

19. Course Specification of Logic Circuits

	I. Course Identification and General Information:							
1.	Course Title:	Logic	Circuits					
2.	Course Code & Number:	CCE1	18					
			C.	Η		Total		
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total		
			2	2	-	4		
4	Study level/ semester at which this course	Second Veer/First Semeste		ter	r			
т.	is offered:	Secon	u real/m	st Senies				
5.	Pre –requisite (if any):	Comp	uter skills	(UR003)				
6.	Co –requisite (if any):	None.						
7	Program (s) in which the course is offered:		Power Engineering and Electrical					
7.	rogram (s) in which the course is offered.	Mach	ines					
8.	Language of teaching the course:	Englis	sh					
9.	Location of teaching the course:	Facult	ty of Engir	neering				
10.	Prepared By:	Asst.	Prof. Dr. A	del Al-S	hogairy			
11.	Date of Approval							

II. Course Description:

This course introduces students to the digital principles with emphasis on logic design. It covers Number systems, binary arithmetic and codes, logic gates, Boolean algebra and logic simplifications, design and realization of combinational circuits, Functions of combinational circuits logic using NAND and NOR gates. Learn the principles of analysis and design of combinational logic circuits. Learn the principles of analysis and design of sequential logic circuits.

By the end of the course, students – in groups- will be asked to submit a project in which their elements are basic logic gates and combinational logic circuits learned by the course. Finally, this course provides the basic concepts required to study the Logic System Design, the Digital Electronic Circuits, and the Microprocessors & Microcontrollers courses.

Head of	Quality Assurance	Dean of t
Department	Unit	Prof. Dr. 1
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-B
Adel Ahmed Al-	Mohammad Algorafi	
Shakiri		

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

-	III. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Define properties and characteristics of logic gates, laws and rules of Boolean Algebra, Boolean expressions, combinational circuits, and sequential circuits, K-Map, Truth Table and State Diagram.	A1
a2	Acquire knowledge about a digital system, components or process to meet desired needs within realistic constraints.	A3
b1	Solve engineering problems in the area of digital logic circuit design.	B2
b2	Analyze effectively digital logic circuit based on practical problem and implements the circuit design in lab.	B4
c1	Design digital logic circuits using apply knowledge of number systems, codes and Boolean algebra.	C2
c2	Use the techniques, skills, and modern engineering tools necessary for engineering practice.	C3
d1	Function on teams through digital circuit experiments and projects.	D1

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
a1.Definepropertiesandcharacteristicslogic gates, lawsandrules ofBooleanAlgebra,Booleanexpressions,combinational circuits, K-Map,Aruthsequential circuits, K-Map,TruthTable and State Diagram.	LecturePresentation	 Quizzes Homework Test
 a2. Acquire knowledge about a digital system, components or process to meet desired needs within realistic constraints. 	LecturePresentationClass Discussion	 Quizzes Homework Test

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1. Solve engineering problems in the area of digital logic circuit design.	 Lecture Presentation Class Discussion Problem Solving 	 Quizzes Homework Written Exam.
b2. Analyze effectively digital logic circuit based on practical problem and implements the circuit design in lab.	LectureProblem SolvingLaboratory Work	 Quizzes Homework Written Exam.

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1. Design digital logic circuits using apply knowledge of number systems, codes and Boolean algebra.	LecturePresentationClass DiscussionProblem Solving	 Quizzes Homework Written Exam.
c2. Use the techniques, skills, and modern engineering tools necessary for engineering practice.	LecturePresentationProblem Solving	 Quizzes Homework Written Exam.

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:

0 0	0	
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d1- Function on teams through digital circuit experiments and projects.	LectureLab WorkClass Discussion	 Quizzes Small Projects

IV. Course Content: A – Theoretical Aspect:

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours
1.	Introduction to Logic Circuits and its applications	a.1,a.2	 Analog and Digital Systems Binary Digits and Logic Levels Digital Waveforms Timing Diagrams Serial and Parallel Data Basic Logic Functions Programmable Logic Logic CAD system (VHDL) 	1	2
2.	Number systems and Codes	a.2, b.1, b.2, c.1, c.2	 Binary, Octal and Hex Number Systems Number Systems Conversions. BCD, Gray and Alphanumeric Codes. Error Detection. 	1	2
3.	Digital Arithmetic	a.2, b.1, b.2, c.1, c.2	 Binary addition and Subtraction. Binary Multiplication and Division. BCD Addition and Hex. Arithmetic 	2	4
4.	Logic Gates	a.1, a.2, b.1, b.2, c.1, c.2	 Boolean Constants and Variables. Truth Tables. OR, AND, and NOT Operations. Logic Algebra and Logic Implementation. NOR and NAND Gates 	2	4

Head ofQuality AssuranceDeanDepartmentUnitProf. IAsst. Prof. Dr.Assoc. Prof. Dr.AAdel Ahmed Al-Mohammad AlgorafiShakiriShakiri

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

5.	Boolean Algebra and Logic Simplification	a.2, b.1, b.2, c.1, c.2, d.1	 Boolean and Demorgan's Theorems. Universality of NAND and NOR Gates. Alternative Representations. Labeling Logic Signals. SOP and POS Forms. Simplifying Logic Circuits using algebra and K-maps. 	2	4
6.	Combinational Logic	a.1, b.1, b.2, c.1, c.2	 Introduction Basic Circuits and Design Procedure. Using NAN and NOR gates in Design. Display Devices 	2	4
7.	Combinational Circuits	b.1, b.2, c.1, c.2, d.1	 Introduction. Arithmetic Circuits and Comparators. Decoders, and Encoders. Multiplexers and Demultiplexers. 	2	4
8.	Combinational Logic Programming	b.1, b.2, c.1, c.2, d.1	 Introduction Describing Logic circuits Development Software Description languages and Programming Languages Implementing Logic Circuits using PLDs VHDL Format and Syntax Intermediate signals in VHDL Representing Data in VHDL Truth Tables using VHDL 	2	4

Head of Quality Assurance Dean of the Faculty Academic Rector of Sana'a University Prof. Dr. Mohammed Prof. Dr. Al-Qassim Mohammed Department Unit Development AL-Bukhaiti Asst. Prof. Dr. Assoc. Prof. Dr. Center & Quality Abbas Adel Ahmed Al-Mohammad Algorafi Assurance Shakiri Assoc. Prof. Dr.

Numbo	or of Wooks (and	Units Por Sc	Multiplexers, Demultiplexers, Magnitude Comparators, Code Converters.	14	28
			 Decision Control Structures Implementing Adders, Decoders, Encoders, 		

B – Tutorial Aspect:					
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes	
1.	Logic Gates 1	1	2	b.1, c.1, c.2, d.1	
2.	Logic Gates 2	1	2	b.2, c.1, c.2, d.1	
3.	Logic Gates 3	1	2	b.1, b.2, c.2, d.1	
4.	Logic Gates 4	1	2	b.1, b.2, c.1, , d.1	
5.	Logic Gates 5	1	2	b.1, b.2, c.1, c.2,	
6.	Logic Gates 6	1	2	b.1, b.2, c.1, c.2, d.1	
7.	Combinational Logic	2	4	, b.2, c.1, c.2, d.1	
8.	Combinational Circuits	2	4	b.1, b.2, c.2, d.1	
9.	Combinational Logic Programming	4	8	b.1, b.2, c.1, c.2, d.1	
Nui	nber of Weeks /and Units Per S	Semester 14	28		

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	

C - Practical Aspect:						
No.	Tasks/ Experiments	No. of Weeks	Contact Hours	Learning Outcomes		
1.	Lab Equipment Orientations, Simulation Software required in the design of sequential circuits and Digital Systems	1	2	a1, c2		
2.	Introduction to VHDL and FPGA	2	4	a1, c2		
3.	Laches and Flip-Flops practical implementation and description of their operations and VHDL design.	2	4	c1, c2, d1		
4.	Sequential Logic circuits design (Sequence Detector Circuits) using VHDL and Lap Equipment	2	4	c1, c2, d1		
5.	Counter Design and Implementation	2	4	c1, c2, d1		
6.	Shift Register Design	1	2	c1, c2, d1		
7.	Memory Device Design, PLD and PLA Design using VHDL and FPGA	2	4	a1, c1, c2, d1		
8.	Review	2	4	a1, c1, c2, d1, d2		
	Number of Weeks /and Units Per Semester 14 28					

V. Teaching strategies of the course:

- Lecture
- Lab Work
- Class Discussion
- Problem Solving
- Presentation

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	

V	I. Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	System Numbers, Binary Arithmetic, and Complements	al	3 rd	2
2.	Boolean Algebra	a1, b1	4^{th} and 5^{th}	2
3.	K-Map	a1, b1	6^{th} and 7^{th}	2
4.	Combinational Logic Circuits Design	a1, a2, b1, b2	9 th to 15 th	4
	Tota	1		10

VII	VII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1.	Assignments	3^{nd} to 15^{th}	10	5%	a1, a2, b1, b2		
2.	Quizzes	$5^{\text{th}}, 10^{\text{th}}, \text{and}$ 14^{th}	10	5%	a1, a2, b1, b2,		
3.	Lab-tasks and reports	1^{st} to 12^{th}	20	10%	c1, c2, d1		
4.	Project Presentation	14 th	20	10%	a2, c1, c2, d1		
5.	Practical Exam	15 th	20	10%	a2,c1, c2, d1		
6.	Mid-Term Exam (Theory)	7 th	20	10%	a1, a2, b1, b2,		
7.	Final-Term Exam (Theory)	16 th	100	50%	a1, a2, b1, b2,		
	Total		200	100%			

V	VIII. Learning Resources:					
• Wr Pu	• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).					
1- Rec	1- Required Textbook(s) (maximum two).					
	1. Thomas L. Floyd, 2009, Digital Fundamentals, 10th Edition, Pearson					
	Education International					

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	2.	Ronald J. Tocci, Neal S.Widmer, Gregory L. Moss, 2007, Digital Systems :
		Principles and Applications, 10th Edition, Pearson Prentice Hall
2- E	ssentia	References.
	1.	Douglas L. Perry, 2002, VHDL Programming by Example, 4th Edition,
		McGraw-Hill
	2.	M. M. Mano, M. D. Ciletti, 2007, Digital Design, 4th Edition, Prentice-Hall
3- E	lectron	ic Materials and Web Sites etc.
	1.	Faculty Electronic Library
	2.	ELectronic Lectures, PPT, Prepared by the Lecturer (if possible)
	3.	http://www.ocw.mit.edu/courses.
	4.	http://www.pearsoned.co.in/MMorrisMano/

	IX. Course Policies:
1.	• Class Attendance A student should attend not less than 75 % of total hours of the course; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic.
2.	• Tardy For being late in attending the class, the student will be initially notified. If he/she repeated lateness in attending class he will be considered as absent.
3.	• Exam Attendance/Punctuality A student should attend the exam on time. He is permitted to attend an exam half an hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam.
4.	• Assignments and Projects Assignments are given to the students after each chapter; students have to submit all assignments for checking on time.
5.	• Cheating For cheating in exam, a student will be considered as failure. In case the cheating is repeated three times during his/her study, the student will be dismissed from the Faculty.
6.	• Plagiarism

Head of Quality Assurance Department Unit Asst. Prof. Dr. Assoc. Prof. Dr. Adel Ahmed Al-Shakiri Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proved a plagiarism of a student, he will be dismissed from the Faculty. The final dismissal of the student from the Faculty should be confirmed by the Student Council Affairs of the university.

- Other policies
- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room.
- 7. Mobile phones are not allowed in class during the examination.
 - Lecture notes and assignments may be given directly to students using soft and/or hard copy.

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek
By	A. Barakat
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi
	Name of Reviewer from the Department: Assoc. Prof. Dr. Radwan Al bouthigy
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
	Assoc. Prof. Dr. Ahmed Mujahed
	<u>Asst. Prof. Dr. Munasar Alsubri</u>

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	

19. Template for Course Plan of Logic Circuits

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Asst. Prof. Dr. Adel Ahmed Al-Shogairy	Office Hours					
Location& Telephone No.	Electrical Eng. Dept	SAT SUN MON TUE WED TH			THU		
E-mail	Ashakiri62@gmail.com		8-12		8-12		

-	II. Course Identification and General Information:							
1.	Course Title:	Logic	Circuits					
2.	Course Number & Code:	CCE1	18					
			C.	Н		Total		
3.	Credit hours:	Th.	Tut.	Pr.	Tr.	Total		
		2	2	2	-	4		
4.	Study level/year at which this course is offered:	Second Year/ First Semester						
5.	Pre –requisite (if any):	Computer skills (UR003)						
6.	Co –requisite (if any):	NA						
7	7 Program (s) in which the course is offered		Power Engineering and Electrical					
<i>'</i> .	1 ogram (o) in which the course is offered	Machines						
8.	Language of teaching the course:	English						
9.	System of Study:	Regular						
10.	Mode of delivery:	Lecture						
11.	Location of teaching the course: Class & lab							

Head ofQuality AssuranceDean of the FacultyDepartmentUnitProf. Dr. MohammedAsst. Prof. Dr.Assoc. Prof. Dr.AL-BukhaitiAdel Ahmed Al-
ShakiriMohammad AlgorafiImage: Complexity of the security of the securit

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description:

This course introduces students to the digital principles with emphasis on logic design. It covers Number systems, binary arithmetic and codes, logic gates, Boolean algebra and logic simplifications, design and realization of combinational circuits, Functions of combinational circuits logic using NAND and NOR gates. Learn the principles of analysis and design of combinational logic circuits. Learn the principles of analysis and design of sequential logic circuits.

By the end of the course, students – in groups- will be asked to submit a project in which their elements are basic logic gates and combinational logic circuits learned by the course. Finally, this course provides the basic concepts required to study the Logic System Design, the Digital Electronic Circuits, and the Microprocessors & Microcontrollers courses.

IV. Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - **1.** Define properties and characteristics of logic gates, laws and rules of Boolean Algebra, Boolean expressions, combinational circuits, and sequential circuits, K-Map, Truth Table and State Diagram.
 - **2.** Acquire knowledge about a digital system, components or process to meet desired needs within realistic constraints.
 - 3. Solve engineering problems in the area of digital logic circuit design.
 - **4.** Analyze effectively digital logic circuit based on practical problem and implements the circuit design in lab.
 - 5. Design digital logic circuits using apply knowledge of number systems, codes and Boolean algebra.
 - **6.** Use the techniques, skills, and modern engineering tools necessary for engineering practice.
 - 7. Function on teams through digital circuit experiments and projects.

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	

V. Course Content:					
	A – Theoreti	cal Aspect:			
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact hours	
1.	Introduction to Logic Circuits and its applications	 Analog and Digital Systems Binary Digits and Logic Levels Digital Waveforms Timing Diagrams Serial and Parallel Data Basic Logic Functions Programmable Logic Logic CAD system (VHDL) 	1 st	2	
2.	Number systems and Codes	 Binary, Octal and Hex Number Systems Number Systems Conversions. BCD, Gray and Alphanumeric Codes. Error Detection. 	2 nd	2	
3.	Digital Arithmetic	 Binary addition and Subtraction. Binary Multiplication and Division. BCD Addition and Hex. Arithmetic 	3 rd ,4 th	4	
4.	Logic Gates	 Boolean Constants and Variables. Truth Tables. OR, AND, and NOT Operations. Logic Algebra and Logic Implementation. NOR and NAND Gates 	5 th ,6 th	4	
5.	Midterm Exam		7 th	2	
6.	Boolean Algebra and Logic Simplification	 Boolean and Demorgan's Theorems. Universality of NAND and NOR Gates. Alternative Representations. Labeling Logic Signals. SOP and POS Forms. 	8 th ,9 th	4	

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr.
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri			Assoc. Prof. Dr.	
			Huda Al-Emad	

		• Simplifying Logic Circuits using algebra		
		and K-maps.		
7.	Combinational Logic	 Introduction Basic Circuits and Design Procedure. Using NAN and NOR gates in Design. Display Devices 	10 th ,11 th	4
8.	Combinational Circuits	 Introduction. Arithmetic Circuits and Comparators. Decoders, and Encoders. Multiplexers and Demultiplexers. 	12 th ,13 th	4
9.	Combinational Logic Programming	 Introduction Describing Logic circuits Development Software Description languages and Programming Languages Implementing Logic Circuits using PLDs VHDL Format and Syntax Intermediate signals in VHDL Representing Data in VHDL Truth Tables using VHDL Decision Control Structures Implementing Adders, Decoders, Encoders, Multiplexers, Demultiplexers, Magnitude Comparators, Code Converters. 	14 th ,15 th	4
10.	Final Exam		16 th	2
Numbe	r of Weeks /and	Units Per Semester	16	32

B – Tutorial Aspect:				
Order	Tasks/ Experiments	Number of Weeks	Contact hours	
1.	Logic Gates 1	1 st	2	
2.	Logic Gates 2	2^{nd}	2	
3.	Logic Gates 3	3 rd	2	

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

4.	Logic Gates 4	4 th	2
5.	Logic Gates 5	5 th	2
6.	Logic Gates 6	5 th	2
7.	Combinational Logic	6 th ,7 th	4
8.	Combinational Circuits	8 th ,9 th	4
9.	8		
Number of Weeks /and Units Per Semester 14			28

	C- Practical Aspect:				
No.	Tasks/ Experiments	No. of Weeks	Contact Hours		
1.	Lab Equipment Orientations, Simulation Software required in the design of sequential circuits and Digital Systems	1 st	2		
2.	Introduction to VHDL and FPGA	2^{nd} , 3^{rd}	4		
3.	Laches and Flip-Flops practical implementation and description of their operations and VHDL design.	4 th ,5 th	4		
4.	Sequential Logic circuits design (Sequence Detector Circuits) using VHDL and Lap Equipment	6 th ,7 th	4		
5.	Counter Design and Implementation	8 th ,9 th	4		
6.	Shift Register Design	10 th	2		
7.	Memory Device Design, PLD and PLA Design using VHDL and FPGA	11 th ,12 th	4		
8.	Review	13 th	2		
9.	Project's Presentation and Final Exam (Practical)	14 th ,15 th	4		
	Number of Weeks /and Units Per Semester	15	30		

VI. Teaching strategies of the course:

- Lecture
- Lab Work
- Class Discussion
- Problem Solving

Head of Quality Assurance Department Unit Asst. Prof. Dr. Assoc. Prof. Dr. Adel Ahmed Al-Shakiri Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Presentation

VII. Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark	
1.	System Numbers, Binary Arithmetic, and Complements	al	3 rd	2	
2.	Boolean Algebra	a1, b1	4^{th} and 5^{th}	2	
3.	K-Map	a1, b1	6^{th} and 7^{th}	2	
4.Combinational Logic Circuits Designa1, a2, b1, b29th to 15th					
Total					

VIII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment		
1.	Assignments	3^{nd} to 15^{th}	10	5%		
2.	Quizzes	5^{th} , 10^{th} , and 14^{th}	10	5%		
3.	Lab-tasks and reports	1^{st} to 12^{th}	20	10%		
4.	Project Presentation	14 th	20	10%		
5.	Practical Exam	15 th	20	10%		
6.	Mid-Term Exam (Theory)	7	20	10%		
7.	Final-Term Exam (Theory)	16	100	50%		
	Total 200 100%					

D	X. Learning Resources:				
• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).					
1- Required Textbook(s) (maximum two).					
	1. Thomas L. Floyd, 2009, Digital Fundamentals, 10th Edition, Pearson				
	Education International				

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	2.	Ronald J. Tocci, Neal S.Widmer, Gregory L. Moss, 2007, Digital Systems : Principles and Applications, 10th Edition,. Pearson Prentice Hall
2- E	ssentia	References.
	1.	Douglas L. Perry, 2002, VHDL Programming by Example, 4th Edition,
		McGraw-Hill
	2.	M. M. Mano, M. D. Ciletti, 2007, Digital Design, 4 th Edition, Prentice-Hall
3- E	lectron	ic Materials and Web Sites etc.
	1.	Faculty Electronic Library
	2.	ELectronic Lectures, PPT, Prepared by the Lecturer (if possible)
	3.	http://www.ocw.mit.edu/courses.
	4.	http://www.pearsoned.co.in/MMorrisMano/

	X. Course Policies:
1.	• Class Attendance A student should attend not less than 75 % of total hours of the course; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring an approved statement from university Clinic.
2.	• Tardy For being late in attending the class, the student will be initially notified. If he/she repeated lateness in attending class he will be considered as absent.
3.	• Exam Attendance/Punctuality A student should attend the exam on time. He is permitted to attend an exam half an hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam.
4.	• Assignments and Projects Assignments are given to the students after each chapter; students have to submit all assignments for checking on time.
5.	• Cheating For cheating in exam, a student will be considered as failure. In case the cheating is repeated three times during his/her study, the student will be dismissed from the Faculty.
6.	• Plagiarism

Head of	Quality Assurance	Dean of the Faculty	Academic
Department	Unit	Prof. Dr. Mohammed	Development
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality
Adel Ahmed Al-	Mohammad Algorafi		Assurance
Shakiri			Assoc. Prof. Dr.

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

	Plagiarism is the attending of a student the exam of a course instead of another student. If					
	the examination committee proved a plagiarism of a student, he will be dismissed from the Faculty. The final dismissal of the student from the Faculty should be confirmed by the Student Council Affairs of the university.					
	- Other policies					
7.	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room.					
	- Mobile phones are not allowed in class during the examination.					
	- Lecture notes and assignments may be given directly to students using soft and/or hard					
	copy.					

Head of	Quality Assurance	Dean of the Faculty	Academic	Rector of Sana'a University
Department	Unit	Prof. Dr. Mohammed	Development	Prof. Dr. Al-Qassim Mohammed
Asst. Prof. Dr.	Assoc. Prof. Dr.	AL-Bukhaiti	Center & Quality	Abbas
Adel Ahmed Al-	Mohammad Algorafi		Assurance	
Shakiri		Assoc. Prof. Dr.		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad