

Course Specification of Logic System Design

# Course Code (BE121)

| I. C | I. Course Identification and General Information:      |                                                  |             |         |          |       |  |
|------|--------------------------------------------------------|--------------------------------------------------|-------------|---------|----------|-------|--|
| 1    | Course Title:                                          | Logic System Design                              |             |         |          |       |  |
| 2    | Course Code & Number:                                  | BE121                                            |             |         |          |       |  |
|      |                                                        |                                                  | C.          |         | _        | TOTAL |  |
| 3    | Credit hours:                                          | <u>Th.</u><br>2                                  | Seminar<br> | Pr<br>2 | Tr.<br>2 | 4     |  |
| 4    | Study level/ semester at which this course is offered: | 2 <sup>nd</sup> Level / 1 <sup>st</sup> Semester |             |         |          |       |  |
| 5    | Pre –requisite (if any):                               | UR003 (Computer Skills)                          |             |         |          |       |  |
| 6    | Co –requisite (if any):                                | None                                             |             |         |          |       |  |
| 7    | Program (s) in which the course is offered:            | Biomedical Engineering Program                   |             |         |          |       |  |
| 8    | Language of teaching the course:                       | English                                          |             |         |          |       |  |
| 9    | Location of Teaching the Course:                       | Faculty of Engineering                           |             |         |          |       |  |
| 10   | Prepared by:                                           | Assoc. Prof. Dr. Farouk Al-Fahaidy               |             |         |          |       |  |
| 11   | Reviewed by:                                           | Assoc. Prof. Dr. Radwan AL Bouthigy              |             |         |          |       |  |
| 12   | Date of Approval:                                      |                                                  |             |         |          |       |  |

## I. Course Description:

This course aims to provide students with concepts, theories and digital system principles & design methodologies related to the digital ICs design. Digital ICs play as the main components of all todays digital devices starting from simple timers & calculators up to the smart devices & PCs. Course

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance



topics cover, an introduction to digital systems & Boolean algebra, logic gates & their representation tools, and combinational & sequential logic circuits design. Throughout practical, computer-based simulation and term project works, students will verify theories & their learned skill related to digital logic systems design & implementation.

| III                                                                                                                                                | . Co                                                                                                                                                                     | ourse Intended learning<br>outcomes (CILOs) of the<br>course (maximum 8CILOs)                                                                                                                                                                                                     | Referenced PILOS (Only write code number of referenced Program Intended learning outcomes)                                                                                                                 |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| <b>Knowledge and Understanding:</b> Upon successful completion of the undergraduate Biomedical Engineering Program, the graduates will be able to: |                                                                                                                                                                          |                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            |  |
| a1                                                                                                                                                 | an<br>as<br>de                                                                                                                                                           | nderstand basic principles, concepts<br>ad theories of the logic circuits as well<br>b, the application of logic circuits to the<br>esign of digital ICs for biomedical<br>struments.                                                                                             | A1 Describe and explain the underlying<br>mathematical methods and theories; life<br>scientific-principles; and engineering core<br>concepts related to the Biomedical<br>Engineering context.             |  |
| a2                                                                                                                                                 | Explain the operation and characteristics<br>of logic gates, basic memory elements<br>and their functionalities to the design of<br>combinational & sequential circuits. |                                                                                                                                                                                                                                                                                   | A2 Clarify the design principles and techniques<br>and the engineering materials characteristics<br>and how these are relevant to the<br>developments and technologies in a<br>biomedical systems context. |  |
|                                                                                                                                                    | -                                                                                                                                                                        | ive/ Intellectual Skills: Upon successful<br>neering Program, the graduates will be at                                                                                                                                                                                            | completion of the undergraduate Biomedical ble to:                                                                                                                                                         |  |
| b1                                                                                                                                                 |                                                                                                                                                                          | B1 Apply engineering principles; basic of life-<br>science; mathematical theories; and modern<br>tools professionally in modelling, analyzing,<br>designing, and constructing physical digital<br>systems; devices and/or processes relevant to<br>Biomedical Engineering fields. |                                                                                                                                                                                                            |  |
|                                                                                                                                                    | •                                                                                                                                                                        | Development Center Dean of Engine<br>Insurance                                                                                                                                                                                                                                    | eering Quality Insurance Unite Prepared By                                                                                                                                                                 |  |





| b2                                                                                 | <ul> <li>physical digital systems, and ICs in relevant to Biomedical</li> <li>Engineering fields.</li> <li>Design an innovative digital system based on combinational &amp; sequential logic circuits within realistic constraints such as economic, environmental, social, safety, manufacturability and</li> </ul> | B3 Design the biomedical systems or processes<br>within realistic constraints such as economic,<br>environmental, social, political, ethical,<br>health and safety, manufacturability and<br>sustainability.                                            |  |  |  |
|------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                    | sustainability.                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                         |  |  |  |
|                                                                                    | sional and Practical Skills: Upon succenteering Program, the graduates will be ab                                                                                                                                                                                                                                    | essful completion of the undergraduate Biomedical ble to:                                                                                                                                                                                               |  |  |  |
| c1                                                                                 | Practice a wide range of logic<br>analytical methods, modern<br>engineering software packages &<br>tools to develop a suitable digital<br>system for solving, modeling and<br>implementing of Biomedical<br>Engineering problems                                                                                     | C2 Use a wide range of analytical tools,<br>techniques, IT, modern engineering tools,<br>software packages and develop required<br>computer programs to solve, modeling and<br>analyzing Biomedical Engineering problems.                               |  |  |  |
| c2                                                                                 | Conduct lab & practice<br>experiments related to digital<br>integrated board development and<br>implementation.                                                                                                                                                                                                      | C3 Use computational facilities and techniques,<br>measuring instruments, workshops and<br>laboratory equipment to design and conduct<br>experiments, collect, analyse and interpret<br>data and present results in the biomedical<br>systems practice. |  |  |  |
|                                                                                    |                                                                                                                                                                                                                                                                                                                      | on of the undergraduate Biomedical Engineering                                                                                                                                                                                                          |  |  |  |
| -                                                                                  | he graduates will be able to:                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                         |  |  |  |
| Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By |                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                         |  |  |  |



| d1 | Function effectively while carrying<br>out lab experiments within teams<br>and in individual asked tasks.                  | D1 Lead and motivate individuals, show<br>capability to work in stressful environments<br>and within constraints, collaborate effectively<br>within multidisciplinary team. |
|----|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| d2 | Prepare lab and course project<br>reports in written form using<br>standard technical writing, and<br>present & defend on. | D5 Demonstrate efficient IT capabilities and<br>communicate effectively both orally and in<br>writing technical reports.                                                    |

| (A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:                                                                   |                                                                                                                                                         |                                                                                                                                                      |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Course Intended Learning<br>Outcomes                                                                                                                                                               | Teaching strategies                                                                                                                                     | Assessment Strategies                                                                                                                                |  |  |  |  |
| a1. Understand basic principles,<br>concepts and theories of the<br>logic circuits as well as, the<br>application of logic circuits to<br>the design of digital ICs for<br>biomedical instruments. | <ul> <li>Interactive lectures &amp; examples,</li> <li>Tutorials,</li> <li>Interactive class discussions,</li> <li>Exercises and home works.</li> </ul> | <ul> <li>Written tests (mid and final terms and quizzes),</li> <li>Coursework activities assessment,</li> <li>Home works and assignments,</li> </ul> |  |  |  |  |
| <b>a2.</b> Explain the operation and characteristics of logic gates, basic memory elements and their functionalities to the design of combinational & sequential circuits.                         | <ul> <li>Interactive lectures &amp; examples,</li> <li>Tutorials,</li> <li>Interactive class discussions,</li> <li>Exercises and home works,</li> </ul> | <ul> <li>Written tests (mid and final terms and quizzes),</li> <li>Coursework activities assessment,</li> <li>Home works and assignments,</li> </ul> |  |  |  |  |

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By



| ( <b>B</b> ) Alignment Course Intended I<br>and Assessment Strategies:                                                                                                                                                                                                         | Learning Outcomes of Intellectu                                                                                                                                                                                                                                                                                     | al Skills to Teaching Strategies                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Intended Learning<br>Outcomes                                                                                                                                                                                                                                           | Teaching strategies                                                                                                                                                                                                                                                                                                 | Assessment Strategies                                                                                                                                                                                                                                   |
| <b>b1</b> . Apply logic concepts,<br>optimization techniques,<br>methodologies, appropriate<br>logic elements and software<br>package to the design,<br>modelling and constructing of<br>physical digital systems, and ICs<br>in relevant to Biomedical<br>Engineering fields. | <ul> <li>Interactive lectures &amp; examples,</li> <li>Tutorials,</li> <li>Interactive class discussions,</li> <li>Case studies,</li> <li>Exercises and home works,</li> <li>Laboratory/Practical experiments based session,</li> <li>Computer laboratory-based sessions,</li> <li>Directed self- study,</li> </ul> | <ul> <li>Written tests (mid and final terms and quizzes),</li> <li>Home works and assignments,</li> <li>Coursework activities assessment,</li> <li>Home works and assignments,</li> <li>Presentations.</li> </ul>                                       |
| <b>b2.</b> Design an innovative digital system based on combinational & sequential logic circuits within realistic constraints such as economic, environmental, social, safety, manufacturability and sustainability.                                                          | <ul> <li>Interactive class<br/>discussions,</li> <li>Tutorials,</li> <li>Exercises and home<br/>works,</li> <li>Laboratory/Practical<br/>experiments based<br/>session,</li> <li>Computer laboratory-<br/>based sessions,</li> <li>Directed self- study,</li> </ul>                                                 | <ul> <li>Written tests (mid and final terms and quizzes),</li> <li>Lab\Project report</li> <li>Practical lab performance assessment,</li> <li>Coursework activities assessment,</li> <li>Home works and assignments,</li> <li>Presentations.</li> </ul> |

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By



| (C) Alignment Course Intended Le<br>Teaching Strategies and Assessment                                                                                                                                                               | earning Outcomes of Professiona<br>Strategies:                                                                                                                                                                                                                                                                | al and Practical Skills to                                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course Intended Learning Outcomes                                                                                                                                                                                                    | Teaching strategies                                                                                                                                                                                                                                                                                           | Assessment Strategies                                                                                                                                                |
| c1. Practice a wide range of logic<br>analytical methods, modern<br>engineering software packages &<br>tools to develop a suitable digital<br>system for solving, modeling and<br>implementing of Biomedical<br>Engineering problems | <ul> <li>Interactive class<br/>discussions,</li> <li>Case studies,</li> <li>Laboratory/Practical<br/>experiments based<br/>session,</li> <li>Computer laboratory-<br/>based sessions,</li> <li>Problem based learning,</li> <li>Team work (cooperative<br/>learning),</li> <li>Mini/major project.</li> </ul> | <ul> <li>Lab\Project report</li> <li>Practical lab<br/>performance<br/>assessment,</li> <li>Home works and<br/>assignments,</li> <li>Presentations.</li> </ul>       |
| <b>c2.</b> Conduct lab & practice<br>experiments related to digital<br>integrated board development and<br>implementation.                                                                                                           | <ul> <li>Laboratory/Practical<br/>experiments based<br/>session,</li> <li>Computer laboratory-<br/>based sessions,</li> <li>Problem based learning,</li> <li>Team work (cooperative<br/>learning),</li> <li>Mini/major project.</li> </ul>                                                                    | <ul> <li>Lab\Project report</li> <li>Practical lab<br/>performance<br/>assessment,</li> <li>Coursework activities<br/>assessment,</li> <li>Presentations.</li> </ul> |

| (D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching<br>Strategies and Assessment Strategies: |                      |                      |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|--|--|--|--|
| Course Intended Learning Outcomes Teaching strategies Assessment Strategies                                                 |                      |                      |  |  |  |  |
| <b>d1.</b> Function effectively while                                                                                       | Laboratory/Practical | • Lab\Project report |  |  |  |  |
| Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By                                          |                      |                      |  |  |  |  |

& Quality Insurance



| carrying out lab experiments within teams and in individual asked tasks.                                                              | <ul> <li>experiments based<br/>session,</li> <li>Computer laboratory-<br/>based sessions,</li> <li>Directed self- study,</li> <li>Problem based learning,</li> <li>Team work (cooperative<br/>learning),</li> <li>Mini/major project.</li> </ul> | <ul> <li>Practical lab performance assessment,</li> <li>Coursework activities assessment,</li> <li>Presentations.</li> </ul>                                             |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>d2.</b> Prepare lab and course project<br>reports in written form using<br>standard technical writing, and<br>present & defend on. | <ul> <li>Laboratory/Practical<br/>experiments based<br/>session,</li> <li>Computer laboratory-<br/>based sessions,</li> <li>Team work (cooperative<br/>learning),</li> <li>Mini/major project.</li> </ul>                                        | <ul> <li>Lab\Project report</li> <li>Practical lab<br/>performance<br/>assessment,</li> <li>Coursework<br/>activities<br/>assessment,</li> <li>Presentations.</li> </ul> |

| IV. C | IV. Course Content:                      |                      |                                                                                                                                                          |                    |                  |  |  |  |
|-------|------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|--|--|--|
|       | A – Theoretical Aspect:                  |                      |                                                                                                                                                          |                    |                  |  |  |  |
| Order | Units/Topics List                        | Learning<br>Outcomes | Sub Topics List                                                                                                                                          | Number of<br>Weeks | contact<br>hours |  |  |  |
| 1     | Introduction &<br>Course<br>Orientations | a1, a2               | <ul> <li>Course Orientations:<br/>Topics, Aims &amp;<br/>Objectives,</li> <li>Analog and Digital<br/>Systems</li> <li>Binary Digits and Logic</li> </ul> | 1                  | 2                |  |  |  |

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite

Prepared By

|   |                                                      |            | Levels, Digital<br>Waveforms, Timing<br>Diagrams, Serial and<br>Parallel Data<br>- Logic CAD system<br>(VHDL) and Logic<br>Applications.                                                                                                                                                                                                                                                  |   |
|---|------------------------------------------------------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 2 | Number<br>systems and<br>Codes                       | a1         | <ul> <li>Binary, Octal and Hex<br/>Number Systems</li> <li>Number Systems<br/>Conversions.</li> <li>BCD, Gray and<br/>Alphanumeric Codes.</li> <li>Error Detection.</li> </ul>                                                                                                                                                                                                            | 2 |
| 3 | Digital<br>Numbers<br>Representation<br>& Arithmetic | a1, a2     | <ul> <li>Un-Signed, Signed<br/>Numbers<br/>Representations,</li> <li>1's &amp; 2's Complements<br/>Number Representations,<br/>and Scientific<br/>Representations,</li> <li>Binary addition and<br/>Subtraction: effective of<br/>2's Complements on<br/>subtraction operation,</li> <li>Binary Multiplication<br/>and Division.</li> <li>BCD Addition and Hex.<br/>Arithmetic</li> </ul> | 4 |
| 4 | Logic Gates and<br>Boolean<br>Algebra                | a1, a2, b1 | <ul> <li>Boolean Constants and<br/>Variables.</li> <li>Truth Tables.</li> <li>OR, AND, and NOT</li> </ul>                                                                                                                                                                                                                                                                                 | 2 |

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By



| 5 | Logic<br>Simplification                                       | a1, a2, b1 | <ul> <li>Operations.</li> <li>Logic Algebra and Logic<br/>Implementation.</li> <li>Boolean and DeMorgan's<br/>Laws.</li> <li>Universality of NAND<br/>and NOR Gates,</li> <li>Alternative<br/>Representations,</li> <li>Labeling Logic Signals.</li> <li>SOP and POS Forms.</li> <li>Simplifying Logic<br/>Circuits using algebra<br/>and K-maps.</li> </ul> | 2 | 4 |
|---|---------------------------------------------------------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
| 6 | Mid-Term<br>Theoretical Exam                                  | a1, a2, b1 | ALL Previous Topics                                                                                                                                                                                                                                                                                                                                          | 1 | 2 |
| 7 | Combinational<br>Circuits Design                              | a1, b1, b2 | <ul> <li>Introduction to<br/>Combinational Logic<br/>Circuits, Basic Circuits<br/>and Design Procedure,</li> <li>Design of Code<br/>Converter Circuits with<br/>Displaying Devices,</li> <li>Arithmetic Circuits and<br/>Comparators,</li> <li>Decoders, and Encoders,</li> <li>Multiplexers and<br/>Demultiplexers.</li> </ul>                              | 3 | 6 |
| 8 | Introduction to<br>Sequential<br>Logic Circuits<br>& Elements | a1, a2, b1 | <ul> <li>Combinational Vs.<br/>Sequential Circuits,</li> <li>Synchronous and<br/>asynchronous Sequential<br/>Circuits,</li> </ul>                                                                                                                                                                                                                            | 1 | 2 |

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance





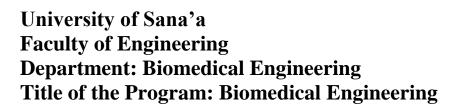
| 11 | Final Theoretical<br>Exam                                           | a1, a2, b1, b2 | ALL Topics                                                                                                                                                                                                                                                                                      | 1 | 2 |
|----|---------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|
|    |                                                                     |                |                                                                                                                                                                                                                                                                                                 |   |   |
| 10 | Sequential<br>Logic Circuits<br>Design<br>(Counters &<br>Registers) | a1, b1, b2     | <ul> <li>Design of Synchronous<br/>Counters, Up/Down<br/>Synchronous Counters<br/>Design,</li> <li>Shift Registers,<br/>Constructions &amp; Types,<br/>Bidirectional Shift<br/>Registers.</li> </ul>                                                                                            | 2 | 4 |
| 9  | Flip Flops &<br>Sequential<br>Circuits Design<br>Principles         | a1, a2, b1, b2 | <ul> <li>SR-Latch, The D-Latch<br/>&amp; the Clocked SR-Latch.</li> <li>The SR Flip-Flop, The<br/>JK-FF &amp; The T-FF and<br/>Flip-Flops Applications,</li> <li>State Chart &amp; Variables,<br/>Mealy &amp; Moore<br/>Machines,</li> <li>Sequential Circuits<br/>Design Procedure.</li> </ul> | 1 | 2 |

| Order Tasks/ Experiments Number of Weeks Contact hours Learning Outcomes | B - Practical Aspect: (if any) |                    |  |               |                   |  |  |
|--------------------------------------------------------------------------|--------------------------------|--------------------|--|---------------|-------------------|--|--|
|                                                                          | Order                          | Tasks/ Experiments |  | contact hours | Learning Outcomes |  |  |

Academy Development Center Dean of Engineering Quality Insurance Unite & Quality Insurance

Prepared By




|   | - Logic & Computer based                                                                                                                                                    |   |   |                    |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|--------------------|
| 1 | Labs Orientations:<br>– Lab Equipment, Computer<br>Simulation Tools<br>Preparation & Setup                                                                                  | 1 | 2 | b1, c2, d1         |
| 2 | <ul> <li>Demonstration of NOT<br/>Gate,</li> <li>Demonstration of AND<br/>with 2 Inputs and 3 Inputs</li> <li>Demonstration of OR with<br/>2 Inputs and 3 Inputs</li> </ul> | 2 | 4 | b1, c1, c2, d1     |
| 3 | <ul> <li>Demonstration of NAND<br/>with 2 Inputs and 3 Inputs</li> <li>Demonstration of NOR<br/>with 2 Inputs and 3 Inputs</li> </ul>                                       | 1 | 2 | b1, c1, c2, d1     |
| 4 | <ul> <li>Demonstration of XOR and<br/>XNOR</li> <li>Implementation of XOR by<br/>using NAND &amp; NOR<br/>Gates</li> </ul>                                                  | 1 | 2 | b1, c1, c2, d1     |
| 5 | <ul> <li>Demonstration of Half</li> <li>Adder, Full Adder &amp; 4-bit</li> <li>Carry-Ripple Adder</li> </ul>                                                                | 2 | 4 | b1, b2, c1, c2, d1 |
| 6 | <ul> <li>Demonstration of Decoder<br/>&amp; Encoder Circuits</li> <li>Decoder with 7 segments</li> </ul>                                                                    | 1 | 2 | b1, b2, c1, c2, d1 |
| 7 | – Midterm Practical Exam                                                                                                                                                    | 1 | 2 | c1, c2             |
| 8 | <ul> <li>Demonstration of<br/>Multiplexer &amp;<br/>Demultiplexer</li> </ul>                                                                                                | 1 | 2 | b1, b2, c1, c2, d1 |
| 9 | <ul> <li>Demonstration of Latches</li> <li>&amp; Flip Flops</li> </ul>                                                                                                      | 1 | 2 | b1, c1, c2, d1     |

Academy Development Center & Quality Insurance Quality Insurance Unite

Prepared By

Assoc. Prof. Dr. Farouk Al-Fahaidy

Dean of Engineering





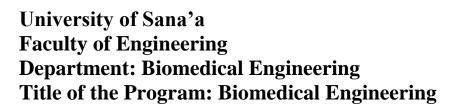
| 10 | <ul> <li>Demonstration of Counters</li> <li>&amp; Registers</li> </ul>                                                                                                      | 2 | 4 | b1, b2, c1, c2, d1                |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|-----------------------------------|
| 11 | <ul> <li>Final Submission of<br/>Projects Reports and<br/>Presentations: Students<br/>work in groups of 2 or 3<br/>students to solve some<br/>practical problems</li> </ul> | 1 | 2 | a1, a2, b1, b2, c1,<br>c2, d1, d2 |
| 12 | – Final Practical Exam                                                                                                                                                      | 1 | 2 | c1, c2                            |
|    | Number of Weeks /and Units Per Semester                                                                                                                                     |   |   | 30                                |

| C. Tutorial Aspect: |                                                                                                                                                                                                                                          |                    |                  |                                          |  |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|------------------------------------------|--|
| No.                 | Tutorial                                                                                                                                                                                                                                 | Number of<br>Weeks | Contact<br>Hours | Learning<br>Outcomes<br>( <u>C</u> ILOs) |  |
| 1                   | System Numbers & Codes                                                                                                                                                                                                                   | 1                  | 2                | a1,                                      |  |
| 2                   | Digital Numbers Representations & Arithmetic                                                                                                                                                                                             | 2                  | 4                | a1                                       |  |
| 3                   | Logic Gates & Boolean Algebra                                                                                                                                                                                                            | 2                  | 4                | a1, a2, b1                               |  |
| 4                   | Karnaugh Maps Simplifications                                                                                                                                                                                                            | 1                  | 2                | a1, a2, b1                               |  |
| 5                   | Design of Combinational Logic Circuits,<br>NAND & NOR Implementations,<br>Code Converters, Using of Input/output Devices such as<br>Switches, LEDs, and 7-Segments,<br>Adders & Multipliers and Comparators,<br>Multiplexers & Decoders. | 4                  | 8                | a1, a2,<br>b1, b2, c1                    |  |
| 6                   | Latches & Flip-Flops,<br>State Machines Explanation: Mealy & Moore                                                                                                                                                                       | 3                  | 6                | a1, a2,<br>b1, b2                        |  |

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance



| С. 1 | C. Tutorial Aspect:                                                                                                                           |                    |                  |                                          |  |  |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------------------|------------------------------------------|--|--|
| No.  | Tutorial                                                                                                                                      | Number of<br>Weeks | Contact<br>Hours | Learning<br>Outcomes<br>( <u>C</u> ILOs) |  |  |
|      | Design of Sequential Logic Circuits for Sequences<br>Detectors Circuits,<br>Analysis of Sequential Logic Circuits                             |                    |                  |                                          |  |  |
| 7    | Design of Asynchronous & Synchronous Counters,<br>Shift Register: As registers, Johnson Register, Sequence<br>Generators and The Ring Counter | 2                  | 4                | a1, a2,<br>b1, b2,                       |  |  |
|      | Number of Weeks /and Units Per Semester                                                                                                       | 15                 | 30               |                                          |  |  |


# V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Interactive class discussions,
- Tutorials,
- Case studies,
- Exercises and home works,
- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Directed self- study,
- Problem based learning,
- Team work (cooperative learning),
- Mini/major project.

## VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance





## VI. Assessment Methods of the Course:

- Lab\Project report
- Practical lab performance assessment,
- Coursework activities assessment,
- Home works and assignments,
- Presentations.

| VII. / | VII. Assignments & Reports:                     |                        |                                     |    |  |  |  |
|--------|-------------------------------------------------|------------------------|-------------------------------------|----|--|--|--|
| No     | No Assignments Aligned CILOs(symbols) Week Due  |                        |                                     |    |  |  |  |
| 1      | System Numbers, Codes, and Arithmetic           | a1, d1                 | $3^{rd}$ to $5^{th}$                | 2  |  |  |  |
| 2      | Logic Gates, Boolean Algebra &<br>Karnaugh Maps | a1, a2, b1, d1         | $6^{th} \& 7^{th}$                  | 3  |  |  |  |
| 3      | Design of Combinational Circuits                | a1, a2, b1, b2, c1, d1 | $9^{th} \& 10^{th}$                 | 5  |  |  |  |
| 4      | Design of Sequential Logic<br>Circuits          | a1, a2, b1, b2, c1, d1 | 11 <sup>th</sup>                    | 3  |  |  |  |
| 5      | Counters & Registers                            | a1, a2, b1, b2, c1, d1 | 12 <sup>th</sup> & 13 <sup>th</sup> | 5  |  |  |  |
| 6      | Lab Reports                                     | b1, b2, c1, d1, d2     | $3^{rd}$ to $13^{th}$               | 12 |  |  |  |
|        | Т                                               | otal                   |                                     | 30 |  |  |  |

| VIII. Schedule of Assessment Tasks for Students During the Semester: |                                                |                |           |                                   |                                        |  |
|----------------------------------------------------------------------|------------------------------------------------|----------------|-----------|-----------------------------------|----------------------------------------|--|
| No. Assessment Method                                                |                                                | Week Due       | Mark      | Proportion of<br>Final Assessment | Aligned Course<br>Learning<br>Outcomes |  |
|                                                                      | emy Development Center Dear<br>ality Insurance | of Engineering | g Quality | Insurance Unite                   | Prepared By                            |  |



| 1 | Assignments & Reports                                         | 3 <sup>rd</sup> to 13 <sup>th</sup>     | 30  | 15% | a1, a2, b1, b2,<br>c1, d1         |
|---|---------------------------------------------------------------|-----------------------------------------|-----|-----|-----------------------------------|
| 2 | Quizzes                                                       | 6th &<br>12th                           | 20  | 10% | a1, a2, b1, b2,<br>d1             |
| 3 | Midterm Theoretical                                           | 8 <sup>th</sup>                         | 30  | 15% | a1, a2, b1                        |
| 4 | Midterm Practical Exam                                        | 9 <sup>th</sup>                         | 20  | 10% | b1, b2, c1, c2,<br>d1             |
| 5 | Final Practical Exam (including<br>Course Project Evaluation) | $14^{\mathrm{th}}$ & $15^{\mathrm{th}}$ | 30  | 15% | a1, a2, b1, b2,<br>c1, c2, d1, d2 |
| 6 | Final Theoretical Exam                                        | 16 <sup>th</sup>                        | 70  | 35% | a1, a2, b1, b2                    |
|   | Total                                                         |                                         | 200 | 100 |                                   |

## IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

### Example

1- Niku, Saeed B., 2011, Introduction to Robotics: Analysis, Control, Applications, 2nd Edition, USA, Wiley.

### 1- Required Textbook(s) ( maximum two ).

1- Thomas L. Floyd, 2009, **Digital Fundamentals**, 10<sup>th</sup> Edition, Pearson Education International 2. Ropald L. Toggi, Nucl. S. Widmar, Gragory L. Mass. 2007. **Digital Systems : Princip** 

2- Ronald J. Tocci, Neal S.Widmer, Gregory L. Moss, 2007, **Digital Systems : Principles and Applications**, 10<sup>th</sup> Edition, Pearson Prentice Hall

### 2- Essential References.

1-Douglas L. Perry, 2002, **VHDL Programming by Example**, 4<sup>th</sup> Edition, McGraw-Hill 2- M. M. Mano, M. D. Ciletti, 2007, **Digital Design**, 4<sup>th</sup> Edition, Prentice-Hall

### 3- Electronic Materials and Web Sites etc.

Websites:

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance



### **Courses:**

- 1- <u>http://nptel.iitm.ac.in</u>
- 2- <u>https://ocw.mit.edu/courses</u>.
- 3- Lectures that may be prepared by the lecturer **Journals**
- 1- <u>http://www.scopus.com/home.url</u>
- 2- http://link.springer.com/
- 3- http://www.sciencedirect.com/
- 4- http://dl.acm.org/dl.cfm
- 5- <u>http://ieeexplore.ieee.org/Xplore/guesthome.jsp</u>

| X. Co | ourse Policies:                                                                                                                                                                                                                                                                                                                                                                                         |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                                                                                                                                                                                                                                                                                                                                                                                                         |
| 1     | Class Attendance:                                                                                                                                                                                                                                                                                                                                                                                       |
|       | A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again. |
| 2     | Tardy:                                                                                                                                                                                                                                                                                                                                                                                                  |
|       | For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.                                                                                                                                                                                                                                               |
| 3     | Exam Attendance/Punctuality:                                                                                                                                                                                                                                                                                                                                                                            |
|       | A student should attend the exam on time. He/she is permitted to attend an exam half one hour                                                                                                                                                                                                                                                                                                           |
|       | from exam beginning, after that he/she will not be permitted to take the exam and he/she will be                                                                                                                                                                                                                                                                                                        |
|       | considered as absent in exam                                                                                                                                                                                                                                                                                                                                                                            |
| 4     | Assignments & Projects                                                                                                                                                                                                                                                                                                                                                                                  |
|       | In general one assignment is given to the students after each chapter; the student has to submit                                                                                                                                                                                                                                                                                                        |
|       | all the assignments for checking on time, mostly one week after given the assignment.                                                                                                                                                                                                                                                                                                                   |

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance



| 5 | Cheating:                                                                                          |  |  |  |  |
|---|----------------------------------------------------------------------------------------------------|--|--|--|--|
|   | For cheating in exam, a student will be considered as fail. In case the cheating is repeated three |  |  |  |  |
|   | times during his/her study the student will be disengaged from the Faculty.                        |  |  |  |  |
| 6 | Plagiarism:                                                                                        |  |  |  |  |
|   | Plagiarism is the attending of a student the exam of a course instead of another student.          |  |  |  |  |
|   | If the examination committee proofed a plagiarism of a student, he/she will be                     |  |  |  |  |
|   | disengaged from the Faculty. The final disengagement of the student from the Faculty should be     |  |  |  |  |
|   | confirmed from the Student Council Affair of the university or according to the university roles.  |  |  |  |  |
| 7 | Other policies:                                                                                    |  |  |  |  |
|   | - Mobile phones are not allowed to use during a class lecture. It must be closed;                  |  |  |  |  |
|   | otherwise the student will be asked to leave the lecture room.                                     |  |  |  |  |
|   | - Mobile phones are not allowed in class during the examination.                                   |  |  |  |  |
|   | - Lecture notes and assignments might be given directly to students using soft or                  |  |  |  |  |
|   | hard copy.                                                                                         |  |  |  |  |

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By



# **Template for Course Plan (Syllabus)**

# Logic System Design BE121

|    | I. Course Identification and General Information:      |                                                  |         |          |            |  |  |
|----|--------------------------------------------------------|--------------------------------------------------|---------|----------|------------|--|--|
| 1  | Course Title:                                          | Logic System Design                              |         |          |            |  |  |
| 2  | Course Code & Number:                                  | BE121                                            |         |          |            |  |  |
|    |                                                        | Credit                                           | Theory  | Hours    | Lab. Hours |  |  |
| 3  | Credit Hours:                                          | Hours                                            | Lecture | Exercise |            |  |  |
|    |                                                        | 4                                                | 2       | 2        | 2          |  |  |
| 4  | Study Level/ Semester at which this Course is offered: | 2 <sup>nd</sup> Level / 1 <sup>st</sup> Semester |         |          |            |  |  |
| 5  | Pre –Requisite (if any):                               | UR003 (Computer Skills)                          |         |          |            |  |  |
| 6  | Co –Requisite (if any):                                | None                                             |         |          |            |  |  |
| 7  | <b>Program</b> (s) in which the Course is Offered:     | Bachelor of Biomedical Engineering               |         |          |            |  |  |
| 8  | Language of Teaching the Course:                       | English                                          |         |          |            |  |  |
| 9  | Location of Teaching the Course:                       | Faculty of Engineering                           |         |          |            |  |  |
| 10 | Prepared by:                                           | Assoc. Prof. Dr. Farouk Al-Fahaidy               |         |          |            |  |  |
| 11 | Reviewed by:                                           | Assoc. Prof. Dr. Radwan AL Bouthigy              |         |          |            |  |  |
| 12 | Date of Approval:                                      |                                                  |         |          |            |  |  |

## **II. Course Description:**

This course aims to provide students with concepts, theories and digital system principles & design

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance



methodologies related to the digital ICs design. Digital ICs play as the main components of all todays digital devices starting from simple timers & calculators up to the smart devices & PCs. Course topics cover, an introduction to digital systems & Boolean algebra, logic gates & their representation tools, and combinational & sequential logic circuits design. Throughout practical, computer-based simulation and term project works, students will verify theories & their learned skill related to digital logic systems design & implementation.

| III.          | (مخرجات تعلم المقرر) : (Course Intended Learning Outcomes (CILOs)                                                                                                                                                                                                                                                                                                         |  |  |  |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| A. Kn<br>to:  | owledge and Understanding: Upon successful completion of the course, students will be able                                                                                                                                                                                                                                                                                |  |  |  |
| a1            | Understand basic principles, concepts and theories of the logic circuits as well as, the application of logic circuits to the design of digital ICs for biomedical instruments.                                                                                                                                                                                           |  |  |  |
| a2            | Explain the operation and characteristics of logic gates, basic memory elements and their functionalities to the design of combinational & sequential circuits.                                                                                                                                                                                                           |  |  |  |
| B. Int        | ellectual Skills: Upon successful completion of the course, students will be able to:                                                                                                                                                                                                                                                                                     |  |  |  |
| b1<br>b2      | <ul> <li>Apply logic concepts, optimization techniques, methodologies, appropriate logic elements and software package to the design, modelling and constructing of physical digital systems, and ICs in relevant to Biomedical Engineering fields.</li> <li>Design an innovative digital system based on combinational &amp; sequential logic circuits within</li> </ul> |  |  |  |
|               | realistic constraints such as economic, environmental, social, safety, manufacturability and sustainability.                                                                                                                                                                                                                                                              |  |  |  |
| C. Pro<br>to: | <b>C. Professional and Practical Skills:</b> Upon successful completion of the course, students will be able to:                                                                                                                                                                                                                                                          |  |  |  |
| c1            | Practice a wide range of logic analytical methods, modern engineering software packages & tools to develop a suitable digital system for solving, modeling and implementing of Biomedical Engineering problems                                                                                                                                                            |  |  |  |

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance



| III.   | امخرجات تعلم المقرر) : (مخرجات تعلم المقرر) : (CILOs) (مخرجات العام المقرر)                        |  |  |  |  |
|--------|----------------------------------------------------------------------------------------------------|--|--|--|--|
| c2     | Conduct lab & practice experiments related to digital integrated board development and             |  |  |  |  |
|        | implementation.                                                                                    |  |  |  |  |
| D. Tra | <b>D. Transferable Skills:</b> Upon successful completion of the course, students will be able to: |  |  |  |  |
| d1     | Function effectively while carrying out lab experiments within teams and in individual asked       |  |  |  |  |
|        | tasks.                                                                                             |  |  |  |  |
| d2     | Prepare lab and course project reports in written form using standard technical writing, and       |  |  |  |  |
|        | present & defend on.                                                                               |  |  |  |  |

| Ι   | IV. Course Contents:                     |                                                                                                                                                                                                                                                                                                |                    |               |
|-----|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| А.  | Theoretical Aspect:                      |                                                                                                                                                                                                                                                                                                |                    |               |
| No. | Units/Topics List                        | Sub Topics List                                                                                                                                                                                                                                                                                | Number of<br>Weeks | Contact Hours |
| 1   | Introduction &<br>Course<br>Orientations | <ul> <li>Course Orientations: Topics,<br/>Aims &amp; Objectives,</li> <li>Analog and Digital Systems</li> <li>Binary Digits and Logic Levels,<br/>Digital Waveforms, Timing<br/>Diagrams, Serial and Parallel<br/>Data</li> <li>Logic CAD system (VHDL) and<br/>Logic Applications.</li> </ul> | 1                  | 2             |
| 2   | Number systems<br>and Codes              | <ul> <li>Binary, Octal and Hex Number<br/>Systems</li> <li>Number Systems Conversions.</li> <li>BCD, Gray and Alphanumeric<br/>Codes.</li> <li>Error Detection.</li> </ul>                                                                                                                     | 1                  | 2             |
| 3   | Digital Numbers                          | – Un-Signed, Signed Numbers                                                                                                                                                                                                                                                                    | 2                  | 4             |

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance



| IV. Course Contents: |                                    |                                                                                                                                                                                                                                                                                                                                                 |                    |               |
|----------------------|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| A.                   | Theoretical Aspect:                |                                                                                                                                                                                                                                                                                                                                                 |                    |               |
| No.                  | Units/Topics List                  | Sub Topics List                                                                                                                                                                                                                                                                                                                                 | Number of<br>Weeks | Contact Hours |
|                      | Representation &<br>Arithmetic     | <ul> <li>Representations,</li> <li>1's &amp; 2's Complements Number<br/>Representations, and Scientific<br/>Representations,</li> <li>Binary addition and Subtraction:<br/>effective of 2's Complements on<br/>subtraction operation,</li> <li>Binary Multiplication and<br/>Division.</li> <li>BCD Addition and Hex.<br/>Arithmetic</li> </ul> |                    |               |
| 4                    | Logic Gates and<br>Boolean Algebra | <ul> <li>Boolean Constants and Variables.</li> <li>Truth Tables.</li> <li>OR, AND, and NOT Operations.</li> <li>Logic Algebra and Logic<br/>Implementation.</li> <li>Boolean and DeMorgan's Laws.</li> </ul>                                                                                                                                    | 1                  | 2             |
| 5                    | Logic<br>Simplification            | <ul> <li>Universality of NAND and NOR<br/>Gates,</li> <li>Alternative Representations,</li> <li>Labeling Logic Signals.</li> <li>SOP and POS Forms.</li> <li>Simplifying Logic Circuits using<br/>algebra and K-maps.</li> </ul>                                                                                                                | 2                  | 4             |
| 6                    | Mid-Term Theoretical<br>Exam       | ALL Previous Topics                                                                                                                                                                                                                                                                                                                             | 1                  | 2             |
| 7                    | Combinational<br>Circuits Design   | <ul> <li>Introduction to Combinational<br/>Logic Circuits, Basic Circuits and</li> </ul>                                                                                                                                                                                                                                                        | 3                  | 6             |

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance



| Γ   | IV. Course Contents:                                             |                                                                                                                                                                                                                                            |                    |               |
|-----|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| A.  | A. Theoretical Aspect:                                           |                                                                                                                                                                                                                                            |                    |               |
| No. | Units/Topics List                                                | Sub Topics List                                                                                                                                                                                                                            | Number of<br>Weeks | Contact Hours |
|     |                                                                  | <ul> <li>Design Procedure,</li> <li>Design of Code Converter<br/>Circuits with Displaying Devices,</li> <li>Arithmetic Circuits and<br/>Comparators,</li> <li>Decoders, and Encoders,</li> <li>Multiplexers and Demultiplexers.</li> </ul> |                    |               |
| 8   | Introduction to<br>Sequential Logic<br>Circuits &<br>Elements    | <ul> <li>Combinational Vs. Sequential<br/>Circuits,</li> <li>Synchronous and asynchronous<br/>Sequential Circuits,</li> <li>Basic Latch Element, SR-Latch,<br/>The D-Latch &amp; the Clocked SR-<br/>Latch.</li> </ul>                     | 1                  | 2             |
| 9   | Flip Flops &<br>Sequential Circuits<br>Design Principles         | <ul> <li>The SR Flip-Flop, The JK-FF &amp;<br/>The T-FF and Flip-Flops<br/>Applications,</li> <li>State Chart &amp; Variables, Mealy &amp;<br/>Moore Machines,</li> <li>Sequential Circuits Design<br/>Procedure.</li> </ul>               | 1                  | 2             |
| 10  | Sequential Logic<br>Circuits Design<br>(Counters &<br>Registers) | <ul> <li>Design of Synchronous Counters,<br/>Up/Down Synchronous Counters<br/>Design,</li> <li>Shift Registers, Constructions &amp;<br/>Types, Bidirectional Shift<br/>Registers.</li> </ul>                                               | 2                  | 4             |

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite

Prepared By



| Γ   | IV. Course Contents:                    |                 |                    |               |  |
|-----|-----------------------------------------|-----------------|--------------------|---------------|--|
| A.  | A. Theoretical Aspect:                  |                 |                    |               |  |
| No. | Units/Topics List                       | Sub Topics List | Number of<br>Weeks | Contact Hours |  |
| 11  | Final Theoretical     ALL Topics        |                 | 1                  | 2             |  |
|     | Number of Weeks /and Units Per Semester |                 |                    | 32            |  |

| B.  | B. Case Studies and Practical Aspect:                                                                                                                           |                    |               |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|--|
| No. | Tasks/ Experiments                                                                                                                                              | Number of<br>Weeks | Contact Hours |  |
| 1   | <ul> <li>Logic &amp; Computer based Labs Orientations:</li> <li>Lab Equipment, Computer Simulation Tools<br/>Preparation &amp; Setup</li> </ul>                 | 1                  | 2             |  |
| 2   | <ul> <li>Demonstration of NOT Gate,</li> <li>Demonstration of AND with 2 Inputs and 3 Inputs</li> <li>Demonstration of OR with 2 Inputs and 3 Inputs</li> </ul> | 2                  | 4             |  |
| 3   | <ul> <li>Demonstration of NAND with 2 Inputs and 3 Inputs</li> <li>Demonstration of NOR with 2 Inputs and 3 Inputs</li> </ul>                                   | 1                  | 2             |  |
| 4   | <ul> <li>Demonstration of XOR and XNOR</li> <li>Implementation of XOR by using NAND &amp; NOR<br/>Gates</li> </ul>                                              | 1                  | 2             |  |
| 5   | <ul> <li>Demonstration of Half Adder, Full Adder &amp; 4-bit<br/>Carry-Ripple Adder</li> </ul>                                                                  | 2                  | 4             |  |
| 6   | <ul><li>Demonstration of Decoder &amp; Encoder Circuits</li><li>Decoder with 7 segments</li></ul>                                                               | 1                  | 2             |  |
| 7   | <ul> <li>Midterm Practical Exam</li> </ul>                                                                                                                      | 1                  | 2             |  |
| 8   | – Demonstration of Multiplexer & Demultiplexer                                                                                                                  | 1                  | 2             |  |

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By



| B.  | B. Case Studies and Practical Aspect:                                                                                                                           |                    |               |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|--|
| No. | Tasks/ Experiments                                                                                                                                              | Number of<br>Weeks | Contact Hours |  |
| 9   | <ul> <li>Demonstration of Latches &amp; Flip Flops</li> </ul>                                                                                                   | 1                  | 2             |  |
| 10  | <ul> <li>Demonstration of Counters &amp; Registers</li> </ul>                                                                                                   | 2                  | 4             |  |
| 11  | <ul> <li>Final Submission of Projects Reports and<br/>Presentations: Students work in groups of 2 or 3<br/>students to solve some practical problems</li> </ul> | 1                  | 2             |  |
| 12  | <ul> <li>Final Practical Exam</li> </ul>                                                                                                                        | 1                  | 2             |  |
|     | Number of Weeks /and Units Per Semester                                                                                                                         | 15                 | 30            |  |

| C. Tutorial Aspect: |                                                                                                                                                                                                                                          |                    |               |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|
| No.                 | Tutorial                                                                                                                                                                                                                                 | Number of<br>Weeks | Contact Hours |
| 1                   | System Numbers & Codes                                                                                                                                                                                                                   | 1                  | 2             |
| 2                   | Digital Numbers Representations & Arithmetic                                                                                                                                                                                             | 2                  | 4             |
| 3                   | Logic Gates & Boolean Algebra                                                                                                                                                                                                            | 2                  | 4             |
| 4                   | Karnaugh Maps Simplifications                                                                                                                                                                                                            | 1                  | 2             |
| 5                   | Design of Combinational Logic Circuits,<br>NAND & NOR Implementations,<br>Code Converters, Using of Input/output Devices such as<br>Switches, LEDs, and 7-Segments,<br>Adders & Multipliers and Comparators,<br>Multiplexers & Decoders. | 4                  | 8             |
| 6                   | Latches & Flip-Flops,<br>State Machines Explanation: Mealy & Moore                                                                                                                                                                       | 3                  | 6             |

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance



| C.  | C. Tutorial Aspect:                                                                                                                           |                    |               |  |  |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------|--|--|
| No. | Tutorial                                                                                                                                      | Number of<br>Weeks | Contact Hours |  |  |
|     | Design of Sequential Logic Circuits for Sequences<br>Detectors Circuits,<br>Analysis of Sequential Logic Circuits                             |                    |               |  |  |
| 7   | Design of Asynchronous & Synchronous Counters,<br>Shift Register: As registers, Johnson Register, Sequence<br>Generators and The Ring Counter | 2                  | 4             |  |  |
|     | Number of Weeks /and Units Per Semester                                                                                                       | 15                 | 30            |  |  |

## V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Interactive class discussions,
- Tutorials,
- Case studies,
- Exercises and home works,
- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Directed self- study,
- Problem based learning,
- Team work (cooperative learning),
- Mini/major project.

## VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Lab\Project report

| Academy Development Center | Dean of Engineering | Quality Insurance Unite | Prepared By |
|----------------------------|---------------------|-------------------------|-------------|
| & Quality Insurance        |                     |                         |             |





### VI. Assessment Methods of the Course:

- Practical lab performance assessment,
- Coursework activities assessment,
- Home works and assignments,
- Presentations.

| V   | VII. Assignments:                            |                                        |      |  |  |
|-----|----------------------------------------------|----------------------------------------|------|--|--|
| No. | Assignments                                  | Week<br>Due                            | Mark |  |  |
| 1   | System Numbers, Codes, and Arithmetic        | $3^{rd}$ to $5^{th}$                   | 2    |  |  |
| 2   | Logic Gates, Boolean Algebra & Karnaugh Maps | ${6^{ m th}}\&$ ${7^{ m th}}$          | 3    |  |  |
| 3   | Design of Combinational Circuits             | 9 <sup>th</sup> &<br>10 <sup>th</sup>  | 5    |  |  |
| 4   | Design of Sequential Logic Circuits          | $11^{\text{th}}$                       | 3    |  |  |
| 5   | Counters & Registers                         | 12 <sup>th</sup> &<br>13 <sup>th</sup> | 5    |  |  |
| 6   | Lab Reports                                  | 3 <sup>rd</sup> to<br>13 <sup>th</sup> | 12   |  |  |
|     | Total                                        |                                        | 30   |  |  |

| VIII. Schedule of Assessment Tasks for Students During the Semester: |                       |                                        |      |                                   |  |
|----------------------------------------------------------------------|-----------------------|----------------------------------------|------|-----------------------------------|--|
| No.                                                                  | Assessment Method     | Week<br>Due                            | Mark | Proportion of Final<br>Assessment |  |
| 1                                                                    | Assignments & Reports | 3 <sup>rd</sup> to<br>13 <sup>th</sup> | 30   | 15%                               |  |

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By



| VIII. | VIII. Schedule of Assessment Tasks for Students During the Semester: |                                        |      |                                   |  |
|-------|----------------------------------------------------------------------|----------------------------------------|------|-----------------------------------|--|
| No.   | Assessment Method                                                    | Week<br>Due                            | Mark | Proportion of Final<br>Assessment |  |
| 2     | Quizzes                                                              | 6th &<br>12th                          | 20   | 10%                               |  |
| 3     | Midterm Theoretical                                                  | 8 <sup>th</sup>                        | 30   | 15%                               |  |
| 4     | Midterm Practical Exam                                               | 9 <sup>th</sup>                        | 20   | 10%                               |  |
| 5     | Final Practical Exam (including Course Project Evaluation)           | 14 <sup>th</sup> &<br>15 <sup>th</sup> | 30   | 15%                               |  |
| 6     | Final Theoretical Exam                                               | 16 <sup>th</sup>                       | 70   | 35%                               |  |
|       | Total                                                                |                                        | 200  | 100%                              |  |

### IX. Learning Resources:

• Written in the following order:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

### Example

1- Niku, Saeed B., 2011, **Introduction to Robotics: Analysis, Control, Applications**, 2nd Edition, USA, Wiley.

### 1- Required Textbook(s) (maximum two):

1- Thomas L. Floyd, 2009, Digital Fundamentals, 10th Edition, Pearson Education International

1- Ronald J. Tocci, Neal S.Widmer, Gregory L. Moss, 2007, **Digital Systems : Principles and Applications**, 10<sup>th</sup> Edition, Pearson Prentice Hall

#### 2- Essential References:

1- Douglas L. Perry, 2002, VHDL Programming by Example, 4<sup>th</sup> Edition, McGraw-Hill

| Academy Development Center | Dean of Engineering | Quality Insurance Unite | Prepared By |
|----------------------------|---------------------|-------------------------|-------------|
| & Quality Insurance        |                     |                         |             |



### IX. Learning Resources:

2- M. M. Mano, M. D. Ciletti, 2007, Digital Design, 4th Edition, Prentice-Hall

#### 3- Electronic Materials and Web Sites etc.:

#### Websites:

### **Courses:**

- 4- http://nptel.iitm.ac.in
- 5- <u>https://ocw.mit.edu/courses</u>.
- 6- Lectures that may be prepared by the lecturer **Journals**
- 6- <u>http://www.scopus.com/home.url</u>
- 7- <u>http://link.springer.com/</u>
- 8- http://www.sciencedirect.com/
- 9- http://dl.acm.org/dl.cfm
- 10- <u>http://ieeexplore.ieee.org/Xplore/guesthome.jsp</u>

|   | <b>Class Attendance:</b><br>A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.                                                                                                                                                             |
| ) | <b>Tardy:</b><br>For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.                                                                                                                      |
|   | Exam Attendance/Punctuality:         A student should attend the exam on time. He/she is permitted to attend an exam half one hour                                                                                                                                                              |

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance



| from exam beginning, after that he/she will not be permitted to take the exam and he/she will be   |  |  |  |
|----------------------------------------------------------------------------------------------------|--|--|--|
| considered as absent in exam                                                                       |  |  |  |
| Assignments & Projects                                                                             |  |  |  |
| In general one assignment is given to the students after each chapter; the student has to submit   |  |  |  |
| all the assignments for checking on time, mostly one week after given the assignment.              |  |  |  |
| Cheating:                                                                                          |  |  |  |
| For cheating in exam, a student will be considered as fail. In case the cheating is repeated three |  |  |  |
| times during his/her study the student will be disengaged from the Faculty.                        |  |  |  |
| Plagiarism:                                                                                        |  |  |  |
| Plagiarism is the attending of a student the exam of a course instead of another student.          |  |  |  |
| If the examination committee proofed a plagiarism of a student, he/she will be                     |  |  |  |
| disengaged from the Faculty. The final disengagement of the student from the Faculty should be     |  |  |  |
| confirmed from the Student Council Affair of the university or according to the university roles.  |  |  |  |
| Other policies:                                                                                    |  |  |  |
| - Mobile phones are not allowed to use during a class lecture. It must be closed;                  |  |  |  |
| otherwise the student will be asked to leave the lecture room.                                     |  |  |  |
| - Mobile phones are not allowed in class during the examination.                                   |  |  |  |
| - Lecture notes and assignments might be given directly to students using soft or                  |  |  |  |
| hard copy.                                                                                         |  |  |  |
|                                                                                                    |  |  |  |

Dean of Engineering

Quality Insurance Unite

Prepared By