

7 Course Specification of Engineering Mechanics 1

	I. Course Identification and General Information:					
1	Course Title:	Engineering Mechanics 1				
2	Course Code & Number:	BR007				
		C.H Cre			Credit	
3	Credit hours:	Th.	Tu.	Pr.	Tr.	Hours
		2	2			3
4	Study level/ semester at which this course is offered:	1th Level/ 1st semester				
5	Pre –requisite (if any):					
6	Co –requisite (if any):					
8	Program (s) in which the course is offered:	: Civil Engineering				
9	Language of teaching the course:	English+ Arabic				
10	Location of teaching the course:	Class room				
11	Prepared by:	Dr. Mohammad A. Algorafi				
12	Date of Approval					

II. Course Description:

Engineering Mechanics 1 is that branch of mechanics which deals with the equilibrium of particle under the action of forces at rest or constant velocity.

This course provides fundamental concepts for most of civil engineering branches which are related to equilibrium. The knowledge and abilities taught in this course are an essential prerequisite for subsequent courses involving dynamics; fluid, theory of structure, strength of material. The course focuses on the physical/mathematical analysis of the forces of particles and rigid bodies such as Basic concepts of mechanics. Scalar and Vectors, Position, unit and force vectors, Two-dimensional force systems, Moment of a force about a point. Moment of a force about a line, Equivalent Systems, cable, fraction.

The formulation and solution of mechanic's problems will help the students develop the ability of logical thinking and effective communication. A thorough comprehension of statics will provide one of the most useful and powerful tools for analysis in engineering. In each chapter, the complete theory and the method of analysis will be introduced in the beginning followed by solved examples and assignments.

Prepared by Head of Department Dr. Abdulkareem

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

III. (Course Intended learning outcomes (CILOs)	Referenced
	of the course	PILOs
a.1	Define the fundamental knowledge of mechanics to solve for forces and moments on structure systems under rest.	A1
a.2	Define the basic differences between diverse engineering systems and Describe the principles of analyze techniques	A3
b.1	Distinguish the basic differences between diverse engineering systems, and select the suitable analysis in achieving the engineering purposes.	B1
c.1	Apply the fundamental knowledge of mechanics to solve for forces and moments on simple systems.	C2
c.2	Apply engineering mechanics techniques to solve the problems encountered in projects.	С3

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
a1- Define the fundamental knowledge of mechanics to solve for forces and moments on structure systems under rest.	Lecture Multimedia Presentations Presentations Tutorial Reading	Problem set- Written exam- Written assignment		
a2- Define the basic differences between diverse engineering systems and Describe the principles of analyze techniques	Lecture Multimedia Presentations Presentations Tutorial Reading	Problem set- Written exam- Written assignment		

Prepared by Head of Department

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching **Strategies and Assessment Strategies:** Course Intended Learning Outcomes **Assessment Strategies** Teaching strategies Lecture b1- Distinguish the basic differences Multimedia between diverse engineering systems, Presentations Participation- Written and select the suitable analysis in Presentations Assignment-Project achieving the engineering purposes. Tutorial

Reading

C Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
c1- Apply the fundamental knowledge of mechanics to solve for forces and moments on simple systems.	Lecture Presentations Tutorial	Written Assignment- Written exam -Project		
c2- Apply engineering mechanics techniques to solve the problems encountered in projects.	Lecture Presentations Tutorial	Written Assignment- Written exam -Project		

IV.	IV. Course Content:					
	A – Theoretical Aspect:					
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours	
1	Introduction	al,	Basic Concepts Newton's law System of Units Gravitation Dimensions	1	2	
2	Force Vectors	a1, c1, c2	Vector Operations Resolving of Forces Resultant of Forces	2	4	

Prepared by Head of Department

Dr. Abdulkareem Yahya Al khattabi

Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

7	Equilibrium of Rigid Bodies	a1, a2, b1, c1, c2	Distributed Loads Supports Free Body Diagram Concepts Solving Equilibrium of beams and frame	2	4
8	of Rigid		Solving Equilibrium of beams and frame Concepts of Dry Friction Analyze Equilibrium of Rigid Bodies Subjected to This Force	2	4
9	Friction Centroid & Moments of	Bodies Subjected to This Force Concepts of Rolling Resistance a1, a2, b1, Moments of Inertia			4
		a1, a2, b1, c1, c2	Moments of Inertia.	2	4

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

B -Tut	B -Tutorial Aspect:				
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes	
1	Introduction	1	2	a1,	
2	Force Vectors	2	4	a1, c1, c2	
3	Equilibrium of Particles	2	4	a1, a2, b1, c1, c2	
4	Truss	1	2	a1, a2, b1, c1, c2	
5	Cable	1	2	a1, a2, b1, c1, c2	
6	Force System Resultants	1	2	a1, a2, b1, c1, c2	
7	Equilibrium of Rigid Bodies	2	4	a1, a2, b1, c1, c2	
8	Friction	2	4	a1, c1, c2	
9	Centroid & Moments of Inertia.	2	4	a1, a2, b1, c1, c2	
Number of Weeks /and Units Per Semester		14	28		

V. Teaching strategies of the course:

Lecture

Multimedia Presentations

Presentations

Tutorial

Reading

Small group working

Independent study

VI.	VI. Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1	Newton's law	al,	1	1		
2	Force Vectors	a1, c1, c2	2,3	1		
3	Equilibrium of Particles	a1, a2, b1, c1, c2	4,5	1.5		
4	Truss	a1, a2, b1, c1, c2	6	1		
5	Cable	a1, a2, b1, c1, c2	7	1		

Prepared by Head of Department

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

6	Force System Resultants	a1, a2, b1, c1, c2	8	1
7	Equilibrium of Rigid Bodies	a1, a2, b1, c1, c2	9,10	1
8	Friction	a1, c1, c2	11	1
9	Centroid & Moments of Inertia.	a1, a2, b1, c1, c2	12	1

1	VII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1	Written assignment	1-to 12	10.5	7	a1, a2, b1, c1, c2	
2	Quizzes.	Three time randomly	4.5	3	b1, c1, c2	
3	Mid-term exam.	7th	30	20	a1, a2, b1, c1, c2	
4	Final-exam.	16	90	70	a1, a2, b1, c1, c2	
	Sum		150	100%		

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1 - Hibbeler, R.C., "Engineering Mechanics: statics", 12th edition, and Prentice Hall

2- Essential References.

- 1. J. L. Meriam, L. G. Kraige, 2011, Engineering Mechanics, statics, 7th Edition, John Wiley Publisher
- 2 -F.P.Beer and E.R. Russel, 1999, Vector Mechanics for Engineers Statics and Dynamic Edition, McGraw Hill
- 3- Electronic Materials and Web Sites etc.

Prepared by Head of Department

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

IX.	Course Policies:
1	Class Attendance: The students should have more than 75 % of attendance according to rules and regulations of the faculty.
2	Tardy: The students should respect the timing of attending the lectures. They should attend within 1 minutes from starting of the lecture.
3	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for midterm exam and final exam.
4	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.
5	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he/she has to face the examination committee for enquiries.
6	Plagiarism: The student will be terminated from the Faculty, if one student attends the exam on another behalf according to the policy, rules and regulations of the university.
7	Other policies: -All the teaching materials should be kept out the examination hallThe mobile phone is not allowedThere should be a respect between the student and his teacher.

Reviewed By	Vice Dean for Academic Affairs and Post Graduate Studies
	Dr. Tarek A. Barakat
	Dr. Riyad A. Muharam
	Deputy Rector for Academic Affairs Dr. Ibrahim AlMutaa
	Dr. Ahmed mujahed
	Dr. Munaser Alsubri

Template for Course Plan (Syllabus) of

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Engineering Mechanics1

I Information about Faculty Member Responsible for the Course:							
Name of Faculty		Office Hours					
Member Location& Telephone	Algorafi						
No.		SAT	SUN	MON	TUE	WED	THU
E-mail				8-10			

II.	II. Course Identification and General Information:					
1	Course Title:	Engineering Mechanics 1				
2-	Course Number & Code:	BR007				
		C.H Credit			Credit	
3-	Credit hours:	Th.	Tu.	Th.	Tu.	Hours Th.
		2	2			3
4-	Study level/year at which this course is offered:	1th Level/ 1st semester				
5-	Pre -requisite (if any):					
6-	Co -requisite (if any):					
7-	Program (s) in which the course is offered	Civil Engineering				
8-	Language of teaching the course:	English+ Arabic				
9-	System of Study:	Regular				
10-	Mode of delivery:	Lecture				
11-	Location of teaching the course:	Class				

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

III. Course Description:

Engineering Mechanics 1 is that branch of mechanics which deals with the equilibrium of particle under the action of forces at rest or constant velocity.

This course provides fundamental concepts for most of civil engineering branches which are related to equilibrium. The knowledge and abilities taught in this course are an essential prerequisite for subsequent courses involving dynamics; fluid, theory of structure, strength of material. The course focuses on the physical/mathematical analysis of the forces of particles and rigid bodies such as Basic concepts of mechanics, Scalar and Vectors, Position, unit and force vectors, Two dimensional force systems, Moment of a force about a point, Moment of a force about a line, Equivalent Systems, cable, and fraction.

The formulation and solution of mechanic's problems will help the students develop the ability of logical thinking and effective communication. A thorough comprehension of statics will provide one of the most useful and powerful tools for analysis in engineering. In each chapter, the complete theory and the method of analysis will be introduced in the beginning followed by solved examples and assignments.

IV.Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
- **a.1** Define the fundamental knowledge of mechanics to solve for forces and moments on structure systems under rest. (A1)
- **a.2** Define the basic differences between diverse engineering systems and Describe the principles of analyze techniques (A3)
- **b.1** Distinguish the basic differences between diverse engineering systems, and select the suitable analysis in achieving the engineering purposes. (B1)
- **c.1** Apply the fundamental knowledge of mechanics to solve for forces and moments on simple systems. (C2)
- **c.2** Apply engineering mechanics techniques to solve the problems encountered in projects. (C3)

V. Course Content:

Distribution of Semester Weekly Plan of Course Topics/Items and Activities.

A – Theoretical Aspect:

Order	Topics List	Sub Topics List	Week Due	Contact Hours
1	Basic Concepts Newton's law System of Units Gravitation Dimensions		1	2
2	Force Vectors		2,3	4
3	Equilibrium of Particles Free Body Diagram Concepts Solving Equilibrium Problems Spring and Pulley Systems Concepts		4,5	4
4	Truss Determine the Forces in the Members of a Truss: Joint Method Section Method		6	2
5	Cable Determine the Forces in the Members of a Cable by Joint Method		7	2
6	Midterm Exam		8	2
7	Force System Resultants			2
8	Equilibrium of Rigid Bodies	I Solving Edillibrium of beams and		6

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

9	Friction	Concepts of Dry Friction Analyze Equilibrium of Rigid Bodies Subjected to This Force Concepts of Rolling Resistance	13,14 4	
10	Centroid & Centroid of a Body. Moments of Moments of Inertia. Composite Areas.		15	2
11	Final Exam		16	2
Number of Weeks /and Units Per Semester		16	32	

B – Tut	B – Tutorial Aspect:			
Order	Topics List	Week Due	Contact Hours	
1	Introduction	1	2	
2	Force Vectors	2,3	4	
3	Equilibrium of Particles	4,5	4	
4	Truss	6	2	
5	Cable	7	2	
6	Force System Resultants	8	2	
7	Equilibrium of Rigid Bodies	9,10,11	6	
8	Friction	12,13	4	
9	Centroid & Moments of Inertia.	14	2	
Numb	er of Weeks /and Units Per Semester	14	28	

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

VI. Teaching strategies of the course:

Lecture

Multimedia Presentations

Presentations

Tutorial

Reading

Small group working

Independent study

VII.	Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1	Newton's law	a1,	1	1
2	Force Vectors	a1, c1, c2	2,3	1
3	Equilibrium of Particles	a1, a2, b1, c1, c2	4,5	1.5
4	Truss	a1, a2, b1, c1, c2	6	1
5	Cable	a1, a2, b1, c1, c2	7	1
6	Force System Resultants	a1, a2, b1, c1, c2	8	1
7	Equilibrium of Rigid Bodies	a1, a2, b1, c1, c2	9,10,11	1
8	Friction	a1, c1, c2	12	1
9	Centroid & Moments of Inertia.	a1, a2, b1, c1, c2	12	1

VIII. Schedule of Assessment Tasks for Students During the Semester:					
Assessment	Type of Assessment Tasks	Week Due	Mark	Proportion of Final Assessment	
1	Written assignment	1-to 12	10.5	7	
2	Quizzes.	Three time randomly	4.5	3	
3	Mid-term exam.	7th	30	20	
4	Final-exam.	13	90	70	

Prepared by Head of Department

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

IX. Learning Resources:

• Written in the following order: (Author – Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

Hibbeler, R.C., "Engineering Mechanics: statics", 12th edition, and Prentice Hall

2- Essential References.

- 1. -J. L. Meriam, L. G. Kraige, 2011, Engineering Mechanics, Statics, 7th Edition, John Wiley Publisher
- 2 -F.P.Beer and E.R. Russel, 1999, Vector Mechanics for Engineers Statics and Dynamics, 6th Edition, McGraw Hill

3- Electronic Materials and Web Sites etc.

1- Staad pro manual

X. C	ourse Policies:
	s otherwise stated, the normal course administration policies and rules of the Faculty of eering apply. For the policy, see:
1	Class Attendance: The students should have more than 75 % of attendance according to rules and regulations of the faculty.
2	Tardy: The students should respect the timing of attending the lectures. They should attend within 1 minutes from starting of the lecture.
3	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for midterm exam and final exam.
4	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.
5	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he/she has to face the examination committee for enquiries.
6	Plagiarism: The student will be terminated from the Faculty, if one student attends the exam on another behalf according to the policy, rules and regulations of the university.
7	Other policies: -All the teaching materials should be kept out the examination hallThe mobile phone is not allowedThere should be a respect between the student and his teacher.

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti