

Course Specification of Electronics 2

Course Code (BE223)

I. C	I. Course Identification and General Information:					
1	Course Title:	Electronics 2				
2	Course Code & Number:	BE223				
			C.		1	TOTAL
3	Credit hours:	Th. 2	Seminar	Pr 2	Tr. 	3
4	Study level/ semester at which this course is offered:	Third Level / First Semester				
5	Pre –requisite (if any):	Electronics 1 (BE122)				
6	Co –requisite (if any):	None				
7	Program (s) in which the course is offered:	Biomedical Engineering Program				
8	Language of teaching the course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Assoc. Prof. Dr. Radwan AL Bouthigy				
11	Reviewed by:	Dr				
12	Date of Approval:					

I. Course Description:

This course provides students the concepts, theories and practical skills to be applied to the design & implementation of electronics2, to meet higher requirements of electronics systems as an essential-part to different biomedical arrangement & devices, automation & control systems, and smart devices. Course topics include: Amplifier frequency response, amplifiers and filters, bio – potential

Academy Development CenterDean of EngineeringQuality Insurance UnitePrepared By& Quality InsuranceDr. RadwanAL Bouthigy

amplifiers, design of power system in medical electronics, oscillator circuits, analog and to digital converter (ADC), and digital to analog converter (DAC). Through hands-on practical & computer-based labs works, students will verify the learned theoretical concepts and develop their problem-solving & design skills related to electronics systems based on real platforms and simulation environments.

III	Course Intended learning outcomes (CILOs) of the COURSE (maximum 8CILOs)	Referenced PILOS (Only write code number of referenced Program Intended learning outcomes)		
	Knowledge and Understanding: Upon successful completion of the undergraduate Biomedical Engineering Program, the graduates will be able to:			
a1	Explain principles and theories concepts related to the design of electronics systems and their applications to the Biomedical Engineering context.	A1 Describe and explain the underlying mathematical methods and theories; life scientific-principles; and engineering core concepts related to the Biomedical Engineering context.		
a2	Explain the operation and characteristics of amplifiers and filters elements and their functionalities to the design of biomedical systems.	A2 Clarify the design principles and techniques and the engineering materials characteristics and how these are relevant to the developments and technologies in a biomedical systems context.		
	B. Cognitive/ Intellectual Skills: Upon successful completion of the undergraduate Biomedical Engineering Program, the graduates will be able to:			

Academy Development CenterDean of EngineeringQuality Insurance UnitePrepared By& Quality InsuranceDr. RadwanAL Bouthigy

Dr. Radwan AL Bouthigy

	Solve domain problems related to biomedical engineering creatively, using electronics devices.	B1 Apply engineering principles; basic of life- science; mathematical theories; and modern tools professionally in modelling, analyzing, designing, and constructing physical digital systems; devices and/or processes relevant to Biomedical Engineering fields.
b2	Design an electronics system with interfacing capability within realistic constraints such as, environmental, safety, manufacturability and sustainability.	B3 Design the biomedical systems or processes within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.
	sional and Practical Skills: Upon succe neering Program, the graduates will be al	essful completion of the undergraduate Biomedical ble to:
c1	Practice professional and modern software packages, to write and develop desired computer programs, for modeling & solving Biomedical Engineering problems.	C2 Use a wide range of analytical tools, techniques, IT, modern engineering tools, software packages and develop required computer programs to solve, modeling and analyzing Biomedical Engineering problems.
c2	Conduct lab & practice experiments related to electronics devices	C3 Use computational facilities and techniques, measuring instruments, workshops and
	development and implementation.	laboratory equipment to design and conduct experiments, collect, analyze and interpret data and present results in the biomedical systems practice.
	Gerable Skills: Upon successful completi	experiments, collect, analyze and interpret data and present results in the biomedical
		experiments, collect, analyze and interpret data and present results in the biomedical systems practice.

	in individual asked tasks.	and within constraints, collaborate effectively within multidisciplinary team.
d2	Engage in life-long self-learning by, following new technologies and tools applied in electronics systems solutions related to biomedical engineering.	D3 Recognize the needs for, and engage in life- long self-learning.

(A) Alignment Course Intended Learning Outc	omes of Knowledge and Understanding to
Teaching Strategies and Assessment Strategies	:

Teaching Strategies and Assess	ment strategies:	
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
a1. Explain principles and theories concepts related to the design of electronics systems and their applications to the Biomedical Engineering context.	 Staff-led lectures, Interactive class discussions, Exercises and home works. 	 Written tests (mid and final terms and quizzes), Home works and assignments, Design and problem solving exercises, Coursework activities assessment.
a2. Explain the operation and characteristics of amplifiers and filters elements and their functionalities to the design of biomedical systems.	 Staff-led lectures, Interactive class discussions, Problem based learning, Exercises and home works, 	 Written tests (mid and final terms and quizzes), Home works and assignments, Design and problem solving exercises, Coursework activities assessment.

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

and Assessment Strategies: Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
b1. Solve domain problems related to biomedical engineering creatively, using electronics devices.	 Staff-led lectures, Interactive class discussions, Problem based learning, Exercises and home works, Computer laboratory-based sessions. 	 Written tests (mid and final terms and quizzes), Home works and assignments, Design and problem solving exercises, Computer Lab performance assessment, Coursework activities assessment.
b2. Design an electronics system with interfacing capability within realistic constraints such as, environmental, safety, manufacturability and sustainability.	 Staff-led lectures, Interactive class discussions, Problem based learning, Individual design projects, Exercises and home works, Computer laboratory-based sessions. 	 Written tests (mid and final terms and quizzes), Home works and assignments, Design and problem solving exercises, Computer Lab performance assessment, Coursework activities assessment.

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
c1. Practice professional and modern software packages, to write and	• Laboratory/Practical experiments based session,	• Computer Lab performance assessment,		

Academy Development Center Dean of Engineering & Quality Insurance

ineering Quality Insurance Unite

develop desired computer programs, for modeling & solving Biomedical Engineering problems.	 Computer laboratory-based sessions, Team work (cooperative learning). 	 Project work assessment, Project reports (individual and group) assessment.
c2. Conduct lab & practice experiments related to electronics devices development and implementation.	 Directed self- study, Problem based learning, Individual design projects, Laboratory/Practical experiments based session, Computer laboratory-based sessions, 	 Design and problem solving exercises, Essay and report writing assessment, Computer Lab performance assessment, Project work assessment,

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
d1. Function effectively while carrying out lab experiments within teams and in individual asked tasks.	 Laboratory/Practical experiments based session, Computer laboratory-based sessions, Team work (cooperative learning), 	 Essay and report writing assessment, Computer Lab performance assessment, Coursework activities assessment, Oral and visual presentations, Project work assessment, Project reports (individual and group) assessment. 		

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

d2. Engage in life-long self-learning by, following new technologies and tools applied in electronics systems solutions related to biomedical engineering.	 Directed self- study, Student-led seminars and presentations, Individual design projects, Computer laboratory-based sessions, Team work (cooperative learning) 	 Essay and report writing assessment, Computer Lab performance assessment, Oral and visual presentations, Project work assessment, Project reports (individual and group) assessment.
---	--	--

IV.	IV. Course Content:						
	A – Theoretical Aspect:						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours		
1	Amplifier Frequency Response		 Logarithms and decibel Low, mid and high- Frequency Range. Typical Frequency Response. Low-Frequency analysis—bode plot Low-Frequency Response—BJT Amplifier with RL Impact of R s on the BJT Low-Frequency Response Low-Frequency Response 	2	4		

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance Dean of Engineering Development Center Development Cente

		 Response—FET Amplifier Miller Effect Capacitance High-Frequency Response—BJT Amplifier High-Frequency Response—FET Amplifier 		
2	Operational Amplifier	 Differential Amplifier Circuit. BiFET, BiMOS, and CMOS Differential Amplifier Circuits. Op-Amp Basics. Practical Op-Amp Circuits Op-Amp Specifications—DC Offset Parameters Op-Amp Specifications— Frequency Parameters. Op-Amp Unit Specifications. Differential and Common-Mode Operation. 	2	4
3	Basic Op-Amp Circuits	Comparator.Summing amplifier	1	2

Academy Development Center Dean of Engineering Quality Insurance Unite Prepar & Quality Insurance Dr. Ra

		 Integrators and Differentiators. 		
4	Special-Purpose Op-Amp Circuits	 Instrumentation amplifiers Isolation amplifiers Operational trans conductance. Converters and other Op. Amp. Circuits. 	2	4
5	Mid-Term Theoretical Exam	- All Topics	1	2
6	Active Filters	 Basic filter response. Filter response characteristics. Active low pass filter. Active high pass filter. Active band pass filter Active band stop filter Filter response measurement. 	2	4
7	Oscillators	 The oscillator Feedback oscillator principle. Oscillators with RC feedback circuits. Oscillators with LC feedback circuits. Relaxation oscillators. The 555timer as an 	2	4

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

10	Final Theoretical Exam	- All Topics	1	2
9	Analog to Digital & Digital to Analog Converters	 Sample & Hold circuit. Stair-Case (Ramp) A/D Converter. Flash A/D converter. Successive A/D converter. Binary-Weighted D/A converter. Ladder type D/A converter. 	1	2
8	Power Supplies (Voltage Regulators)	 oscillator. Voltage regulation. Basic series regulators. Basic shunt regulator. Basic switching regulators. Integrated circuit voltage regulators. Applications of IC voltage regulators. 	2	4

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

B - Pi	ractical Aspect: (if any)			
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes
1	 An Experiment to be familiarize with Measuring Instruments and Tools. 	1	2	c1, d2
2	 Low, mid and high Frequency Response—BJT Amplifier 	1	2	c1,c2,d1
3	– Low, MID AND HIGH Frequency Response—FET Amplifier	1	2	c2,d1,d2
4	 Inverting and non- inverting Op-Amp. 	1	2	c1,c2,d1,d2
5	– Differentiator and integrator Op-Amp.	1	2	c1,c2,d1,d2
6	 An applications of Differential Op-Amp. 	1	2	c1,c2,d1,d2
7	 Active low pass filter. Active high pass filter. 	1	2	c1,c2,d1,d2
8	 Active band pass filter Active band stop filter. 	1	2	c1,c2,d1,d2
9	– Mid-Term Practical	1	2	c1,c2

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

	Exam			
10	 Oscillators with RC feedback circuits. Oscillators with LC feedback circuits. 	1	2	c1,c2,d1,d2
11	 Relaxation oscillators. The 555timer as an oscillator. 	1	2	c1,c2,d1,d2
12	 Basic series regulators. Basic shunt regulator. Basic switching regulators. 	1	2	c1,c2,d1,d2
13	 Analog/Digital Converters: Counting A/D Converter, Tracking A/D converter, Flash A/D converter, and Successive A/D converter. 	1	2	c1,c2
14	Course Project: - Design and implementation of any circuit related to course. A report must be prepared and a presentation must be delivered. Students work in groups of two	Starts from week 3	2	c1, c2 d1, d2

Academy Development Center & Quality Insurance

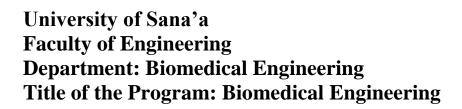
Dean of Engineering

Quality Insurance Unite

ſ		Number of Weeks /and Units P	Per Semester	15	30
	15	Final Practical Exam	1	2	c1,c2
		or three.			

C . 1	Futorial Aspect:			
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)
1	None			
	Number of Weeks /and Units Per Semester			

V. Teaching Strategies of the Course:


- Staff-led lectures,
- Interactive class discussions,
- Directed self- study,
- Problem based learning,
- Individual design projects,
- Exercises and home works,
- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Team work (cooperative learning).

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Home works and assignments,

Academy Development Center Dean of Engineering & Quality Insurance

Quality Insurance Unite

VI. Assessment Methods of the Course:

- Design and problem solving exercises,
- Essay and report writing assessment,
- Computer Lab performance assessment,
- Coursework activities assessment,
- Oral and visual presentations,
- Project work assessment,
- Project reports (individual and group) assessment.

VII.	VII. Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1	Design Low, mid and high Frequency Response—BJT Amplifier	a1, a2, b1, b2	4	2
2	Applications of O.P- amp	a2, c2,d1,D2	7	2
3	Design and implementation of active band pass filter and active band stop filter using software tools.	a2,c1, c2,d1	9	2
4	Design and implementation of 555timer as an oscillator using software tools.	a1, a2, b1	11	2

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

5	Design and implementation basic series an shunt regulators using MATLAB tools	a1, a2,c1, c2	13	2
		Total		10

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1	Assignments	4,7, 9,11,13	10	6.67%	a1,a2, b1,b2,c2,d1,d2
2	Quizzes 1 & 2	6, 12	10	6.67%	a1, a2, b1,b2
3	Mid-Term Theoretical Exam	8	20	13.33%	a1, a2, b1,b2
4	Mid-Term Practical Exam	9	20	13.33%	c1,c2
5	Final Practical Exam	15	30	20%	c1,c2
6	Final Theoretical Exam	16	60	40%	a1, a2, b1,b2
	Total 150 100%				

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

Example

1- Niku, Saeed B., 2011, Introduction to Robotics: Analysis, Control, Applications, 2nd Edition, USA, Wiley.

1- Required Textbook(s) (maximum two).

1. Robert Boylestad & Louis Nashelsky – 2015- "Electronic Devices and Circuit Theory"

Academy Development Center Dean of Engineering Quality Insurance Unite Prepare & Quality Insurance Dr. Rad

	Prentice Hall.
	2. Thomas Floyd -2018 -" Electronic Devices", 10th edition, Pearson
2- E	ssential References.
	1. Robert Boylestad & Louis Nashelsky – 2009 - "Electronic Devices and Circuit Theory"
	Prentice Hall Higher Education – USA.
	2. Richard C. Jaeger and Travis N. Blalock – 2011 – Microelectronic – 1 NIC circuit
	Design – 4/Edition – McGraw Hill Companies, USA – New York .
3- E	lectronic Materials and Web Sites <i>etc</i> .
	Websites:
	1- Electronics book
	https://www.amazon.com/Electronics-Electrical-Engineering-
	Books/b?ie=UTF8&node=13707
	https://www.elprocus.com/basic-electronic-books/
	https://ocw.mit.edu/courses.
	Board and Data Show projector.
	Computer with software.
	http://www.ocw.mit.edu/courses.
	http://www.pearsoned.co.in/MMorrisMano/
	http://nptel.iitm.ac.in
	2- Journals:
	IEEE Transactions on Electronics: Peer reviewed academic journal in the field of
	electronics, with emphasis on mathematical and theoretical approaches.
	http://www.ieee-ies.org/pubs/transactions-on-industrial-electronics.
	IEEE Transactions on Industrial Electronics (IEEE T IND ELECTRON)
	https://www.researchgate.net/journal/02780046_IEEE_Transactions_on_Industrial_Electronics.

Dean of Engineering

Quality Insurance Unite

X. C	ourse Policies:
1	Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality:A student should attend the exam on time. He/she is permitted to attend an exam half one hourfrom exam beginning, after that he/she will not be permitted to take the exam and he/she will beconsidered as absent in exam
4	Assignments & Projects: In general one assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating: For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism: Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he/she will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university or according to the university roles.

Academy Development CenterDean of EngineeringQuality Insurance UnitePrepared By& Quality InsuranceDr. RadwanAL Bouthigy

17

7	Other policies:			
	- Mobile phones are not allowed to use during a class lecture. It must be closed;			
	otherwise the student will be asked to leave the lecture room.			
	- Mobile phones are not allowed in class during the examination.			
	- Lecture notes and assignments might be given directly to students using soft or			
	hard copy.			

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Template for Course Plan (Syllabus)

Electronics 1-BE223

	I. Course Identification and General Information:					
1	Course Title:	Electron	ics 2			
2	Course Code & Number:	BE223				
		Credit	Theory	Hours	Lab. Hours	
3	Credit Hours:	Hours	Lecture	Exercise		
		3	2		2	
4	Study Level/ Semester at which this Course is offered:	Third Level / First Semester				
5	Pre –Requisite (if any):	Electron	ics 1(BE122)		
6	Co –Requisite (if any):	None				
7	Program (s) in which the Course is Offered:	Bachelo	r of Biomedi	cal Engineer	ring	
8	Language of Teaching the Course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Assoc. Prof. Dr. Radwan AL Bouthigy				
11	Reviewed by:	Dr				
12	Date of Approval:					

II. Course Description:

This course provides students the concepts, theories and practical skills to be applied to the design & implementation of electronics2, to meet higher requirements of electronics systems as an essentialpart to different biomedical arrangement & devices, automation & control systems, and smart

Academy Development Center Dean of Engineering **Quality Insurance Unite** Prepared By & Quality Insurance

devices. Course topics include: Amplifier frequency response, amplifiers and filters, bio – potential amplifiers, design of power system in medical electronics, oscillator circuits, analog and to digital converter (ADC), and digital to analog converter (DAC). Through hands-on practical & computer-based labs works, students will verify the learned theoretical concepts and develop their problemsolving & design skills related to electronics systems based on real platforms and simulation environments.

III.	III. Course Intended Learning Outcomes (CILOs): (مخرجات تعلم المقرر)			
A. Kn to:	owledge and Understanding: Upon successful completion of the course, students will be able			
a1	Explain principles and theories concepts related to the design of electronics systems and their applications to the Biomedical Engineering context.			
a2	Explain the operation and characteristics of amplifiers and filters elements and their functionalities to the design of biomedical systems.			
B. Int	ellectual Skills: Upon successful completion of the course, students will be able to:			
b1	Solve domain problems related to biomedical engineering creatively, using electronics devices.			
b2	Design an electronics system with interfacing capability within realistic constraints such as, environmental, safety, manufacturability and sustainability.			
C. Pro to:	ofessional and Practical Skills: Upon successful completion of the course, students will be able			
c1	Practice professional and modern software packages, to write and develop desired computer programs, for modeling & solving Biomedical Engineering problems.			
c2	Conduct lab & practice experiments related to electronics devices development and implementation.			
D. Tra	ansferable Skills: Upon successful completion of the course, students will be able to:			
d1	Function effectively while carrying out lab experiments within teams and in individual asked			

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance Dean of Engineering Quality Insurance Unite Dr. Radwan AL Bouthigy

III.	III. Course Intended Learning Outcomes (CILOs): (مخرجات تعلم المقرر)				
	tasks.				
d2	Engage in life-long self-learning by, following new technologies and tools applied in electronics				
	systems solutions related to biomedical engineering.				

IV. Course Contents:				
A.	Theoretical Aspect:			
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
1	Amplifier Frequency Response	 Logarithms and decibel Low, mid and high-Frequency Range. Typical Frequency Response. Low-Frequency analysis—bode plot Low-Frequency Response—BJT Amplifier with RL Impact of R s on the BJT Low- Frequency Response Low-Frequency Response—FET Amplifier Miller Effect Capacitance High-Frequency Response—BJT Amplifier High-Frequency Response—FET Amplifier High-Frequency Response—FET Amplifier 	2	4
2	Operational Amplifier	 Differential Amplifier Circuit. BiFET, BiMOS, and CMOS Differential Amplifier Circuits. 	2	4

Γ	IV. Course Contents:			
A.	A. Theoretical Aspect:			
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
		 Op-Amp Basics. Practical Op-Amp Circuits Op-Amp Specifications—DC Offset Parameters Op-Amp Specifications— Frequency Parameters. Op-Amp Unit Specifications. Differential and Common-Mode Operation. 		
3	Basic Op-Amp Circuits	 Comparator. Summing amplifier Integrators and Differentiators. 	1	2
4	Special-Purpose Op-Amp Circuits	 Instrumentation amplifiers Isolation amplifiers Operational trans conductance. Converters and other Op. Amp. Circuits. 	2	4
5	Mid-Term Theoretical Exam	 All Topics 	1	2
6	Active Filters	 Basic filter response. Filter response characteristics. Active low pass filter. Active high pass filter. Active band pass filter 	2	4

Academy Development Center & Quality Insurance

Quality Insurance Unite

Prepared By Dr. Radwan AL Bouthigy

Dean of Engineering

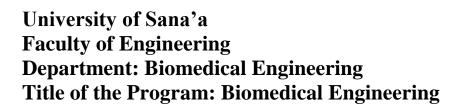
Γ	IV. Course Contents:			
A.	A. Theoretical Aspect:			
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
		Active band stop filterFilter response measurement.		
7	Oscillators	 The oscillator Feedback oscillator principle. Oscillators with RC feedback circuits. Oscillators with LC feedback circuits. Relaxation oscillators. The 555timer as an oscillator. 	2	4
8	Power Supplies (Voltage Regulators)	 Voltage regulation. Basic series regulators. Basic shunt regulator. Basic switching regulators. Integrated circuit voltage regulators. Applications of IC voltage regulators. 	2	4
9	Analog to Digital & Digital to Analog Converters	 Sample & Hold circuit. Stair-Case (Ramp) A/D Converter. Flash A/D converter. Successive A/D converter. Binary-Weighted D/A converter. Ladder type D/A converter. 	1	2

Academy Development Center Dean of Engineering Quality Insurance Unite E & Quality Insurance

Γ	IV. Course Contents:			
A.	A. Theoretical Aspect:			
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
10	Final Theoretical Exam	 All Topics 	1	2
	Number of Weeks /and Units Per Semester			32

B.	B. Case Studies and Practical Aspect:				
No.	Tasks/ Experiments	Number of Weeks	Contact Hours		
1	 An Experiment to be familiarize with Measuring Instruments and Tools. 	1	2		
2	 Low, mid and high Frequency Response—BJT Amplifier 	1	2		
3	 Low, MID AND HIGH Frequency Response—FET Amplifier 	1	2		
4	 Inverting and non-inverting Op-Amp. 	1	2		
5	 Differentiator and integrator Op-Amp. 	1	2		
6	– An applications of Differential Op-Amp.	1	2		
7	Active low pass filter.Active high pass filter.	1	2		
8	 Active band pass filter Active band stop filter. 	1	2		
9	 Mid-Term Practical Exam 	1	2		

Academy Development Center Dean of Engineering Quality Insurance Unite Pr & Quality Insurance Dean of Engineering Development Center De


B.	B. Case Studies and Practical Aspect:				
No.	Tasks/ Experiments	Number of Weeks	Contact Hours		
10	Oscillators with RC feedback circuits.Oscillators with LC feedback circuits.	1	2		
11	Relaxation oscillators.The 555timer as an oscillator.	1	2		
12	 Basic series regulators. Basic shunt regulator. Basic switching regulators. 	1	2		
13	 Analog/Digital Converters: Counting A/D Converter, Tracking A/D converter, Flash A/D converter, and Successive A/D converter. 	1	2		
14	Course Project: Design and implementation of any circuit related to course. A report must be prepared and a presentation must be delivered. Students work in groups of two or three. 	Starts from week 3	2		
15	Final Practical Exam	1	2		
	Number of Weeks /and Units Per Semester	15	30		

C.	C. Tutorial Aspect:				
No.	Tutorial	Number of Weeks	Contact Hours		
1					
	Number of Weeks /and Units Per Semester				

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

V. Teaching Strategies of the Course:

- Staff-led lectures,
- Interactive class discussions,
- Directed self- study,
- Problem based learning,
- Individual design projects,
- Exercises and home works,
- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Team work (cooperative learning).

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Home works and assignments,
- Design and problem solving exercises,
- Essay and report writing assessment,
- Computer Lab performance assessment,
- Coursework activities assessment,
- Oral and visual presentations,
- Project work assessment,
- Project reports (individual and group) assessment.

V	VII. Assignments:				
No.	Assignments	Week Due	Mark		
1	Design Low, mid and high Frequency Response—BJT Amplifier	4	2		

Academy Development Center Dean of Engineering Quality Insurance Unite & Quality Insurance

VII. Assignments:					
No.	Assignments	Week Due	Mark		
2	Applications of O.P- amp	7	2		
3	Design and implementation of active band pass filter and active band stop filter using software tools.	9	2		
4	Design and implementation of 555timer as an oscillator using software tools.	11	2		
5	Design and implementation basic series an shunt regulators using MATLAB tools	13	2		
Total		10			

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment		
1	Assignments	4,7, 9,11,13	10	6.67%		
2	Quizzes 1 & 2	6, 12	10	6.67%		
3	Mid-Term Theoretical Exam	8	20	13.33%		
4	Mid-Term Practical Exam	9	20	13.33%		
5	Final Practical Exam	15	30	20%		
6	Final Theoretical Exam	16	60	40%		
	Total			100%		

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

IX. Learning Resources:

• Written in the following order:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

Example

1- Niku, Saeed B., 2011, Introduction to Robotics: Analysis, Control, Applications, 2nd Edition, USA, Wiley.

1- Required Textbook(s) (maximum two):

- Robert Boylestad & Louis Nashelsky 2015- "Electronic Devices and Circuit Theory" Prentice Hall.
- 1- Thomas Floyd -2018 -" Electronic Devices", 10th edition, Pearson

2- Essential References:

- Robert Boylestad & Louis Nashelsky 2009 "Electronic Devices and Circuit Theory" Prentice Hall Higher Education – USA.
- 2- Richard C. Jaeger and Travis N. Blalock 2011 Microelectronic 1 NIC circuit Design – 4/Edition – McGraw Hill Companies, USA – New York.

3- Electronic Materials and Web Sites etc.:

Websites:

1- Electronics book

https://www.amazon.com/Electronics-Electrical-Engineering-

Books/b?ie=UTF8&node=13707

https://www.elprocus.com/basic-electronic-books/

https://ocw.mit.edu/courses.

Board and Data Show projector.

Computer with software.

http://www.ocw.mit.edu/courses.

Academy Development Center Dean of Engineering Quality Insurance Unite & Quality Insurance II

IX. Learning Resources:

http://www.pearsoned.co.in/MMorrisMano/

http://nptel.iitm.ac.in

3- Journals:

IEEE Transactions on Electronics: Peer reviewed academic journal in the field of electronics, with emphasis on mathematical and theoretical approaches.

http://www.ieee-ies.org/pubs/transactions-on-industrial-electronics.

IEEE Transactions on Industrial Electronics (IEEE T IND ELECTRON) https://www.researchgate.net/journal/02780046_IEEE_Transactions_on_Industrial_Electronics.

1	Class Attendance:		
	A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.		
2	Tardy:		
	For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.		
3	Exam Attendance/Punctuality:		
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour		
	from exam beginning, after that he/she will not be permitted to take the exam and he/she will be		
	considered as absent in exam		
4	Assignments & Projects:		

Academy Development Center Dean of Engineering Quality Insurance Unite Pre & Quality Insurance Dr.

	In general one assignment is given to the students after each chapter; the student has to submit			
	all the assignments for checking on time, mostly one week after given the assignment.			
5	Cheating:			
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three			
	times during his/her study the student will be disengaged from the Faculty.			
6	Plagiarism:			
	Plagiarism is the attending of a student the exam of a course instead of another student.			
	If the examination committee proofed a plagiarism of a student, he/she will be			
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be			
	confirmed from the Student Council Affair of the university or according to the university roles.			
7	Other policies:			
	- Mobile phones are not allowed to use during a class lecture. It must be closed;			
	otherwise the student will be asked to leave the lecture room.			
	- Mobile phones are not allowed in class during the examination.			
	- Lecture notes and assignments might be given directly to students using soft or			
	hard copy.			

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite