines, areas & volumes Composite bodies and figures 	2	4
			- Method of joints		

B - Pr	B - Practical Aspect:				
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes	
1.	Introduction to Statics	1	2	a1, a2	
2.	Two-Dimensional Force Systems	3	6	a1, a2, b1, c1,d1	
3.	Three-Dimensional Force Systems	3	6	a1, a2, b1, c1,d1	
4.	Equilibrium in Two Dimensions	2	4	a1, a2, b1, c1,d1	
5.	Equilibrium in Three Dimensions	1	2	a1, a2, b1, c1,d1	
6.	Structures	1	2	a1, a2, b1, c1,d1	
7.	Distributed Forces	2	4	a1, a2, b1, c1,d1	
8.	Friction	1	2	a1, a2, b1, c1,d1	
Number of Weeks /and Units Per Semester		14	28		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

II. Teaching strategies of the course:

- Active Lectures.
- Tutorials.
- Interactive class discussions.
- Self-learning from textbooks.
- Exercises and Homework.
- Small group working.
- Problem based learning.
- Presentations

III.	Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Introduction to Statics. Vectors	a1, a2	1	
2.	TwoDimensionalForceSystems:Force,Concurrent forces, Vector componentsRectangular components.	a1, a2, b1, c1,d1	2	0.5
3.	Two Dimensional Force Systems: Moment and couple.	a1, a2, b1, c1,d1	3	
4.	Two Dimensional Force Systems: Resultants.	a1, a2, b1, c1,d1	4	0.5
5.	Three Dimensional Force Systems: Rectangular components, Dot product.	a1, a2, b1, c1,d1	5	0.5
6.	Three Dimensional Force Systems: Moment and couple.	a1, a2, b1, c1,d1	6	
7.	Three Dimensional Force Systems: Resultants.	a1, a2, b1, c1,d1	7	0.5
8.	Equilibrium in Two Dimensions: Mechanical system isolation and free-body diagram.	a1, a2, b1, c1,d1	8	0.5
9.	Equilibrium in Two Dimensions: Equilibrium conditions.	a1, a2, b1, c1,d1	9	0.5
10.	Equilibrium in Three Dimensions	a1, a2, b1, c1,d1	10	0.5

Head of Quality Assurance Dean of the Faculty Academic Department Unit Prof. Dr. Mohammed Development AL-Bukhaiti Assoc. Prof. Dr. Asst. Prof. Dr. Center & Quality Adel Ahmed Mohammad Assurance Al-Shakiri Algorafi Assoc. Prof. Dr. Huda Al-Emad

11.	Structures	a1, a2, b1, c1,d1	11	
12.	Distributed Forces: Centre of mass, center of gravity, and centroids, Centroids of lines, areas & volumes.	a1, a2, b1, c1,d1	12	0.5
13.	Distributed Forces: Composite bodies and figures.	a1, a2, b1, c1,d1	13	0.5
14.	Friction.	a1, a2, b1, c1,d1	14	0.5
	Total			5

IV. Schedule of Assessment Tasks for Students During the Semester:

No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1.	Written assignments.	1-14	7.5	5	a1, a2, b1, c1,d1
2.	Homework and project.	1-14	7.5	5	a1, a2, b1, c1,d1
3.	Written test: Mid-term exam 1	7	15	10	a1, a2, b1, c1,d1
4.	Written test: Mid-term exam 2	12	15	10	a1, a2, b1, c1,d1
5.	Written test: Final Exam	16	105	70	a1, a2, b1, c1,d1
	Total		150	100%	

V. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

 J. L. Meriam, L. G. Kraige, 2014, Engineering Mechanics, Statics, 8th Edition, John Wiley Publisher.

2- Essential References.

 R. C. Hibbeler, Kai Beng Yap, 2013, Engineering Mechanics, Statics, 13th Edition, Pearson Education South Asia Ltd.

3- Electronic Materials and Web Sites etc.

Head of Quality Assurance Dean of the Faculty Academic Unit Prof. Dr. Mohammed Department Development AL-Bukhaiti Asst. Prof. Dr. Assoc. Prof. Dr. Center & Quality Adel Ahmed Mohammad Assurance Al-Shakiri Algorafi Assoc. Prof. Dr.

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

Huda Al-Emad

VI	. Course Policies:
1.	Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic
2.	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	Exam Attendance/Punctuality: A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam.
4.	Assignments & Project The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.
5.	Cheating: For cheating in exam, a student will be considered as failure. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.
6.	Plagiarism: Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proved a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university.
7.	 Other policies: Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room Mobile phones are not allowed in class during the examination. Lecture notes and assignments my given directly to students using soft or hard copy

Reviewed
ByVice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.
Barakat
President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a
Department	Unit	Prof. Dr. Mohammed	Development	University
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Prof. Dr. Al-Qassim
Adel Ahmed	Mohammad		Assurance	Mohammed Abbas
Al-Shakiri	Algorafi		Assoc. Prof. Dr.	
			Huda Al-Emad	

Name of Reviewer from the Department: Assoc. Prof. Dr. Riyad Muharam
Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
Assoc. Prof. Dr. Ahmed Mujahed
Asst. Prof. Dr. Munasar Alsubri

Head of	Quality Assurance
Department	Unit
Asst. Prof. Dr.	Assoc. Prof. Dr.
Adel Ahmed	Mohammad
Al-Shakiri	Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Sana'a University Faculty of Engineering Mechanical Engineering Department Mechanical Engineering Program

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad