

15 Course Specification of Engineering Mechanics 2

	I. Course Identification and General Information:					
1	Course Title:	Engineering Mechanics 2				
2	Course Code & Number:	BR008				
		C.H Cre		Credit		
3	Credit hours:	Th.	Tu	Pr	Tr.	Hours
		2	2			3
4	Study level/ semester at which this course	1th Level/ 2st semester				
	is offered:					
5	Pre –requisite (if any):	Engineering Mechanics 1, Math 1				
6	Co -requisite (if any):					
8	Program (s) in which the course is offered:	: Civil Engineering				
9	Language of teaching the course:	English+ Arabic				
10	Location of teaching the course:	Class room				
11	Prepared by:	Dr. Mohammad A. Algorafi				
12	Date of Approval					

II. Course Description:

Dynamics is that branch of mechanics which deals with the motion of particle under the action of forces.

This course provides fundamental concepts for most of civil engineering branches related to movements. The knowledge and abilities taught in this course are an essential prerequisite for subsequent courses involving dynamics; fluid, hydraulics, Traffic and highway Engineering. The course focuses on the physical/mathematical analysis of the kinematics and kinetics motion of particles and rigid bodies. The formulation and solution of mechanic's problems will help the students develop the ability of logical thinking and effective communication. A thorough comprehension of dynamics will provide one of the most useful and powerful tools for analysis in engineering. In each chapter, the complete theory and the method of analysis will be introduced in the beginning followed by solved examples and assignments.

Prepared by Head of Department

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

I	II. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a.1	Develop the basic principles of engineering dynamics and apply this understanding as well as their knowledge of mathematical principles.	A1
a.2	Describe the principles of analyze techniques.	A3
b.1	Select the suitable analysis in achieving the engineering purposes.	B1
c.1	Solve the dynamics problems	C2
c.2	Apply engineering mechanics techniques to solve the dynamics problems encountered in projects.	C3

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding						
to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
a1- Develop the basic principles of engineering dynamics and apply this understanding as well as their knowledge of mathematical principles.	Lecture Multimedia Presentations Presentations Tutorial Reading	Written exam- Written assignment				
a2- Describe the principles of analyze techniques.	Lecture Multimedia Presentations Presentations Tutorial Reading	Written exam- Written assignment				

Prepared by Head of

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Teaching strategies Assessment Strategies Outcomes				
b1- Select the suitable analysis in achieving the engineering purposes.	Lecture Multimedia Presentations	Participation- Written Assignment-Project		
achieving the engineering purposes.	Presentations Tutorial	Assignment-1 Toject		
	Reading			

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
c1- Solve the dynamics problems	Lecture Presentations Tutorial	Written Assignment- Written exam -Project			
c2- Apply engineering mechanics techniques to solve the dynamics problems encountered in projects.	Lecture Presentations Tutorial	Written Assignment- Written exam -Project			

IV. Course Content:					
	A – Theoretical As	spect:			
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours
1	Introduction	a1, a2	Basic Concepts Newton's law System of Units Gravitation Dimensions	1	2
2	Rectilinear Kinematics: Continuous Motion	a1, a2, b1, c1, c2	Relationship between displacement and velocity and acceleration mathematically	1	2

Prepared by Head of Department
Dr. Abdulkareem
Yahya Al khattabi

Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

3	Rectilinear Kinematics: Erratic Motion	a1, a2, b1, c1, c2	Relationship between displacement and velocity and acceleration graphically	1	2
4	Curvilinear Motion: Rectangular Components- Motion of a Projectile-	a1, a2, b1, c1, c2	Curvilinear Motion: Rectangular Components- Motion of a Projectile	2	4
5	Curvilinear Motion: Normal and Tangential Components	a1, a2, b1, c1, c2	Relationship between displacement and velocity and acceleration using N-T Components	1	2
6	Relative-Motion of Two Particles Using Translating Axes	a1, a2, b1, c1, c2	Relative-Motion of Two Particles Using Translating Axes	1	2
7	Newton's Second Law of Motion The Equation of Motion	a1, a2, b1, c1, c2	Newton's Second Law of Motion The Equation of Motion	2	4
8	Principle of Work, Energy, Power, and Conservative Forces and Energy of Particles	a1, a2, b1, c1, c2	Principle of Work, Energy, Power, and Conservative Forces and Energy of Particles	2	4
9	Principle of Linear Impulse and Momentum And Conservation of Linear Momentum for a System of Particles Impact	a1, a2, b1, c1, c2	Principle of Linear Impulse and Momentum And Conservation of Linear Momentum for a System of Particles - Impact	3	6
	Number of Weeks	/and Units l	Per Semester	14	28

Prepared by Head of

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

B - Tu	B - Tutorial Aspect:				
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes	
1	Introduction	1	2	a1,a2	
2	Rectilinear Kinematics: Continuous Motion	1	2	a1,a2,b1,c1,c2	
3	Rectilinear Kinematics: Erratic Motion	1	2	a1,a2,b1,c1,c2	
4	Curvilinear Motion: Rectangular Components- Motion of a Projectile 2 4 a1,a2,b1		a1,a2,b1,c1,c2		
5	Curvilinear Motion: Normal and Tangential Components	1	2	a1,a2,b1,c1,c2	
6	Relative-Motion of Two Particles Using Translating Axes	1	2	a1,a2,b1,c1,c2	
7	Newton's Second Law of Motion The Equation of Motion	2	4	a1,a2,b1,c1,c2	
8	Principle of Work , Energy ,Power , and Conservative Forces and Energy of Particles	2	4	a1,a2,b1,c1,c2	
9	Principle of Linear Impulse and Momentum And Conservation of Linear Momentum for a System of Particles –Impact	3	6	a1,a2,b1,c1,c2	
Nu	mber of Weeks /and Units Per Semester	14	28		

V. Teaching strategies of the course:

Lecture

Multimedia Presentations

Presentations

Tutorial

Reading

Prepared by Head of Department Dr. Abdulkareem

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

V	VI. Assignments:				
No	Assignments	Aligned CILOs(symbols)	Week Due	Mar k	
1	Rectilinear Kinematics: Continuous Motion	a1,a2,b1,c1,c2	2	1	
2	Rectilinear Kinematics: Erratic Motion	a1,a2,b1,c1,c2	3	1	
3	Curvilinear Motion: Rectangular Components- Motion of a Projectile-	a1,a2,b1,c1,c2	5	1	
4	Curvilinear Motion: Normal and Tangential Components	a1,a2,b1,c1,c2	6	1	
5	Relative-Motion of Two Particles Using Translating Axes	a1,a2,b1,c1,c2	7	1	
6	Newton's Second Law of Motion The Equation of Motion	a1,a2,b1,c1,c2	9	1.5	
7	Principle of Work, Energy, Power, and Conservative Forces and Energy of Particles	a1,a2,b1,c1,c2	11	2	
8	Principle of Linear Impulse and Momentum And Conservation of Linear Momentum for a System of Particles –Impact	a1,a2,b1,c1,c2	13	2	

V]	VII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1	Written assignment	2-3-5-6-7-9-11-13	10.5	7	a1,a2,b1,c1,c2		
2	Quizzes.	Three time randomly	4.5	3	b1,c1,c2		
3	Mid-term exam.	7^{th}	30	20	a1,a2,b1,c1,c2		
4	Final-exam.	13	105	70	a1,a2,b1,c1,c2		
	Sum		150	100%			

Prepared by Head of Department Dr. Abdulkareem

Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1-R. C. Hibbeler, 2012, Engineering Mechanics, Dynamics, 13th Edition, Prentice Hall

2- Essential References.

- 1. J. L. Meriam, L. G. Kraige, 2011, Engineering Mechanics, Dynamics, 7th Edition, John Wiley Publisher
- 2-F.P.Beer and E.R. Russel, 1999, Vector Mechanics for Engineers Statics and Dynamic Edition, McGraw Hill
- 3- Electronic Materials and Web Sites etc.

IJ	K. Course Policies:
1	Class Attendance: The students should have more than 75 % of attendance according to rules and regulations of the faculty.
2	Tardy: The students should respect the timing of attending the lectures. They should attend within 1 minutes from starting of the lecture.
3	Exam Attendance/Punctuality: The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for midterm exam and final exam.
4	Assignments & Projects: The assignment is given to the students after each chapter, the student has to submit all the assignments for checking on time.
5	Cheating: If any cheating occurred during the examination, the student is not allowed to continue and he/she has to face the examination committee for enquiries.
6	Plagiarism: The student will be terminated from the Faculty, if one student attends the exam on another behalf according to the policy, rules and regulations of the university.
7	Other policies: _ All the teaching materials should be kept out the examination hall. _ the mobile phone is not allowed. _ There should be a respect between the student and his teacher.

Reviewed By	Vice Dean for Academic Affairs and Post Graduate Studies
	Dr. Tarek A. Barakat
	Dr.Abdulmalek Al-Jolahy
	Deputy Rector for Academic Affairs Dr. Ibrahim AlMutaa
	Dr. Ahmed mujahed
	<u>Dr. Munaser Alsubri</u>

Prepared by He

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Course Plan (Syllabus) of Engineering <u>Mechanics2</u>

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Dr. Mohammad Algorafi	Office Hours					
Location & Telephone No.		SAT	SUN	MON	TUE	WED	THU
E-mail				8-10			

	II. Course Identification and General Information:					
1-	Course Title: Engineering Mechanics 2					
2-	Course Number & Code:	BR008	3			
		С.Н				Credit
3-	Credit hours:	Th.	Tu	Pr	Tr.	Hours
		2	2			3
4-	Study level/year at which this course is offered:	1 st Level/ 2 nd Semester				
5-	Pre –requisite (if any):	Engine	ering Mecl	hanics 1,	Math 1	
6-	Co -requisite (if any):					
7-	Program (s) in which the course is offered	Civil E	Engineering	5		
8-	Language of teaching the course:	English	h+ Arabic			
9-	System of Study:	Regula	ır			
10-	Mode of delivery:	Lecture	e			
11-	Location of teaching the course:	Class				

Prepared by He

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

III. Course Description:

Dynamics is that branch of mechanics which deals with the motion of particle under the action of forces. This course provides fundamental concepts for most of civil engineering branches related to movements. The knowledge and abilities taught in this course are an essential prerequisite for subsequent courses involving dynamics; fluid, hydraulics, Traffic and highway Engineering. The course focuses on the physical/mathematical analysis of the kinematics and kinetics motion of particles and rigid bodies. The formulation and solution of mechanic's problems will help the students develop the ability of logical thinking and effective communication. A thorough comprehension of dynamics will provide one of the most useful and powerful tools for analysis in engineering. In each chapter, the complete theory and the method of analysis will be introduced in the beginning followed by solved examples and assignments.

IV. Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
- **a.1** Develop the basic principles of engineering dynamics and apply this understanding as well as their knowledge of mathematical principles. A1
- **a.2** Describe the principles of analyze techniques. A3
- **b.1** Select the suitable analysis in achieving the engineering purposes.
- **c.1** Solve the dynamics problems C2
- **c.2** Apply engineering mechanics techniques to solve the dynamics problems encountered in projects. C3

V. Course Content:

Distribution of Semester Weekly Plan of Course Topics/Items and Activities.

A – Theoretical Aspect:

Orde r	Topics List		Week Due	Contact Hours
1	Introduction	Basic Concepts Newton's law System of Units Gravitation Dimensions	1	2
2	Rectilinear Kinematics: Continuous Motion	Relationship between displacement and velocity and acceleration mathematically	2	2
3	Rectilinear Kinematics: Erratic Motion	Relationship between displacement and velocity and acceleration graphically	3	2
4	Curvilinear Motion: Rectangular Components- Motion of a Projectile-	Curvilinear Motion: Rectangular Components- Motion of a Projectile	4,5	4
5	Curvilinear Motion: Normal and Tangential Components	Relationship between displacement and velocity and acceleration using N-T Components	6	2
6	Relative-Motion of Two Particles Using Translating Axes	Relative-Motion of Two Particles Using Translating Axes	7	2
7	Midterm Exam		8	2
8	Newton's Second Law of Motion The Equation of Motion	Newton's Second Law of Motion The Equation of Motion	9,10	4
9	Principle of Work , Energy ,Power , and	Principle of Work, Energy, Power, and	11,12	4

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

	Conservative Forces and	Conservative Forces and		
	Energy of Particles	Energy of Particles		
	Principle of Linear			
	Impulse and	Principle of Linear Impulse and		
	Momentum	Momentum		
10	And Conservation of	And Conservation of Linear	13,14,15	6
	Linear Momentum for a	Momentum for a System of		
	System of Particles -	Particles –Impact		
	Impact			
11	Final Exam		16	2
	Number of Weeks /and Units Per Semester			32

B - Tutorial Aspect:				
Order	Topics List	Week Due	Contact Hours	
1	Introduction	1	2	
2	Rectilinear Kinematics: Continuous Motion	2	2	
3	Rectilinear Kinematics: Erratic Motion	3	2	
4	Curvilinear Motion: Rectangular Components- Motion of a Projectile	4,5	4	
5	Curvilinear Motion: Normal and Tangential Components	6	2	
6	Relative-Motion of Two Particles Using Translating Axes	7	2	
7	Newton's Second Law of Motion The Equation of Motion	8,9	4	
8	Principle of Work, Energy, Power, and Conservative Forces and Energy of Particles		4	
9	Principle of Linear Impulse and Momentum And Conservation of Linear Momentum for a System of Particles –Impact	12,13,14	6	
	Number of Weeks /and Units Per Semester 14 28			

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

VI. Teaching strategies of the course:

Lecture

Multimedia Presentations

Presentations

Tutorial

Reading

VI	VII. Assignments:				
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark	
1	Rectilinear Kinematics: Continuous Motion	a1,a2,b1,c1,c2	2	1	
2	Rectilinear Kinematics: Erratic Motion	a1,a2,b1,c1,c2	3	1	
3	Curvilinear Motion: Rectangular Components- Motion of a Projectile-	a1,a2,b1,c1,c2	5	1	
4	Curvilinear Motion: Normal and Tangential Components	a1,a2,b1,c1,c2	6	1	
5	Relative-Motion of Two Particles Using Translating Axes	a1,a2,b1,c1,c2	7	1	
6	Newton's Second Law of Motion The Equation of Motion	a1,a2,b1,c1,c2	9	1.5	
7	Principle of Work, Energy, Power, and Conservative Forces and Energy of Particles	a1,a2,b1,c1,c2	11	2	
8	Principle of Linear Impulse and Momentum and Conservation of Linear Momentum for a System of Particles -Impact	a1,a2,b1,c1,c2	13	2	

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

105

70

VIII. **Schedule of Assessment Tasks for Students During the Semester:** Type of **Proportion of** Week Due Mark Assessment **Assessment Tasks Final Assessment** 7 1 Written assignment 2-3-5-6-7-9-11-13 10.5 2 4.5 3 Quizzes. Three time randomly 7th 3 Mid-term exam. 30 20

13

IX. Learning Resources:

Final-exam.

- Written in the following order: (Author Year of publication Title Edition Place of publication Publisher).
- 1- Required Textbook(s) (maximum two).
 - 1- R. C. Hibbeler, 2012, Engineering Mechanics, Dynamics, 13th Edition, Prentice Hall

2- Essential References.

4

- 1. J. L. Meriam, L. G. Kraige, 2011, Engineering Mechanics, Dynamics, 7th Edition, John Wiley Publisher
- 2- F.P.Beer and E.R. Russel, 1999, Vector Mechanics for Engineers Statics and Dynamics, 6th Edition, McGraw Hill
- 3- Electronic Materials and Web Sites etc.

Dr. Abdulkareem Yahya Al khattabi

	X. Course Policies:
	s otherwise stated, the normal course administration policies and rules of the Faculty of
Eligin	eering apply. For the policy, see:
	Class Attendance:
1	The students should have more than 75 % of attendance according to rules and regulations
	of the faculty.
	Tardy:
2	The students should respect the timing of attending the lectures. They should attend
	within 1 minutes from starting of the lecture.
	Exam Attendance/Punctuality:
3	The student should attend the exam on time. The punctuality should be implemented
	according to rules and regulations of the faculty for midterm exam and final exam.
	Assignments & Projects:
4	The assignment is given to the students after each chapter, the student has to submit all
	the assignments for checking on time.
	Cheating:
5	If any cheating occurred during the examination, the student is not allowed to continue
	and he/she has to face the examination committee for enquiries.
	Plagiarism:
6	The student will be terminated from the Faculty, if one student attends the exam on
	another behalf according to the policy, rules and regulations of the university.
	Other policies:
7	_ All the teaching materials should be kept out the examination hall.
′	_ the mobile phone is not allowed.
	_There should be a respect between the student and his teacher.

Prepared by

Head of Department Dr. Abdulkareem Yahya Al khattabi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti