

Course Specification of Internal Combustion Engines

I. (I. Course Identification and General Information:							
1.	Course Title:	Intern	al Combustion	Engines.				
2.	Course Code & Number:	ME35	5.					
			C.H			TOTAL		
3.	Credit Hours:		Seminar/Tu	Pr	Tr.	CR. HRS		
		2	2	2	-	4		
4.	Study level/ semester at which this course is offered:	Fourth Year - First Semester.						
5.	Pre –requisite (if any):	Therm	odynamics – l	II (ME252	2).			
6.	Co –requisite (if any):	Heat a	and Mass Trans	sfer (ME3	353).			
7.	Program (s) in which the course is offered:	Mechanical Engineering Program.						
8.	Language of teaching the course:	English Language.						
9.	Location of teaching the course:	Mechanical Engineering Department.						
10.	Prepared By:	Asst. Prof. Dr. Abduljalil Al-Abidi						
11.	Date of Approval:							

II. Course Description:

This course provides an introduction, classification, and operating characteristics of internal combustion engines (ICE). It includes the studying of concepts and theories of operation of ICE based upon the fundamental engineering sciences of thermodynamics, heat transfer. Difference between thermodynamic ideal cycles and actual cycles are analyzed. Discussing the combustion characteristics of spark-ignition engine, compression-ignition engine and studying the effect of various factors on combustion processes. It covers the engine test and performance in terms of energy utilization and exhaust emissions.

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III	. Alignments of the Course Intended learning outcomes (CILOs)	Referenced PILOs
a1	Recognize the operation, components, classification and operating parameters of internal combustion engines (ICE).	A1
a2	Explain the theoretical and actual cycles, combustion processes of ICE, and performance characteristics.	A2
b1	Analyze the power cycle of ICE using ideal gas cycles and fuel-air cycles.	B1
b2	Investigate thermodynamic efficiencies, engine operating parameters and operating losses.	B2
c1	Conduct experiments related to Internal combustion engine.	C1
c2	Apply systematic methods to performance analysis of ICE based on energy utilization, engine brake power, and exhaust emissions.	C2
d1	Communicate effectively through oral and written modes.	D1
d2	Share ideas and work in a team in an efficient and effective manner under controlled supervision or independently.	D2

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

(Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
a1-	Recognize the operation, components, classification and operating parameters of internal combustion engines (ICE).	Lectures, Tutorials Laboratory, Seminars	Examinations, Laboratory Reports, Homework Presentations
a2-	Explain the theoretical and actual cycles, combustion processes of ICE, and performance characteristics.	Lectures, Tutorials, Laboratory, Seminars, Projects	Examinations, Laboratory Reports, Homework Presentations, Individual and Group Project Reports.

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

(B) <i>A</i>	(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching							
Strate	Strategies and Assessment Strategies:							
Cours	Course Intended Learning Outcomes Teaching strategies Assessment Strategies							
b1-	Analyze the power cycle of ICE using ideal gas cycles and fuel-air cycles.	Lectures, Tutorials, Laboratory, Seminars, Projects	Examinations, Homework, Laboratory Reports Presentations, Individual and Group Project Reports					
b2-	Investigate thermodynamic efficiencies, engine operating parameters and operating losses.	Lectures, Tutorials, Laboratory, Seminars, Projects	Examinations, Homework, Laboratory Reports Presentations, Individual and Group Project Reports					

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to
Teaching Strategies and Assessment Strategies:

Cou	rse Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
c1-	Conduct experiments related to Internal combustion engine.	Lectures, Laboratory, Seminars, Projects, Small Group	Examinations, Laboratory Reports, Presentations, Individual and Group Project Reports.		
c2-	Apply systematic methods to performance analysis of ICE based on energy utilization, engine brake power, and exhaust emissions.	Lectures, Laboratory, Seminars, Projects, Small Group	Examinations, Laboratory Reports, Presentations, Individual and Group Project Reports.		

Prenared by	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Asst. Prof. Dr.	Asst. prof. Dr. Eng.	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality
Abduljalil Al-	Hamoud Al-Nahari	Mohammad Algorafi	AL-Bukhaiti	Assurance
Abidi				Assoc. Prof. Dr. Huda
				Al-Emad

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:						
Cou	Course Intended Learning Outcomes Teaching strategies Assessment Strategies					
d1-	Communicate effectively through oral and written modes.	Laboratory, Seminars, Projects, Small Group	Presentations, Reports			
d2-	Share ideas and work in a team in an efficient and effective manner under controlled supervision or independently.	Tutorials, Laboratory, Seminars, Projects, Small Group	Presentations, Reports			

IV. Course Content:						
	A – Theoretical A	spect:				
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact Hours	
1.	Introduction of ICE, Classification of ICE, Engine Components.	a1	Introduction, ICE Classification, ICE components. Types of Ignition 4 stroke, 2 stroke Comparison of SI and CI Engines	1	2	
2.	Operating Characteristics	a1,a2	Engine parameters Work Mean effective pressure Torque and power Air fuel ratio Specific fuel consumption Engine efficiency Volumetric efficiency	1	2	

Prepared by
Asst. Prof. Dr.
Abduljalil Al-
Abidi

Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			Emission		
3.	Theoretical Air Standard Cycles and Their Analysis.	a1,a2,b1,b2, c2 d1,d2	Basic Thermodynamic Processes Carnot cycle Otto Cycle Diesel Cycle Dual cycle Comparisons of Ideal Cycles	2	4
4.	Fuels and Combustion Thermodynamics	a1,a2,b1,b2, c2 d1,d2	Combustion Enthalpy of formation 1 st law analysis of steady reaction combustion system	2	4
5.	Fuel-Air Cycles and Their Analyses	a1,a2,b1,b2, c2 d1,d2	Fuel air cycle Factors affecting the fuel –air cycles Effect of engine variables on the performance of Fuel-air cycles	1	2
6.	Mid-Term Exam	a1,a2,b1,b2, c2	The First Four Chapters	1	2
7.	Ice Actual Cycles	a1,a2,b1,b2, c2 d1,d2	Difference between the actual cycle and the Fuel-air cycle (Time losses, Exhaust blow down Heat losses) Effect of engine variables on flame speed Effect of spark-advance on the actual Cycle of S l engines	2	4

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			Power and efficiency of the		
			actual cycle		
8.	Combustion in Spark-Ignition Engines	a1,a2,b1,b2, c2 d1,d2	Normal combustion Combustion in SI engine Factors affecting ignition lag Factors affecting combustion in spark-ignition Engines Abnormal combustion—auto- ignition and Detonation Theories of detonation Effect of engine variables on knock Uncontrolled combustion Octane requirement	1	2
9.	Combustion in Compression- Ignition Engines	a1,a2,b1,b2, c2 d1,d2	Combustion in CI engines rating of fuels, Influence of various factors on delay period Combustion knock in cl engines Comparison of knocking in SI & CI engines Methods of controlling knock in CI engines Combustion chamber for CI engines.	1	2
10.	Fuel Supply and Supercharging	a1,a2,b1,b2, c2 d1,d2	Fuel supply in SI engine Fuel injection in SI engines Fuel injection in CI engines	1	2

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			Supercharging		
11.	Exhaust Emissions & Their Control	a1,a2,b1,b2, c2 d1,d2	Exhaust emissions from SI, CI NOx formation in SI, CI Hydrocarbon and soot emissions Emission control techniques	1	2
12.	Engine Test and Performance	a1,a2,b1,b2, c2 d1,d2	Engine Indicated power Engine Brake Power Engine friction Measuring equipment	1	2
13.	Final Exam	a1,a2,b1,b2, c2	All the Chapters	1	2
	Number of Weeks /and Units Per Semester			16	32

B - P1	B - Practical Aspect:				
Order	Tutorial and Experiments	Week Due	Contact Hours	Learning Outcomes	
1.	Demonstration of Different Engines.	2	4	b1, b2, c1, c2, d1, d2	
2.	I.C engine components.	2	2	b1, b2, c1, c2, d1, d2	
3.	Air Intake system, Fuels supply systems (a) Carburetors, (b) Diesel Fuel Injection Systems, (c) Gasoline Fuel Injection Systems.	3, 4	4	b1, b2, c1, c2, d1, d2	
4.	Operation IC Engine Systems Engine starting Systems, Ignition systems.	5	2	b1, b2, c1, c2, d1, d2	
5.	Operation ICE Engine Systems Engine Cooling & Lubricating Systems.	6	2	b1, b2, c1, c2, d1, d2	

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi

Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

6.	Disassembly and Assembly of Engines.	7	2	b1, b2, c1, c2, d1, d2
7.	Constant Speed Test of a Diesel Engine, Variable Speed Test of a Diesel Engine.	8	2	b1, b2, c1, c2, d1, d2
8.	Constant Speed Test of Gasoline Engine, Variable Speed Test of a SI Engine.	9	2	b1, b2, c1, c2, d1, d2
9.	Study of Power Balance of a 4-Stroke Single Cylinder Diesel Engine.	10	2	b1, b2, c1, c2, d1, d2
10.	Experiment Exhaust emissions & Exhaust Gas Analysis, their Control.	11	2	b1, b2, c1, c2, d1, d2
11.	Performance Test of a 4-Stroke Single Cylinder Diesel Engine.	12	2	b1, b2, c1, c2, d1, d2
12.	Performance Test of a 4-Stroke Single Cylinder Gasoline Engine.	13	2	b1, b2, c1, c2, d1, d2
Number of Weeks /and Units Per Semester		14	28	

C: Tut	C: Tutorial Aspects:				
Order	Units/Topics List	Number of Weeks	Contact Hours	Learning Outcomes	
1.	Introduction of ICE, Classification of ICE, Engine Components.	1	2	a1	
2.	Operating Characteristics	1	2	a1,a2	
3.	Theoretical Air Standard Cycles and Their Analysis.	2	4	a1,a2,b1.b2, c2 d1,d2	
4.	Fuels and Combustion Thermodynamics	2	4	a1,a2,b1.b2, c2 d1,d2	

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

5.	Fuel-Air Cycles and Their Analyses	1	2	a1,a2,b1.b2, c2 d1,d2
6.	Ice Actual Cycles	2	4	a1,a2,b1.b2, c2 d1,d2
7.	Combustion in Spark-Ignition Engines	1	2	a1,a2,b1.b2, c2 d1,d2
8.	Combustion in Compression- Ignition Engines	1	2	a1,a2,b1.b2, c2 d1,d2
9.	Fuel Supply and Supercharging	1	2	a1,a2,b1.b2, c2 d1,d2
10.	Exhaust Emissions & Their Control	1	2	a1,a2,b1.b2, c2 d1,d2
11.	Engine Test and Performance	1	2	a1,a2,b1.b2, c2 d1,d2
Numbe	r of Weeks /and Units Per Semester	14	28	

V. Teaching strategies of the course:

- 1. Lectures.
- 2. Tutorials.
- 3. Laboratory Based Session
- 4. Team Work (Group Learning)
- 5. Seminar/ Project/Presentation.
- 6. Problem Based Learning.
- 7. Interactive Class Discussions

VI.	Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Homework1: Classification of ICE, Engine Components.	a1,a2, b1,b2,c1,c2 d1, d2	1^{st}	1

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2.	Homework2: Operating Characteristics	a1,a2, b1,b2,c1,c2 d1, d2	2^{nd}	1
3.	Homework3: Cycles and Their Analysis.	a1,a2, b1,b2,c1,c2 d1, d2	3 rd	1
4.	Homework4: Combustion Thermodynamics	a1,a2, b1,b2,c1,c2 d1, d2	4 th	1
5.	Homework5: Fuel-Air Cycles and Their Analyses	a1,a2, b1,b2,c1,c2 d1, d2	5 th	1
6.	Homework6: Ice Actual Cycles	a1,a2, b1,b2,c1,c2 d1, d2	6 th	1
7.	Homework7: Combustion in Spark-Ignition Engines	a1,a2, b1,b2,c1,c2 d1, d2	7 th	1
8.	Homework8: Combustion in Compression- Ignition Engines	a1,a2, b1,b2,c1,c2 d1, d2	8 th	2
9.	Homework9: Fuel Supply and Supercharging	a1,a2, b1,b2,c1,c2 d1, d2	9 th	2
10.	Homework10: Exhaust Emissions & Their Control	a1,a2, b1,b2,c1,c2 d1, d2	10 th	2
11.	Homework11: Engine Test and Performance	a1,a2, b1,b2,c1,c2 d1, d2	11 th	2
Total 1				

VII. Schedule of Assessment Tasks for Students During the Semester:

No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1.	Home works	Weekly	15	7.5%	a1,a2, b1,b2,c1,c2 d1, d2
2.	Project (single\group)	13 th	15	7.5%	b1,b2,c2 d1, d2
3.	Quizzes	5 th ,10 th ,	20	10%	a1,a2, b1,b2,c2 d1, d2

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

6.	(theoretical)	16 th	100	50%	a1,a2, b1,b2,c2
6.	Final Exam	16 th	100	50%	a1,a2, b1,b2,c2
5.	Final Exam (practical)	15^{th}	30	15%	b1,b2,c1,c2
4.	Mid-Term Exam	8 th	20	10%	a1,a2, b1,b2,c2

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

1- W.W Pulkrabek, 2014, Engineering Fundamentals of Internal Combustion Engines, 2nd Edition. Prentice Hall.

2- H.A. Gupta-2013- Fundamentals of Internal Combustion Engines -2nd Edition- PHI Learning Private Limited.

2- Essential References.

- 1. R.K. Rajput- 2016- A Textbook of Internal Combustion Engines-3rd Edition- Laxmi Publications.
- 2. Heywood J.B., 1998, Internal Combustion Engines Fundamentals, 1st Edition- McGraw-Hill, Inc.

3- Electronic Materials and Web Sites etc.

- 1- <u>https://app.knovel.com/web/toc.v/cid:kpICEHBCS1/viewerType:toc/root_slug:internal-combustion-engine-3/url_slug:internal-combustion-engine-3/</u>
- 2- <u>https://app.knovel.com/web/toc.v/cid:kpAIETD006/viewerType:toc/root_slug:an-introduction-engine/url_slug:an-introduction-engine/</u>

IX. Course Policies:

1. Class Attendance:

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	-A student should attend not less than 75 % of total hours of the subject; otherwise he will not be
	able to take the exam and will be considered as exam failure. If the student is absent due to illness,
	he/she should bring a proof statement from university Clinic
	Tardy:
2.	- For late in attending the class, the student will be initially notified. If he repeated lateness in
	attending class he will be considered as absent.
	Exam Attendance/Punctuality:
3	- A student should attend the exam on time. He is Permitted to attend an exam half one hour from
5.	exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam.
	Assignments & Projects:
4.	- The assignment is given to the students after each chapter; the student has to submit all the
	assignments for checking on time.
	Cheating:
5.	- For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.
	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student. If the
6.	examination committee proofed a plagiarism of a student, he will be disengaged from the Faculty.
	The final disengagement of the student from the Faculty should be confirmed from the Student
	Council Affair of the university.
	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the
7.	student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Prepared by	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Asst. Prof. Dr.	Asst. prof. Dr. Eng.	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality
Abduljalil Al-	Hamoud Al-Nahari	Mohammad Algorafi	AL-Bukhaiti	Assurance
Abidi				Assoc. Prof. Dr. Huda
				Al-Emad

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.
By	<u>Barakat</u>
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi
	Name of Reviewer from the Department: Asst. Prof. Dr. Eng. Hamoud A. Al-Nahari
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
	Assoc. Prof. Dr. Ahmed Mujahed
	Asst. Prof. Dr. Munasar Alsubri

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Course Specification of Internal Combustion Engines

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Asst. Prof. Dr. Abduljalil Al-Abidi	Office Hours					
Location& Telephone No.	777704207	SAT	SUN	MON	TUE	WED	THU
E-mail							

II.	II. Course Identification and General Information:							
1-	Course Title:	Internal Combustion Engines.						
2-	Course Number & Code:	ME355.						
		С.Н ТО			TOTAL			
3-	Credit Hours:	Th.	Seminar/Tu.	Pr.	Tr.	CR. HRS		
		2	2	2	-	4		
4-	Study level/year at which this course is	s Fourth Year - First Semester.						
	offered:							
5-	Pre –requisite (if any):	Thermodynamics – II (ME252).						
6-	Co –requisite (if any):	Heat and Mass Transfer (ME353).						
7-	Program (s) in which the course is offered	Mechanical Engineering Program.						
8-	Language of teaching the course:	English Language.						
9-	System of Study:	Semesters.						
10-	Mode of delivery:	Lectur	es, Labs. and T	utorials.				
11-	Location of teaching the course:	Mecha	nical Engineer	ing Depar	tment.			

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description:

This course provides an introduction, classification, and operating characteristics of internal combustion engines (ICE). It includes the studying of concepts and theories of operation of ICE based upon the fundamental engineering sciences of thermodynamics, heat transfer. Difference between thermodynamic ideal cycles and actual cycles are analyzed. Discussing the combustion characteristics of spark-ignition engine, compression-ignition engine and studying the effect of various factors on combustion processes. It covers the engine test and performance in terms of energy utilization and exhaust emissions.

IV. Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - **1.** Recognize the operation, components, classification and operating parameters of internal combustion engines (ICE).
 - **2.** Explain the theoretical and actual cycles, combustion processes of ICE, and performance characteristics.
 - 3. Analyze the power cycle of ICE using ideal gas cycles and fuel-air cycles.
 - 4. Investigate thermodynamic efficiencies, engine operating parameters and operating losses.
 - 5. Conduct experiments related to internal combustion engine.
 - **6.** Apply systematic methods to performance analysis of ICE based on energy utilization, engine brake power, and exhaust emissions.
 - 7. Communicate effectively through oral and written modes.
 - **8.** Share ideas and work in a team in an efficient and effective manner under controlled supervision or independently.

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V. Course Content: • Distribution of Semester Weekly Plan Of course Topics/Items and Activities. A – Theoretical Aspect: Week Contact Order **Units/Topics List Sub Topics List** Due Hours Introduction, Introduction of ICE, ICE Classification, ICE components. Types of 1 st Classification of ICE, 1. Ignition 2 4 stroke, 2 stroke Engine Components. Comparison of SI and CI Engines Engine parameters Work Mean effective pressure Torque and power Operating 2. Air fuel ratio 2^{nd} 2 Characteristics Specific fuel consumption **Engine efficiency** Volumetric efficiency Emission **Basic Thermodynamic Processes** Carnot cycle Theoretical Air Otto Cycle 3^{rd} , 4^{th} 3. Standard Cycles and 4 Diesel Cycle Their Analysis. Dual cycle Comparisons of Ideal Cycles Fuels and Combustion Combustion 5th. 6th 4. 4 Thermodynamics Enthalpy of formation

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi

Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		1 st law analysis of steady reaction combustion		
		system		
5.	Fuel-Air Cycles and Their Analyses	Fuel air cycle Factors affecting the fuel –air cycles Effect of engine variables on the performance of Fuel-air cycles	7 th	2
6.	Mid-Term Exam	The First Four Chapters	8 th	2
7.	Ice Actual Cycles	Difference between the actual cycle and the Fuel-air cycle (Time losses, Exhaust blow down Heat losses) Effect of engine variables on flame speed Effect of spark-advance on the actual Cycle of S l engines Power and efficiency of the actual cycle	9 th , 10 th	4
8.	Combustion in Spark-Ignition Engines	Normal combustion Combustion in SI engine Factors affecting ignition lag Factors affecting combustion in spark-ignition Engines Abnormal combustion—auto-ignition and Detonation Theories of detonation Effect of engine variables on knock Uncontrolled combustion Octane requirement	11 th	2
9.	Combustion in Compression- Ignition Engines	Combustion in CI engines rating of fuels, Influence of various factors on delay period Combustion knock in cl engines	12 th	2

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		Comparison of knocking in SI & CI engines		
		Methods of controlling knock in CI engines		
		Combustion chamber for CI engines.		
		Fuel supply in SI engine		
10	Fuel Supply and	Fuel injection in SI engines	1.2 th	2
10.	Supercharging	Fuel injection in CI engines	15	Z
		Supercharging		
		Exhaust emissions from SI, CI		
11	Exhaust Emissions &	NOx formation in SI, CI	1 4 th	2
11.	Their Control	Hydrocarbon and soot emissions	14	Z
		Emission control techniques		
		Engine Indicated power		
10	Engine Test and	Engine Brake Power	1 <i>5</i> th	2
12.	Performance	Engine friction	15-	Z
		Measuring equipment		
13.	Final Exam	All the Chapters	16 th	2
	Number of We	eeks /and Units Per Semester	16	32

B - Practical Aspect:					
Order	Tutorial and Experiments	Week Due	Contact Hours	Learning Outcomes	
1.	Demonstration of Different Engines.	1 st ,2 nd	2	b1, b2, c1, c2, d1, d2	
2.	I.C engine components.	3 nd	2	b1, b2, c1, c2, d1, d2	
3.	Air Intake system, Fuels supply systems (a) Carburetors, (b) Diesel Fuel Injection Systems, (c) Gasoline Fuel Injection Systems.	4 rd , 5 th	4	b1, b2, c1, c2, d1, d2	

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

4.	Operation IC Engine Systems Engine starting Systems, Ignition systems.	6 th	2	b1, b2, c1, c2, d1, d2
5.	Operation ICE Engine Systems Engine Cooling & Lubricating Systems.	7 th	2	b1, b2, c1, c2, d1, d2
6.	Disassembly and Assembly of Engines.	8 th	2	b1, b2, c1, c2, d1, d2
7.	Constant Speed Test of a Diesel Engine, Variable Speed Test of a Diesel Engine.	9 th	2	b1, b2, c1, c2, d1, d2
8.	Constant Speed Test of Gasoline Engine, Variable Speed Test of a SI Engine.	10 th	2	b1, b2, c1, c2, d1, d2
9.	Study of Power Balance of a 4-Stroke Single Cylinder Diesel Engine.	11 th	2	b1, b2, c1, c2, d1, d2
10.	Experiment Exhaust emissions & Exhaust Gas Analysis, their Control.	12 th	2	b1, b2, c1, c2, d1, d2
11.	Performance Test of a 4-Stroke Single Cylinder Diesel Engine.	13 th	2	b1, b2, c1, c2, d1, d2
12.	Performance Test of a 4-Stroke Single Cylinder Gasoline Engine.	14 th	2	b1, b2, c1, c2, d1, d2
Numb	er of Weeks /and Units Per Semester	14	28	

C – Tutorial Aspect:						
Order	Units/Topics List	Sub Topics List	Week Due	Contact Hours		
1.	Introduction of ICE, Classification of ICE, Engine Components.	Introduction, ICE Classification, ICE components. Types of Ignition 4 stroke, 2 stroke Comparison of SI and CI Engines	1 st	2		

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2.	Operating Characteristics	Engine parameters Work Mean effective pressure Torque and power Air fuel ratio Specific fuel consumption Engine efficiency Volumetric efficiency Emission	2 nd	2
3.	Theoretical Air Standard Cycles and Their Analysis.	Basic Thermodynamic Processes Carnot cycle Otto Cycle Diesel Cycle Dual cycle Comparisons of Ideal Cycles	3 rd , 4 th	4
4.	Fuels and Combustion Thermodynamics	Combustion Enthalpy of formation 1 st law analysis of steady reaction combustion system	$5^{\text{th}}, 6^{\text{th}}$	4
5.	Fuel-Air Cycles and Their Analyses	Fuel air cycle Factors affecting the fuel –air cycles Effect of engine variables on the performance of Fuel-air cycles	7 th	2
6.	Ice Actual Cycles	Difference between the actual cycle and the Fuel-air cycle (Time losses, Exhaust blow down Heat losses) Effect of engine variables on flame speed Effect of spark-advance on the actual Cycle of S l engines Power and efficiency of the actual cycle	8 th , 9 th	4
7.	Combustion in	Normal combustion	10 th	2

Prepared by
Asst. Prof. Dr.
Abduljalil Al-
Abidi

Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Spark-Ignition Engines	Combustion in SI engine		
		Factors affecting ignition lag		
		Factors affecting combustion in spark-		
		ignition Engines		
		Abnormal combustion—auto-ignition		
		and Detonation		
		Theories of detonation		
		Effect of engine variables on knock		
		Uncontrolled combustion		
		Octane requirement		
		Combustion in CI engines		
		rating of fuels,		
		Influence of various factors on delay		
8.	Combustion in Compression- Ignition Engines	period		
		Combustion knock in cl engines	11 th	2
		Comparison of knocking in SI & CI	11	2
	Ignition Engines	engines		
		Methods of controlling knock in CI		
		engines		
		Combustion chamber for CI engines.		
		Fuel supply in SI engine		
9	Fuel Supply and	Fuel injection in SI engines	12 th	2
	Supercharging	Fuel injection in CI engines	12	2
		Supercharging		
		Exhaust emissions from SI, CI		
10	Exhaust Emissions &	NOx formation in SI, CI	13 th	2
10.	Their Control	Hydrocarbon and soot emissions	15	2
		Emission control techniques		
		Engine Indicated power		
11	Engine Test and	Engine Brake Power	1.4 th	2
11.	Performance	Engine friction	14	2
		Measuring equipment		
Number of Weeks /and Units Per Semester			14	28

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VI. Teaching strategies of the course:

- 1. Lectures.
- 2. Tutorials.
- 3. Laboratory Based Session
- 4. Team Work (Group Learning)
- 5. Seminar/ Project/Presentation.
- 6. Problem Based Learning.
- 7. Interactive Class Discussions.

VII. Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Homework 1	a1,a2, b1,b2,c1,c2 d1, d2	1	1		
2.	Homework 2	a1,a2, b1,b2,c1,c2 d1, d2	2	1		
3.	Homework 3	a1,a2, b1,b2,c1,c2 d1, d2	3	1		
4.	Homework 4	a1,a2, b1,b2,c1,c2 d1, d2	4	1		
5.	Homework 5	a1,a2, b1,b2,c1,c2 d1, d2	5	1		
6.	Homework 6	a1,a2, b1,b2,c1,c2 d1, d2	6	1		
7.	Homework 7	a1,a2, b1,b2,c1,c2 d1, d2	7	1		
8.	Homework 8	a1,a2, b1,b2,c1,c2 d1, d2	8	1		
9.	Homework 9	a1,a2, b1,b2,c1,c2 d1, d2	9	1		
10.	Homework 10	a1,a2, b1,b2,c1,c2 d1, d2	10	1		
11.	Homework 11	a1,a2, b1,b2,c1,c2 d1, d2	11	1		

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

12.	Homework 12	a1,a2, b1,b2,c1,c2 d1, d2	12	1
13.	Reports	a1,a2, b1,b2,c1,c2 d1, d2	13	3
Total				15

VIII. Schedule of Assessment Tasks for Students During the Semester:						
Assessment	Type of Assessment Tasks	Week Due	Mark	Proportion of Final Assessment		
1.	Exercises, Report and Home works	Weekly	15	7.5%		
2.	Project (single\group)	13 th	15	7.5%		
3.	Quizzes	5^{th} , 10^{th}	20	10%		
4.	Mid-Term Exam	8 th	20	10%		
5.	Final Exam (practical)	15 th	30	15%		
6.	Final Exam (theoretical)	16 th	100	50%		
Total			200	100%		

IX. Learning Resources:

• Written in the following order: (Author – Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

 W. W Pulkrabek, 2014, Engineering Fundamentals of Internal Combustion Engines, 2nd Edition. Prentice Hall.

2- H.A. Gupta, 2013-, Fundamentals of Internal Combustion Engines -2nd Edition- PHI Learning Private Limited.

2- Essential References.

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

- 1. R.K. Rajput, 2016-, A Textbook of Internal Combustion Engines-3rd Edition- Laxmi Publications.
- 2. Heywood J.B.-1998-Internal Combustion Engines Fundamentals, 1st Edition- McGraw-Hill, Inc

3- Electronic Materials and Web Sites *etc*.

- 1- <u>https://app.knovel.com/web/toc.v/cid:kpICEHBCS1/viewerType:toc/root_slug:internal-</u> <u>combustion-engine-3/url_slug:internal-combustion-engine-3/</u>
- 2- <u>https://app.knovel.com/web/toc.v/cid:kpAIETD006/viewerType:toc/root_slug:an-introduction-engine/url_slug:an-introduction-engine/</u>

	X. Course Policies:
1.	 Class Attendance: -A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic
2.	Tardy:For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	 Exam Attendance/Punctuality: A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam.
4.	Assignments & Projects:The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.
5.	Cheating:For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.

Prepared by	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Asst. Prof. Dr.	Asst. prof. Dr. Eng.	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality
Abduljalil Al-	Hamoud Al-Nahari	Mohammad Algorafi	AL-Bukhaiti	Assurance
Abidi				Assoc. Prof. Dr. Huda
				Al-Emad

	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student. If the
6.	examination committee proofed a plagiarism of a student, he will be disengaged from the Faculty.
	The final disengagement of the student from the Faculty should be confirmed from the Student
	Council Affair of the university.
	Other policies:
7.	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the
	student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Prepared by Asst. Prof. Dr. Abduljalil Al-Abidi Head of Department Asst. prof. Dr. Eng. Hamoud Al-Nahari Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad