

Course Specification of Electromagnetic Field

Course Code (BE213)

I. C	I. Course Identification and General Information:						
1	Course Title:	Electromagnetic Field					
2	Course Code & Number:	BE213					
			C.	H		τοται	
b	Credit hours:	Th.	Seminar	Pr	Tr.	TOTAL	
		2			2	3	
4	Study level/ semester at which this course is offered:	Third Level / First Semester					
5	Pre –requisite (if any):	Engineering Physics (FR002)					
6	Co –requisite (if any):	None					
7	Program (s) in which the course is offered:	Biomedical Engineering Program					
8	Language of teaching the course:	English					
9	Location of Teaching the Course:	Faculty of Engineering					
10	Prepared by:	Assoc. Prof. Dr. Radwan AL Bouthigy					
11	Reviewed by:	Dr					
12	Date of Approval:						

I. Course Description:

This course provides students with fundamental theories of Electrostatics, Magneto statics, and electromagnetic waves. The Course topics include: mathematical background, electrostatics magneto statics, time-varying electromagnetic fields. The Students will acquire respectable knowledge of electrostatic and magneto static fields which in future help them to recognize the accurate applications of the course subjects in the various of biomedical engineering aspects involving

Academy Development Center D & Quality Insurance

Dean of Engineering Quality Insurance Unite Pr

electromagnetic fields such as: Magnetic separators. Development of electric generators and motors, transformers, electromagnetic pump and so on. Material will be introduced through textbook readings, then expanded upon in active lectures and tutorials. Student are encouraged to use MATLAB simulation package in solving problems and applications encounter throughout the course delivery.

III. Course Intended learning outcomes (CILOs) of the COURSE (maximum 8CILOs)		Referenced PILOS (Only write code number of referenced Program Intended learning outcomes)			
Kno	wledge and Understanding: Upon succes Engineering Program, the graduates will be	sful completion of the undergraduate Biomedical able to:			
a1	Define of the theoretical and mathematica aspects of electric field, magnetic fields, and electromagnetic wave analysis.	A1 Describe and explain the underlying mathematical methods and theories; life scientific-principles; and engineering core concepts related to the Biomedical Engineering context.			
a2	Recognize the static and time-varying electromagnetic fields as governed by Maxwell's equations	A3 Recognize and explain the need for a high level of management, professional and ethical behavior, responsibility, quality assurance systems, codes of practice, standards, health and safety requirements, and environmental impacts in biomedical systems.			
B. C	B. Cognitive/ Intellectual Skills: Upon successful completion of the undergraduate Biomedical Engineering Program, the graduates will be able to:				
b1	Apply engineering principles of electric and magnetic quantities and their role in electrical equipment design	B1 Apply engineering principles; basic of life- science; mathematical theories; and modern tools professionally in modelling, analyzing, designing, and constructing physical digital systems; devices and/or processes relevant to			

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By Dr. Radwan AL Bouthigy

AL Bouthigy

		Biomedical Engineering fields.		
b2 C. Profess successful Biomedicz	Identify the behavior of the electric and magnetic s fields and their application in different aspects of biomedical engineering sional and Practical Skills: Upon completion of the undergraduate al Engineering Program, the graduates	B2 Identify, formulate and solve the complex problems related to the Biomedical Engineering fields in a creative and innovative manner by using a systematic and analytical thinking methods.		
will be abl	e to:			
c1	Apply the concepts of the electromagnetic field in studying and analyzing biomedical devices performance.	C1 Apply integrally knowledge of mathematics, life science, IT, design, business context and engineering practice to solve problems and to design systems/processes relevant to Biomedical Engineering.		
c2	Use Simulink MATLAB tool to solve of the problems involving electromagnetic force, torque, and energy.	C2 Use a wide range of analytical tools, techniques, IT, modern engineering tools, software packages and develop required computer programs to solve, modeling and analyzing Biomedical Engineering problems		
D. Transf	erable Skills: Upon successful			
completion	n of the undergraduate Biomedical			
Engineerir	ng Program, the graduates will be able			
to:				
d1	Interact effectively with peers in the group.	D1 Lead and motivate individuals, show capability to work in stressful environments and within constraints, collaborate effectively within multidisciplinary team.		
d2	Communicate effectively to	D5 Demonstrate efficient IT capabilities and		
Academy & Quality	Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Ouality Insurance Dr. Radwan			

professionals and non-specialist

communicate effectively both orally and in writing technical reports.

presentations.

alike through reports and

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
a1. Define of the theoretical and mathematical aspects of electric field, magnetic fields, and electromagnetic wave analysis.	 Interactive lectures & examples, Tutorials, Interactive class discussions, Exercises and home works. 	 Written tests (mid and final terms and quizzes), Coursework activities assessment, Home works and assignments. 			
a2. Recognize the depth of static and time-varying electromagnetic fields as governed by Maxwell's equations	 Interactive lectures & examples, Tutorials, Exercises and home works, Problem based learning. 	 Written tests (mid and final terms and quizzes), Coursework activities assessment, Home works and assignments. 			

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
b1. Apply engineering principlesof electric and magneticquantities and their role in	 Interactive lectures & examples, Tutorials, 	• Written tests (mid and final terms and quizzes),			

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By Dr. Radwan AL Bouthigy

electrical equipment design	 Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Exercises and home works. 	 Coursework activities assessment, Home works and assignments,
b2. Identify the behavior of the electric and magnetic s fields and their application in different aspects of biomedical engineering	 Interactive lectures & examples, Tutorials, Interactive class discussions, Case studies, Exercises and home works, Directed self- study. 	 Written tests (mid and final terms and quizzes), performance assessment, Coursework activities assessment, Home works and assignments.

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
c1. Apply the concepts of the electromagnetic field in studying and analyzing biomedical devices performance.	 Videos demonstrations, Presentation/seminar, Interactive class discussions, Computer laboratory- based sessions, Workshops practices, 	 Essay and report writing assessment, Coursework activities assessment, Project work assessment, Project reports (individual and 			
	• Team work (cooperative	(individual and			

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By Dr. Radwan AL Bouthigy

group) assessment.

learning).

c2. Use Simulink MATLAB tool to solve of the problems involving electromagnetic force, torque, and energy.	 Interactive lectures & examples, Tutorials, Videos demonstrations, Exercises and home works, Computer laboratory-based sessions, Workshops practices, Directed self- study. 	 Coursework activities assessment, Project work assessment, Project reports (individual and group) assessment, Presentations.
---	---	---

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
d1.Interact effectively with peers in the group.	 Presentation/seminar, Case studies, Computer laboratory- based sessions, Workshops practices, Directed self- study, Problem based learning, Team work (cooperative learning), Mini/major project. 	 Oral exams, Short reports, Lab\Project report Practical lab performance assessment, Presentations. 			
d2. Communicate effectively to professionals and non-specialists alike through reports and presentations.	 Videos demonstrations, Presentation/seminar, Case studies, Computer laboratory- based sessions, 	 Oral exams, Coursework activities assessment, Presentations. 			

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

٠	Workshops practices,	
•	Directed self- study,	
•	Team work (cooperative	
	learning),	
•	Mini/major project.	

IV. Course Content:						
	A – Theoretic	al Aspect:				
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours	
1	Vector analysis	a1,a2	 Overview of the course Concept of Scalar and Vector Quantities, vector notation Scalar and Vector Fields Vector components and unit vectors Vector Algebra, Dot product, Cross product. 	1	2	
2	Orthogonal Coordinate Systems	a1,a2,b1,c1	 Rectangular (Cartesian,) Coordinate System, Circular Cylindrical Coordinates system, Spherical Coordinate System 	1	2	

Academy Development Center & Quality Insurance Dean of Engineering

g Quality Insurance Unite

- 🤪 ど 🔛	And State States	Laure and the second	And a state of the	
---------	------------------	----------------------	--	--

			 Relationship between Different Coordinate Systems Transformation of vectors 		
3	Coulomb's Law and Electric Field Intensity (E)	b1,b2,c1	 The Experimental Law of Coulomb Electric Field Intensity Charge distributions: point charge, volume charge, Line charge, and Sheet charge Distribution Field Arising from a Continuous Volume Charge Distribution, Field of a Line Charge Field of a Sheet of Charge Streamlines and Sketches of Fields 	1	2
4	Electric Flux Density, Gauss's Law, and Divergence	a2,b1,b2,c1	 Electric Flux Density, Gauss Law Applications of Gauss Law: Symmetrical Charge Distributions, Differential Volume Element Divergence and Maxwell's First Equation The Vector Operator ∇ and the Divergence Theorem 	2	4

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

5	Potential and Energy	b2,c1,c2	 Energy Expended in Moving a Point Charge in an Electric Field The Line Integral Potential and Potential Difference The Potential Field of a Point Charge The Potential Field of a System of Charges: Conservative Property Potential Gradient The Electric Dipole Energy Density in the Electrostatic Field 	1	2
6	Conductors and Dielectrics	a1,a2,b1,b2	 Current and Current Density Continuity of Current Metallic Conductors Conductor Properties and Boundary Conditions The Method of Images Semiconductors The Nature of Dielectric Materials Boundary Conditions for Perfect Dielectric Materials 	1	2
7	Midterm Theoretical Exam	a1,a2,b1,b2	 All Topics 	1	2
8	Capacitance	a2,b1,b2	 Capacitance of: Parallel-Plate Capacitor, coaxial cable, spherical capacitor, and 	1	2

				<i>a</i>		
				Capacitance of a Two-		
				Wire Line		
			—	Poisson's and		
				Laplace's Equations		
			—	Biot-Savart Law		
			—	Amp`ere's Circuital		4
				Law		
	The Steedy		_	Curl		
9	Magnatia Eigld	a1,a2,b1,b2, c2	_	Stokes' Theorem	2	
	Waynetic Fleiu		_	Magnetic Flux and		
				Magnetic Flux Density		
			_	The Scalar and Vector		
				Magnetic Potentials		
		a2,b1,b2,c1	_	Force on a Moving		
		<i>, , ,</i>		Charge		4
			_	Force on a		
	Magnetic Forces.			Differential		
				Current		
				Element		
			_	Force between		
				Differential Current		
				Elements		
			_	Force and		
				Torque on a		
				Closed Circuit		
			_	The Nature of	•	
10	Materials,			Magnetic	2	
	and Inductance			Materials		
			_	Magnetization and		
				Permeability		
			_	Magnetic Boundary		
				Conditions		
			—	The Magnetic		
				Circuit		
			—	Potential Energy and		
				Forces on Magnetic		
				Materials		
			—	Inductance		
				and Mutual		

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite

			Inductance		
11	Time-Varying Fields and Maxwell's Equations	b1,b2,c1,c2	 Faraday's Law Displacement Current Maxwell's Equations in Point Form Maxwell's Equations in Integral Form 	1	2
12	Plane Electromagnetic Waves.	a2,b1,b2,c1,c2	 Wave Propagation in Free Space Wave Propagation in Dielectrics Poynting's Theorem and Wave Power Propagation in Good Conductors: Skin Effect Wave Polarization 	1	2
13	Final Theoretical Exam	a1,a2,b1,b2	 All Topics 	1	2
Number of Weeks /and Units Per Semester			16	32	

B - Practical Aspect: (if any)						
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes		
1	None					
Number of Weeks /and Units Per Semester						

C. Tutorial Aspect:					
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)	
1	<u>Vectors Analysis</u> – Concept of Scalar and Vector Quantities,	1	2	a1	

Academy Development CenterDean of EngineeringQuality Insurance UnitePrepared By& Quality InsuranceDr. RadwanAL Bouthigy

C . 1	Futorial Aspect:			
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)
	 vector notation Scalar and Vector Fields Vector components and unit vectors Vector Algebra, Dot product, Cross product. 			
2	Orthogonal coordinate systems- Rectangular (Cartesian,) Coordinate System,- Circular Cylindrical Coordinates system,- Spherical Coordinate System- Relationship between Different Coordinate Systems- Transformation of vectors	1	2	al
3	 <u>Coulomb's Law and Electric Field Intensity (E)</u> The Experimental Law of Coulomb Electric Field Intensity Charge distributions: point charge, volume charge, Line charge, and Sheet charge Distribution Field Arising from a Continuous Volume Charge Distribution, Field of a Line Charge Field of a Sheet of Charge Streamlines and Sketches of Fields 	1	2	a1, b2, c2
4	 <u>Electric Flux Density, Gauss's Law, and</u> <u>Divergence</u> Electric Flux Density, Gauss Law Applications of Gauss Law: Symmetrical Charge Distributions, Differential Volume Element Divergence and Maxwell's First Equation The Vector Operator ∇ and the Divergence Theorem 	1	2	a1, a2, b2

Academy Development Center Dean of Engineering & Quality Insurance

Quality Insurance Unite

C . 1	Tutorial Aspect:				
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)	
5	 Potential and Energy Energy Expended in Moving a Point Charge in an Electric Field The Line Integral Potential and Potential Difference The Potential Field of a Point Charge The Potential Field of a System of Charges: Conservative Property Potential Gradient The Electric Dipole Energy Density in the Electrostatic Field 	2	4	a1, b2, c2	
6	Conductors and Dielectrics - Current and Current Density - Continuity of Current - Metallic Conductors - Conductor Properties and Boundary Conditions - The Method of Images - Semiconductors - The Nature of Dielectric Materials - Boundary Conditions for Perfect Dielectric Materials	2	4	a1, b2, c2	
7	 <u>Capacitance</u> Capacitance of: Parallel-Plate Capacitor, coaxial cable, spherical capacitor, and Capacitance of a Two-Wire Line Poisson's and Laplace's Equations 	1	2	a1, b1, b2, c2	
8	The Steady Magnetic Field- Biot-Savart Law- Amp`ere's Circuital Law- Curl- Stokes' Theorem- Magnetic Flux and Magnetic Flux Density- The Scalar and Vector Magnetic Potentials	1	2	a1, b1, b2, c2	

Academy Development Center Dean of Engineering & Quality Insurance

Quality Insurance Unite

C . 1	C. Tutorial Aspect:				
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)	
9	Magnetic Forces, Materials, and Inductance - Force on a Moving Charge - Force on a Differential Current Element - Force between Differential Current Elements - Force and Torque on a Closed Circuit - The Nature of Magnetic Materials - Magnetization and Permeability - Magnetic Boundary Conditions - The Magnetic Circuit - Potential Energy and Forces on Magnetic Materials - Inductance and Mutual Inductance	1	2	a1, b1, b2, c2	
10	Time-Varying Fields and Maxwell'sEquationsFaraday's LawDisplacement Current-Maxwell's Equations in Point Form-Maxwell's Equations in Integral Form	2	4	a1, a2, b1	
11	Plane Electromagnetic Waves Wave Propagation in Free Space- Wave Propagation in Dielectrics- Poynting's Theorem and Wave Power- Propagation in Good Conductors:- Skin Effect- Wave Polarization	2	4	a1, a2, b1, b2,c2	
	Number of Weeks /and Units Per Semester	15	30		

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Tutorials,
- Interactive class discussions,
- Case study
- Exercises and home works,
- Computer laboratory-based sessions,
- Team work (cooperative learning).
- Directed self- study,
- Individual design projects,
- Individual design project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Home works and assignments,
- Coursework activities assessment,
- Design and problem solving exercises,
- Computer Lab performance assessment,
- Project work assessment,
- Project reports (individual and group) assessment,
- Oral and visual presentations.

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

VII. Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1	Assignments1: Orthogonal coordinate systems, and coordinate transformations	a1,a2	3	6		
2	Assignments2: Electric Flux Density, Gauss's Law, and Divergence	a2,b1,c1,d1	5	6		
3	Assignments3: Conductors and Dielectrics	b1,b2,c2	9	6		
4	Assignments4: Magnetic Forces, Materials, Magnetic Circuit, and Inductance	a1,a2,b1,b2	12	6		
5	Assignments5: Time- Varying Fields and Maxwell's Equations	a1,a2,b1,b2,d2	13	6		
Total						

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

VIII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1	Assignments	3,5, 9,12,13	30	20%	a1,a2,b1,b2,c1,c2,d1,d2	
2	Quizzes 1 & 2	6, 12	20	13%	a1,a2,b1,b2	
3	Mid-Term Theoretical Exam	8	30	20%	a1,a2,b1,b2	
4	Final Theoretical Exam	16	70	47%	a1,a2,b1,b2	
Total			150	100%		

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

Example

1- Niku, Saeed B., 2011, Introduction to Robotics: Analysis, Control, Applications, 2nd Edition, USA, Wiley.

1- Req	uired T	extbook(s) (maximum two).
	1.	W.H. Hayt and J A Buck, 2019, Engineering Electromagnetics, Tata McGraw Hill Publications, 9th Edition,
	2.	M. N. O. Sadiku, 2010, Elements of Electromagnetics, 5th Ed., Oxford University Press.
2- Es	sential	References.
	1.	F. T. Ulaby and U. Ravaioli, 2015, Fundamentals of Applied Electromagnetics, 7th Ed.,
	2.	Sunil Bhooshan,2012, 'Fundamentals of Engineering Electromagnetics', Oxford University press.
3- El	ectronio	c Materials and Web Sites etc.
	W	ebsites:

Academy Development CenterDean of EngineeringQuality Insurance UnitePrepared By& Quality InsuranceDr. RadwanAL Bouthigy

1- Simulink of MATLAB

www.mathworks.com

X. C	ourse Policies:
1	Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality: A student should attend the exam on time. He/she is permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam
4	Assignments & Projects: In general one assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating: For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism: Plagiarism is the attending of a student the exam of a course instead of another student.

Academy Development Center Dean of Engineering Quality Insurance Unite Prepare & Quality Insurance Dr. Ra

	If the examination committee proofed a plagiarism of a student, he/she will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university or according to the university roles.		
7	Other policies:		
	- Mobile phones are not allowed to use during a class lecture. It must be closed;		
	otherwise the student will be asked to leave the lecture room.		
	- Mobile phones are not allowed in class during the examination.		
	- Lecture notes and assignments might be given directly to students using soft or		
	hard copy.		

Dean of Engineering

Quality Insurance Unite

Template for Course Plan (Syllabus)

Electromagnetic Field- BE213

	I. Course Identification and General Information:					
1	Course Title:	Electromagnetic Field				
2	Course Code & Number:	BE213				
		Credit	Theory Hours		Lob Hours	
3	Credit Hours:	Hours	Lecture	Exercise	Lab. Hours	
		3	2	2		
4	Study Level/ Semester at which this Course is offered:	Third Level / First Semester				
5	Pre –Requisite (if any):	Engineering Physics (FR002)				
6	Co –Requisite (if any):	None				
7	Program (s) in which the Course is Offered:	Bachelor of Biomedical Engineering				
8	Language of Teaching the Course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Assoc. Prof. Dr. Radwan AL Bouthigy				
11	Reviewed by:	Dr				
12	Date of Approval:					

II. Course Description:

This course provides students with fundamental theories of Electrostatics, Magneto statics, and electromagnetic waves. The Course topics include: mathematical background, electrostatics magneto statics, time-varying electromagnetic fields The Students will acquire respectable knowledge of

Dean of Engineering Academy Development Center Quality Insurance Unite & Quality Insurance

Dr. Radwan AL Bouthigy

electrostatic and magneto static fields which in future help them to recognize the accurate applications of the course subjects in the various of biomedical engineering aspects involving electromagnetic fields such as: Magnetic separators. Development of electric generators and motors, transformers, electromagnetic pump and so on. Material will be introduced through textbook readings, then expanded upon in active lectures and tutorials. Student are encouraged to use MATLAB simulation package in solving problems and applications encounter throughout the course delivery.

A. K-wledge and Understanding: Upon successful completion of the course, stude to: a1 Define of the theoretical and mathematical aspects of electric field, magnetic field electromagnetic wave analysis. a2 Recognize the depth of static and time-varying electromagnetic fields as gove	ents will be able ields, and rned by			
 a1 Define of the theoretical and mathematical aspects of electric field, magnetic field electromagnetic wave analysis. a2 Recognize the depth of static and time-varying electromagnetic fields as government of the static electromagnetic field in the static electromagnetic electromagnetic field in the static electromagnetic electromagnetic field in the static electromagnetic electromagne	rned by			
a2 Recognize the depth of static and time-varying electromagnetic fields as gove	rned by			
a2 Recognize the depth of static and time-varying electromagnetic fields as gove	rned by			
Maxwell's equations				
B. Intellectual Skills: Upon successful completion of the course, students will be abl	e to:			
b1 Apply engineering principles of electric and magnetic quantities and their role	e in electrical			
equipment design				
b2 Identify the behavior of the electric and magnetic s fields and their application	ı in different			
aspects of biomedical engineering				
C. Professional and Practical Skills: Upon successful completion of the course, students will be able to:				
c1 Apply the concepts of the electromagnetic field in studying and analyzing bio	nedical devices			
performance.				
c2 Use Simulink MATLAB tool to solve of the problems involving electromagne	etic force, torque,			
and energy.				
D. Transferable Skills: Upon successful completion of the course, students will be a	D. Transferable Skills: Upon successful completion of the course, students will be able to:			

III.	(مخرجات تعلم المقرر) : (Course Intended Learning Outcomes (CILOs)
d1	Interact effectively with peers in the group.
d2	Communicate effectively to professionals and non-specialists alike through reports and
	presentations.

IV. Course Contents:					
A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
1	Vector analysis	 Overview of the course Concept of Scalar and Vector Quantities, vector notation Scalar and Vector Fields Vector components and unit vectors Vector Algebra, Dot product, Cross product. 	1	2	
2	Orthogonal Coordinate Systems	 Rectangular (Cartesian,) Coordinate System, Circular Cylindrical Coordinates system, Spherical Coordinate System Relationship between Different Coordinate Systems Transformation of vectors 	1	2	
3	Coulomb's Law and Electric Field Intensity (E)	 The Experimental Law of Coulomb Electric Field Intensity Charge distributions: point charge, volume charge, Line charge, and Sheet charge 	1	2	

Academy Development Center Dean of Engineering & Quality Insurance

ng Quality Insurance Unite

IV. Course Contents:					
A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
		 Distribution Field Arising from a Continuous Volume Charge Distribution, Field of a Line Charge Field of a Sheet of Charge Streamlines and Sketches of Fields 			
4	Electric Flux Density, Gauss's Law, and Divergence	 Electric Flux Density, Gauss Law Applications of Gauss Law: Symmetrical Charge Distributions, Differential Volume Element Divergence and Maxwell's First Equation The Vector Operator ∇ and the Divergence Theorem 	2	4	
5	Potential and Energy	 Energy Expended in Moving a Point Charge in an Electric Field The Line Integral Potential and Potential Difference The Potential Field of a Point Charge The Potential Field of a System of Charges: Conservative Property Potential Gradient The Electric Dipole Energy Density in the 	1	2	
Acade	emy Development Cente	er Dean of Engineering Quality In	nsurance Uni	te Prepared By	

IV. Course Contents:					
A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
		Electrostatic Field			
6	Conductors and Dielectrics	 Current and Current Density Continuity of Current Metallic Conductors Conductor Properties and Boundary Conditions The Method of Images Semiconductors The Nature of Dielectric Materials Boundary Conditions for Perfect Dielectric Materials 	1	2	
7	Midterm Theoretical Exam	 All Topics 	1	2	
8	Capacitance	 Capacitance of: Parallel-Plate Capacitor, coaxial cable, spherical capacitor, and Capacitance of a Two-Wire Line Poisson's and Laplace's Equations 	1	2	
9	The Steady Magnetic Field	 Biot-Savart Law Amp'ere's Circuital Law Curl Stokes' Theorem Magnetic Flux and Magnetic Flux Density The Scalar and Vector Magnetic Potentials 	2	4	
10	Magnetic Forces, Materials, and Inductance	 Force on a Moving Charge Force on a Differential Current Element 	2	4	

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite

IV. Course Contents:					
A.	A. Theoretical Aspect:				
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
		 Force between Differential Current Elements Force and Torque on a Closed Circuit The Nature of Magnetic Materials Magnetization and Permeability Magnetic Boundary Conditions The Magnetic Circuit Potential Energy and Forces on Magnetic Materials Inductance and Mutual Inductance 			
11	Time-Varying Fields and Maxwell's Equations	 Faraday's Law Displacement Current Maxwell's Equations in Point Form Maxwell's Equations in Integral Form 	1	2	
12	Plane Electromagnetic Waves.	 Wave Propagation in Free Space Wave Propagation in Dielectrics Poynting's Theorem and Wave Power Propagation in Good Conductors: Skin Effect Wave Polarization 	1	2	
13	Final Theoretical Exam	– All Topics	1	2	

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

IV. Course Contents:					
A.	A. Theoretical Aspect:				
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
	Number of Weeks /and Units Per Semester			32	

B. Case Studies and Practical Aspect:			
No.	Tasks/ Experiments	Number of Weeks	Contact Hours
1	None		
	Number of Weeks /and Units Per Semester		

C.	C. Tutorial Aspect:		
No.	Tutorial	Number of Weeks	Contact Hours
1	Vectors Analysis-Concept of Scalar and Vector Quantities,-vector notation-Scalar and Vector Fields-Vector components and unit vectors-Vector Algebra,-Dot product, Cross product.	1	2
2	 Orthogonal coordinate systems Rectangular (Cartesian,) Coordinate System, Circular Cylindrical Coordinates system, Spherical Coordinate System Relationship between Different Coordinate Systems Transformation of vectors 	1	2
3	<u>Coulomb's Law and Electric Field Intensity (E)</u> – The Experimental Law of Coulomb – Electric Field Intensity	1	2

Academy Development Center Dean of Engineering Quality Insurance Unite & Quality Insurance

C.	C. Tutorial Aspect:		
No.	Tutorial	Number of Weeks	Contact Hours
	 Charge distributions: point charge, volume charge, Line charge, and Sheet charge Distribution Field Arising from a Continuous Volume Charge Distribution, Field of a Line Charge Field of a Sheet of Charge Streamlines and Sketches of Fields 		
4	 Electric Flux Density, Gauss's Law, and Divergence Electric Flux Density, Gauss Law Applications of Gauss Law: Symmetrical Charge Distributions, Differential Volume Element Divergence and Maxwell's First Equation The Vector Operator ∇ and the Divergence Theorem 	1	2
5	 Potential and Energy Energy Expended in Moving a Point Charge in an Electric Field The Line Integral Potential and Potential Difference The Potential Field of a Point Charge The Potential Field of a System of Charges: Conservative Property Potential Gradient The Electric Dipole Energy Density in the Electrostatic Field 	2	4
6	<u>Conductors and Dielectrics</u> - Current and Current Density - Continuity of Current - Metallic Conductors - Conductor Properties and Boundary Conditions	2	4

Academy Development Center Dean of Engineering Quality Insurance Unite & Quality Insurance

C.	C. Tutorial Aspect:		
No.	Tutorial	Number of Weeks	Contact Hours
	 The Method of Images Semiconductors The Nature of Dielectric Materials Boundary Conditions for Perfect Dielectric Materials 		
7	 <u>Capacitance</u> Capacitance of: Parallel-Plate Capacitor, coaxial cable, spherical capacitor, and Capacitance of a Two-Wire Line Poisson's and Laplace's Equations 	1	2
8	The Steady Magnetic Field - Biot-Savart Law - Amp`ere's Circuital Law - Curl - Stokes' Theorem - Magnetic Flux and Magnetic Flux Density - The Scalar and Vector Magnetic Potentials	1	2
9	Magnetic Forces, Materials, and Inductance - Force on a Moving Charge - Force on a Differential Current Element - Force between Differential Current Elements - Force and Torque on a Closed Circuit - The Nature of Magnetic Materials - Magnetization and Permeability - Magnetic Circuit - The Magnetic Circuit - Potential Energy and Forces on Magnetic Materials - Inductance and Mutual Inductance	1	2
10	Time-Varying Fields and Maxwell'sEquations- Faraday's Law- Displacement Current- Maxwell's Equations in Point Form	2	4

Academy Development Center Dean of Engineering Quality Insurance Unite & Quality Insurance

C.	C. Tutorial Aspect:		
No.	Tutorial	Number of Weeks	Contact Hours
	 Maxwell's Equations in Integral Form 		
11	Plane Electromagnetic Waves Wave Propagation in Free Space- Wave Propagation in Dielectrics- Poynting's Theorem and Wave Power- Propagation in Good Conductors:- Skin Effect- Wave Polarization	2	4
	Number of Weeks /and Units Per Semester	15	30

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Tutorials,
- Interactive class discussions,
- Case study
- Exercises and home works,
- Computer laboratory-based sessions,
- Team work (cooperative learning).
- Directed self- study,
- Individual design projects,
- Individual design project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Home works and assignments,
- Coursework activities assessment,

Academy Development Center Dean of Engineering & Quality Insurance

Quality Insurance Unite

VI. Assessment Methods of the Course:

- Design and problem solving exercises,
- Computer Lab performance assessment,
- Project work assessment,
- Project reports (individual and group) assessment,
- Oral and visual presentations.

V	VII. Assignments:		
No.	Assignments	Week Due	Mark
1	Assignments1: Orthogonal coordinate systems, and coordinate transformations	3	6
2	Assignments2: Electric Flux Density, Gauss's Law, and Divergence	5	6
3	Assignments3: Conductors and Dielectrics	9	6
4	Assignments4: Magnetic Forces, Materials, Magnetic Circuit, and Inductance	12	6
5	Assignments5: Time-Varying Fields and Maxwell's Equations	13	6
	Total		30

VIII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessme	nt Method	Week Due	Mark	Proportion of Final Assessment
1	Assignments		3,5, 9,12,13	30	20%
Acade	emy Development Center	Dean of Engineering	Quality Inst	urance Uni	te Prepared By

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:			
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment
2	Quizzes 1 & 2	6, 12	20	13%
3	Mid-Term Theoretical Exam	8	30	20%
4	Final Theoretical Exam	16	70	47%
Total 150 100		100%		

IX. Learning Resources:

• Written in the following order:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher)

Example

1- Niku, Saeed B., 2011, Introduction to Robotics: Analysis, Control, Applications, 2nd Edition, USA, Wiley.

1- Required Textbook(s) (maximum two):

- 1- W.H. Hayt and J A Buck, 2019, Engineering Electromagnetics, Tata McGraw Hill Publications, 9th Edition,
- 2- M. N. O. Sadiku, 2010, Elements of Electromagnetics, 5th Ed., Oxford University Press.

2- Essential References:

- 1- F. T. Ulaby and U. Ravaioli, 2015, Fundamentals of Applied Electromagnetics, 7th Ed., Pearso.
- 2- Sunil Bhooshan, 2012, 'Fundamentals of Engineering Electromagnetics', Oxford University press.

3- Electronic Materials and Web Sites etc.:

Websites:

Academy Development Center & Quality Insurance

Quality Insurance Unite

Prepared By Dr. Radwan AL Bouthigy

Dean of Engineering

IX. Learning Resources:

1- Simulink of MATLAB

www.mathworks.com

X. C	ourse Policies:
1	Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality: A student should attend the exam on time. He/she is permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam
4	Assignments & Projects: In general one assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating: For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:

Academy Development Center Dean of Engineering Quality Insurance Unite Prepare & Quality Insurance Dr. Ra

	Plagiarism is the attending of a student the exam of a course instead of another student.		
	If the examination committee proofed a plagiarism of a student, he/she will be		
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be		
	confirmed from the Student Council Affair of the university or according to the university roles.		
7	Other policies:		
	- Mobile phones are not allowed to use during a class lecture. It must be closed;		
	otherwise the student will be asked to leave the lecture room.		
	- Mobile phones are not allowed in class during the examination.		
	- Lecture notes and assignments might be given directly to students using soft or		
	hard copy.		

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite