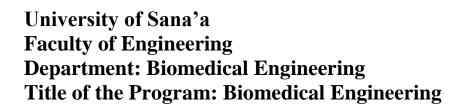


Course Specification of Biomedical Sensors and


<u>Measurements</u>

	I. Course Identification and General Information:						
1. L							
1	Course Title:	Biomedical Sensors and Measurements				S	
2	Course Code & Number:	BE224					
			C.	Н		TOTAL	
3	Credit hours:	Th.	Seminar	Pr	Tr.	TOTAL	
		2		2		3	
4	Study level/ semester at which this course is offered:	3 rd Level / 1 st Semester					
5	Pre –requisite (if any):	Engineering Physics (FR002), Physiology and Anatomy1,2 (BE161, BE162), General					
			Biology (BE101), Electronics I (BE122),.				
6	Co –requisite (if any):	Electronics II (BE223)					
7	Program (s) in which the course is offered:	Biomedical Engineering Program					
8	Language of teaching the course:	English					
9	Location of Teaching the Course:	Faculty of Engineering					
10	Prepared by:	Dr. Waleed Al-talabi					
11	Reviewed by:	Dr. Mohammed Al-Olofi					
12	Date of Approval:						

Course Code (BE224)

Academy Development Center Dean of Engineering Quality Insurance Unite & Quality Insurance

Prepared By

I. Course Description:

The Biomedical Sensors & Measurements course aims to give the student knowledge of detection methods of bio-signal, and types of sensors used in measurement. As well as, theories and techniques for electronic measurements on physiological systems. The course will cover circuits and sensors used to measure bio-signals including cardiovascular system and measurements, respiratory system and measurements, patient monitoring and measurements, and electrical hazards, safety, measuring instruments and techniques will be discussed. The corequisite laboratory will focus on the practical implementation of electronic devices for biomedical measurements.

III. Course Intended learning outcomes (CILOs) of the COURSE (maximum 8CILOs)		Referenced PILOS (Only write code number of referenced Program Intended learning outcomes)
	wledge and Understanding: Upon successfu Engineering Program, the graduates will be ab	l completion of the undergraduate Biomedical ble to:
a1	Demonstrate understanding of the principles of measurement systems, measurement error and uncertainty, basic concepts of a variety sensors and transducers.	A1 Describe and explain the underlying mathematical methods and theories; life scientific-principles; and engineering core concepts related to the Biomedical Engineering context.
a2	Illustrate understanding of the physiology of biomedical system which is very important with respect to design consideration. As well as, discussing the application of electronics in diagnostics and therapeutic area.	A2 Clarify the design principles and techniques and the engineering materials characteristics and how these are relevant to the developments and technologies in a biomedical systems context.
a3	Describe how different measurement techniques are used to determine the vital parameters of diagnostic importance, and common methods for	A4 Understand and give examples of design methods, knowledge tools, analytical skills, measurement techniques and methodologies for innovative and creative engineering solutions applied to healthcare problems and

	converting a physical parameter into an	quality of life issues.
	electrical quantity and provide an	
	engineering approach to develop	
	biomedical measurement systems.	
	Cognitive/ Intellectual Skills: Upon successfu Engineering Program, the graduates will be ab	l completion of the undergraduate Biomedical ble to:
b1	Design of basic measurement systems for biomedical applications, such as	B3 Design the biomedical systems or processes within realistic constraints such as economic,
	cardiovascular system and related	environmental, social, political, ethical,
	measurements, respiratory system and	health and safety, manufacturability and
	related measurements, laboratorial	sustainability.
	instrumentation and patient monitor	
	system with consideration of patient	
	safety issues related to biomedical	
	instrumentation.	
b2	Analyze, formulate and select suitable	B5 Distinguish the main characteristics of
	sensor comparing different standards	biomedical systems, apply diagnostic skills
	and guidelines for the given industrial	and technical knowledge and perform failure
	applications to make sensitive	analysis to these systems.
	measurements of physical parameters,	
	and predict correctly the expected	
	performance of various sensors.	
	Professional and Practical Skills: Upon succe Engineering Program, the graduates will be al	essful completion of the undergraduate Biomedical ble to:
21	Use the biostatistics, analytical	C2 Use a wide range of analytical tools,
	techniques, and set up testing strategies	techniques, IT, modern engineering tools,
	to evaluate performance characteristics	software packages and develop required computer programs to solve, modeling and

	of different types of sensors and	analyzing Biomedical Engineering problems.
	transducers, and develop professional	
	skills in acquiring and applying the	
	knowledge to design, analyze, and	
	realize a circuit of signal conditioning	
	from these sensors.	
c2	Conduct appropriate experimentation	C3 Use computational facilities and techniques,
	related to sensors and transducers, and	measuring instruments, workshops and
	Locate different type of sensors used in	laboratory equipment to design and conduct
	real life applications and paraphrase	experiments, collect, analyse and interpret
	their importance.	data and present results in the biomedical
	then importance.	systems practice.
D. T	ransferable Skills: Upon successful complete	on of the undergraduate Biomedical Engineering
Prog	ram, the graduates will be able to:	
d1	Demonstrate the ability to collaborative	D1 Lead and motivate individuals, show
	work as an effective member or leader	capability to work in stressful environments
	of diverse teams, communicating	and within constraints, collaborate effectively
	effectively and operating within cross-	within multidisciplinary team.
	disciplinary and cross-cultural contexts	
	in the workplace, and the significance of	
	time management in group work.	

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

0 0				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
a1. Demonstrate understanding of the principles of measurement systems,	 Interactive lectures & examples, Presentation/seminar, 	• Written tests (mid and final terms and quizzes),		
	• Interactive class	• Home works and		

measurement error and uncertainty, basic concepts of a variety sensors and transducers. a2. Illustrate understanding of the physiology of biomedical system which is very important with respect to design consideration. As well as, discussing the application of electronics in diagnostics and therapeutic area.	 discussions, Exercises and home works, Directed self- study, Problem based learning, Interactive lectures & examples, Presentation/seminar, Interactive class discussions, Directed self- study. 	 Written tests (mid and final terms and quizzes), Oral exams, Home works and assignments, Presentations.
 a3. Describe how different measurement techniques are used to determine the vital parameters of diagnostic importance, and common methods for converting a physical parameter into an electrical quantity and provide an engineering approach to develop biomedical measurement systems. 	 Interactive lectures & examples, Presentation/seminar, Interactive class discussions, Directed self- study. 	 Written tests (mid and final terms and quizzes), Home works and assignments, Presentations.

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies Assessment Strateg				
Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By				Prepared By	

& Quality Insurance

5

b1. Design of basic	• Internative lastering 0	• Whitten tests (mid and
measurement systems for	• Interactive lectures & examples,	• Written tests (mid and final terms and
biomedical applications, such	• Presentation/seminar,	quizzes),
as cardiovascular system and	• Interactive class	• Lab\Project report
related measurements,	discussions,	Practical lab
respiratory system and related	• Exercises and home	performance assessment,
measurements, laboratorial	works,	 Coursework activities
instrumentation and patient	Laboratory/Practical experiments based	assessment,
monitor system with	session,	• Presentations.
consideration of patient safety	Computer laboratory-	
issues related to biomedical	based sessions,	
instrumentation.	• Directed self- study,	
	• Team work (cooperative learning),	
	Mini/major project.	
b2. Analyze, formulate and	• Interactive lectures &	• Written tests (mid and
select suitable sensor	examples,	final terms and
comparing different standards	• Presentation/seminar,	quizzes),
and guidelines for the given	• Interactive class	• Short reports,
industrial applications to make	discussions,	 Home works and assignments,
sensitive measurements of	• Exercises and home works,	 Presentations.
physical parameters, and	Laboratory/Practical	
predict correctly the expected	experiments based	
performance of various sensors.	session,	
	• Computer laboratory- based sessions,	
	• Directed self- study,	
	• Team work (cooperative learning).	

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite Prepared By

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
c1.Use the biostatistics, analytical techniques, and set up testing strategies to evaluate performance characteristics of different types of sensors and transducers, and develop professional skills in acquiring and applying the knowledge to design, analyze, and realize a circuit of signal conditioning from these sensors.	 Interactive lectures & examples, Presentation/seminar, Interactive class discussions, Exercises and home works, Laboratory/Practical experiments based session, Computer laboratory-based sessions, Directed self- study, Team work (cooperative learning), 	 Written tests (mid and final terms and quizzes), Lab\Project report Practical lab performance assessment, Coursework activities assessment, Home works and assignments, Presentations. 		
c2. Conduct appropriate experimentation related to sensors and transducers, and Locate different type of sensors used in real life applications and paraphrase their importance.	 Mini/major project. Interactive lectures & examples, Presentation/seminar, Interactive class discussions, Exercises and home works, Laboratory/Practical experiments based session, Computer laboratory-based sessions, Directed self- study, 	 Written tests (mid and final terms and quizzes), Lab\Project report Practical lab performance assessment, Coursework activities assessment, Home works and assignments, Presentations. 		

Academy Development Center Dean of Engineering & Quality Insurance

f Engineering Quality Insurance Unite

Prepared By

• Team work (cooperative learning),
• Mini/major project.

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
d1.Demonstrate the ability to collaborative work as an effective member or leader of diverse teams, communicating effectively and operating within cross-disciplinary and cross-cultural contexts in the workplace, and the significance of time management in group work.	 Interactive lectures & examples, Presentation/seminar, Interactive class discussions, Laboratory/Practical experiments based session, Team work (cooperative learning), Mini/major project. 	 Written tests (mid and final terms and quizzes), Practical lab performance assessment, Coursework activities assessment, Presentations. 		

IV. Course Content:

	A – Theoretical Aspect:					
Order	Units/Topics List	Sub Topics List	Number of Weeks	contact hours	Learning Outcomes	
1	Introduction	Introduction to the course.Course outlines.Project description.	1	2	a1, d1	
2	Sensors and Transducers: Basic Concepts of Measurements	 Generalized medical instrumentation system. Medical measurement constraints Biostatistics. General properties of input 	2	4	a1, a3	

Academy Development Center & Quality Insurance Dean of Engineering Quality Insurance Unite Prepared By

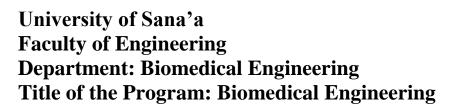
		 transducer. Generalized static characteristics: accuracy, precision, resolution, reproducibility, sensitivity, drift, hysteresis, linearity, input impedance and output impedance. Generalized dynamic characteristics: first order and second order characteristics, time delay, error free instrument, transfer functions. Design criteria, generalized instrument specifications. Classification, active, passive, mechanical, electrical, their comparison. 			
3	Temperature Sensors and Transducers:	 Thermo-resistive transducers. Thermoelectric, p-n junction, Chemical thermometry. 	1	2	a1, a3, b2, c2
4	Displacement Transducers:	 Introduction. Potentiometer, Resistive strain gauges, Capacitive displacement transducer, Inductive displacement, Force transducer. 	1	2	a1, a3, b2, c2
5	Pressure Transducer:	 Variable capacitance pressure transducers, 	1	2	a1, a3, b2, c2

University of Sana Faculty of Engine Department: Bion Title of the Progra

6

7

8


ersity of Sana'a Ity of Engineering rtment: Biomedic of the Program: I		And the function of the functi		
	 LVDT transducers, Strain gauge transducers, Semiconductor transducers, Catheter tip transducers. 			
Photoelectric Transducers:	Photo-emissive tubes,Photovoltaic cell,Photoconductive cell.	1	2	a1, a3, b2, c2
Mid-Term Theoretical Exam	- All previous topics.	1	2	a1, a3, b2, c2
Flow Sensors and Transducers:	 Different types of flow sensors and detectors. Piezoelectric transducers and their applications. Study of biological sensors: Sensors / receptors in the human body, basic organization of nervous system-neural mechanism and circuit processing. 	1	2	a1, a3, b2, c2
	Microelectrodes,Body surface electrodes,			a1, a3, b2, c2

		processing.			
9	Biopotential Electrodes:	 Microelectrodes, Body surface electrodes, Needle electrodes. Reference electrodes: hydrogen electrodes, silver-silver chloride electrodes, Calomel electrodes. Recording electrodes for ECG, EEG, and EMG. Transducers for the measurement of ions and 	1	2	a1, a3, b2, c2
		dissolved gases, pH electrode,			

		specific ion electrodes.			
10	Cardiovascular System and Measurements	 The heart and cardiovascular system. Instruments of ECG, blood pressure and its measurement. Respiration and pulse rate. Characteristics and measurement of blood flow meter, cardiac output. Heart sounds and its measurement. 	1	2	a2, a3, b1, b2, c1, c2, d1
11	Respiratory System and Measurements	 Measurement of pressure. Measurement of gas flow. Lung volume. Respiratory plethysmography. Measurement of gas concentration. 	1	2	a2, a3, b1, b2, c1, c2, d1
12	Patient Monitoring and Measurements	 Measurement of heart rate. Measurement of temperature. Measurement of respiration rate. 	1	2	a2, a3, b1, b2, c1, c2, d1
13	Safety of Biomedical Instruments	 Electrical safety. Definition of electrical safety. Macro shock and micro shock. Design considerations for reducing electric hazards. Specialized electric safety test equipment. Mechanical safety. Electromagnetic safety. Biohazards and safety 	1	2	a1, b1

Academy Development Center & Quality Insurance Dean of Engineering Quality Insurance Unite Prepared By

		regulations.			
14	Project Presentation	Student's presentations.	1	2	a1, a2, a3, b1, b2, c1, c2, d1
15	Final Theoretical Exam	All topics.	1	2	a1, a2, a3, b1, b2, c1, c2, d1
Number of Weeks /and Units Per Semester		16	32		

B - P	B - Practical Aspect:				
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes	
1	These will cover similar material to the lectures.	8	16	a1, a3, b2, c1, c2, d1	
2	Mid-Term Practical Exam	1	2	a1, a3, b2, c1, c2, d1	
3	These will cover similar material to the lectures.	5	10	a1, a2, a3, b1, b2, c1, c2, d1	
4	Final Practical Exam	1	2	a1, a2, a3, b1, b2, c1, c2, d1	
Ν	Number of Weeks /and Units Per Semester		30		

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Presentation/seminar,
- Interactive class discussions,
- Exercises and home works,
- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Directed self- study,

V. Teaching Strategies of the Course:

- Team work (cooperative learning),
- Mini/major project

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Short reports,
- Lab\Project report
- Practical lab performance assessment,
- Coursework activities assessment,
- Home works and assignments,
- Presentations.

VII. Assignments:

V II. /	ssignments.			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1	Lectures 1,2,3, and 4 Assignment	a1, a3, b2, c2, d1	5	2
2	Lectures 5,6,7, and 9 Assignment	a1, a3, b2, c2	10	2
3	Lectures 10,11,12, and 13 Assignment	a1, a2, a3, b1, b2, c1, c2, d1	14	2
4	Project/ Presentation	a1, a2, a3, b1, b2, c1, c2, d1	15	4
	Total			10

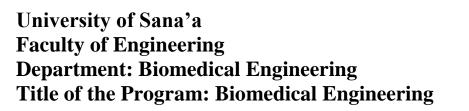
VIII. Schedule of Assessment Tasks for Students During the Semester:

No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1	Project/ Assignments	5,10,14,15	10	6.67%	a1, a2, a3, b1,

					b2, c1, c2, d1
2	Quiz 1	4	5	3.33%	a1, a3, b2
3	Midterm Theoretical Exam	8	20	13.33%	a1, a3, b2, c2
4	Quiz 2	12	5	3.33%	a1, a2, a3, b1, b2
5	Midterm Practical Exam	9	20	13.33%	a1, a3, b2, c1, c2, d1
6	Final Practical Exam	15	30	20%	a1, a2, a3, b1, b2, c1, c2, d1
7	Final Theoretical Exam	16	60	40%	a1, a2, a3, b1, b2, c1, c2, d1
	Total	-	150	100%	

IX. Learning Resources:			
1- Rec	uired Textbook(s) (maximum two).		
	 Andrew G. Webb, 2018, "Principles of Biomedical Instrumentation", 1st Ed., UK, Cambridge University Press. 		
	2- John G. Webster, Amit J. Nimunkar, 2020, "Medical Instrumentation: Application and Design", 5 th Ed., USA, John Wiley & Sons Ltd.		
2- Es	sential References.		
	 Raghbir Singh Khandpur, 2020, "Compendium of Biomedical Instrumentation", 1st Ed., USA, John Wiley & Sons Ltd. 		
	2- R.S. Khandpur, 2014, "Handbook of Biomedical Instrumentation", 3 rd Ed., India, McGraw Hill Education (India) Private Limited.		
3- El	ectronic Materials and Web Sites <i>etc</i> .		
	Websites:		
	1- The IEEE Engineering in Medicine and Biology (EMB) Society Wearable Biomedical Sensors and Systems Technical Committee (TC) is comprised of members interested in promoting the field of wearable and implantable body sensors within the biomedical		

	community.
	https://www.embs.org/wbss/
2-	BIOPAC offers a wide range of high-quality, precision transducers for life science education and research data acquisition supporting human and animal experiments. https://www.biopac.com/product-category/education/transducers-education/
Jo	urnals:
1-	Biosensors Journal is a peer reviewed journal that includes a wide range of topics in this field including Imaging sensors, DNA Biosensors, Microbial Biosensors, Ozone Biosensors, Bioreceptors, enzyme Interactions, Nucleic acid Interactions, Epigenetics, Surface attachment of the biological elements, Chemical sensors, Optical biosensors, Biomedical sensors, Electrochemical biosensors, <u>Surface plasmon resonance</u> , Graphene biosensors and Biotransducers. https://www.omicsonline.org/scholarly/biomedical-sensor-journals-articles-ppts-list.php
2-	The Biomedical Sensors Section publishes original peer-reviewed papers covering all aspects of Biomedical Sensors. https://www.mdpi.com/journal/sensors/sections/biomedical_sensors
Ot	her Web Sources:
1-	<i>Embedding Sensors and Motors</i> will introduce you to the design of sensors and motors, and to methods that integrate them into embedded systems used in consumer and industrial products. https://www.coursera.org/specializations/embedding-sensors-motors
	Biomedical Sensors: Types of sensors and How it works https://www.seeedstudio.com/blog/2019/10/14/biomedical-sensors-types-of-sensors- and-how-it-works/
X. Course	Policies:


Class Attendance:

1

A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be

	required to retake the entire course again.
2	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in
	attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality:
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour
	from exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam
4	Assignments & Projects
	In general one assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
	If the examination committee proofed a plagiarism of a student, he/she will be
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university or according to the university roles.
7	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed;
	otherwise the student will be asked to leave the lecture room.
	- Mobile phones are not allowed in class during the examination.
	- Lecture notes and assignments might be given directly to students using soft or
	hard copy.

Template for Course Plan (Syllabus)

Biomedical Sensors and Measurements BE224

	I. Course Identification and General Information:					
1	Course Title:	Biomedical Sensors and Measurements				
2	Course Code & Number:	BE224				
		Credit	Credit Theory Hours		Lab. Hours	
3	Credit Hours:	Hours	Lecture	Exercise	Lab. Hours	
		3	2		2	
4	Study Level/ Semester at which this Course is offered:	3 rd Leve	l / 1 st Semest	ter		
5	Pre –Requisite (if any):	Engineering Physics (FR002), Physiology and Anatomy1,2 (BE161, BE162), General Biology (BE101), Electronics I (BE122),.				
6	Co –Requisite (if any):	Electronics II (BE223)				
7	Program (s) in which the Course is Offered:	Bachelor of Biomedical Engineering				
8	Language of Teaching the Course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Dr. Waleed Al-talabi				
11	Reviewed by:	Dr. Mohammed Al-Olofi				
12	Date of Approval:					

Academy Development Center & Quality Insurance Dean of Engineering

ng Quality Insurance Unite

II. Course Description:

The Biomedical Sensors & Measurements course aims to give the student knowledge of detection methods of bio-signal, and types of sensors used in measurement. As well as, theories and techniques for electronic measurements on physiological systems. The course will cover circuits and sensors used to measure bio-signals including cardiovascular system and measurements, respiratory system and measurements, patient monitoring and measurements, and electrical hazards, safety, measuring instruments and techniques will be discussed. The corequisite laboratory will focus on the practical implementation of electronic devices for biomedical measurements.

III.	(مخرجات تعلم المقرر) : (Course Intended Learning Outcomes (CILOs)
A. Kn to:	nowledge and Understanding: Upon successful completion of the course, students will be able
a1	Demonstrate understanding of the principles of measurement systems, measurement error and uncertainty, basic concepts of a variety sensors and transducers.
a2	Illustrate understanding of the physiology of biomedical system which is very important with respect to design consideration. As well as, discussing the application of electronics in diagnostics and therapeutic area.
a3	Describe how different measurement techniques are used to determine the vital parameters of diagnostic importance, and common methods for converting a physical parameter into an electrical quantity and provide an engineering approach to develop biomedical measurement systems.
B. Int	ellectual Skills: Upon successful completion of the course, students will be able to:
b1	Design of basic measurement systems for biomedical applications, such as cardiovascular system and related measurements, respiratory system and related measurements, laboratorial instrumentation and patient monitor system with consideration of patient safety issues related to biomedical instrumentation.
b2	Analyze, formulate and select suitable sensor comparing different standards and guidelines for the given industrial applications to make sensitive measurements of physical parameters, and predict correctly the expected performance of various sensors.
C. Pro	ofessional and Practical Skills: Upon successful completion of the course, students will be able

III.	(مخرجات تعلم المقرر) : (Course Intended Learning Outcomes (CILOs)
to:	
c1	Use the biostatistics, analytical techniques, and set up testing strategies to evaluate performance characteristics of different types of sensors and transducers, and develop professional skills in acquiring and applying the knowledge to design, analyze, and realize a circuit of signal conditioning from these sensors.
c2	Conduct appropriate experimentation related to sensors and transducers, and Locate different type of sensors used in real life applications and paraphrase their importance.
D. Tra	ansferable Skills: Upon successful completion of the course, students will be able to:
d1	Demonstrate the ability to collaborative work as an effective member or leader of diverse teams, communicating effectively and operating within cross-disciplinary and cross-cultural contexts in the workplace, and the significance of time management in group work.

Γ	IV. Course Contents:				
A.	Theoretical Aspect:				
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
1	Introduction	Introduction to the course.Course outlines.Project description.	1	2	
2	Sensors and Transducers: Basic Concepts of Measurements	 Generalized medical instrumentation system. Medical measurement constraints Biostatistics. General properties of input transducer. Generalized static characteristics: accuracy, precision, resolution, reproducibility, sensitivity, drift, hysteresis, linearity, input 	2	4	

	IV. Course Contents:						
A. No.	A. Theoretical Aspect: No. Units/Topics List Sub Topics List Number of Weeks Contact Hours						
		 impedance and output impedance. Generalized dynamic characteristics: first order and second order characteristics, time delay, error free instrument, transfer functions. Design criteria, generalized instrument specifications. Classification, Active, Passive, Mechanical, Electrical, their comparison. 					
3	Temperature Sensors and Transducers:	 Thermo-resistive transducers. Thermoelectric, p-n junction, Chemical thermometry. 	1	2			
4	Displacement Transducers:	 Introduction. Potentiometer, Resistive strain gauges, Capacitive displacement transducer, Inductive displacement, Force transducer. 	1	2			
5	Pressure Transducer:	 Variable capacitance pressure transducers, LVDT transducers, Strain gauge transducers, 	1	2			

Γ	IV. Course Contents:					
A.	A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
		Semiconductor transducers,Catheter tip transducers.				
6	Photoelectric Transducers:	Photo-emissive tubes,Photovoltaic cell,Photoconductive cell.	1	2		
7	Mid-Term Theoretical Exam	 – All previous topics. 	1	2		
8	Flow Sensors and Transducers:	 Different types of flow sensors and detectors. Piezoelectric transducers and their applications. Study of biological sensors: Sensors / receptors in the human body, basic organization of nervous system-neural mechanism and circuit processing. 	1	2		
9	Biopotential Electrodes:	 Microelectrodes, Body surface electrodes, Needle electrodes. Reference electrodes: hydrogen electrodes, silver-silver chloride electrodes, Calomel electrodes. Recording electrodes for ECG, EEG, and EMG. Transducers for the measurement of ions and dissolved gases, pH 	1	2		

Γ	IV. Course Contents:				
A.	Theoretical Aspect:				
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
		electrode, specific ion electrodes.			
10	Cardiovascular System and Measurements	 The heart and cardiovascular system. Instruments of ECG, blood pressure and its measurement. Respiration and pulse rate. Characteristics and measurement of blood flow meter, cardiac output. Heart sounds and its measurement. 	1	2	
11	Respiratory System and Measurements	 Measurement of pressure. Measurement of gas flow. Lung volume. Respiratory plethysmography. Measurement of gas concentration. 	1	2	
12	Patient Monitoring and Measurements	 Measurement of heart rate. Measurement of temperature. Measurement of respiration rate. 	1	2	
13	Safety of Biomedical Instruments	 Electrical safety. Definition of electrical safety. Macro shock and micro shock. Design considerations for reducing electric hazards. Specialized electric safety test equipment. Mechanical safety. 	1	2	

Academy Development Center & Quality Insurance Dean of Engineering Quality Insurance Unite Prepared By

Γ	IV. Course Contents:				
A.	A. Theoretical Aspect:				
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
		– Electromagnetic safety.			
		– Biohazards and safety regulations.			
14	Project Presentation	Student's presentations.	1	2	
15	Final Theoretical Exam	All topics.	1	2	
	Number of Weeks /and Units Per Semester		16	32	

B.	B. Case Studies and Practical Aspect:				
No.	Tasks/ Experiments	Number of Weeks	Contact Hours		
1	These will cover similar material to the lectures.	8	16		
2	Mid-Term Practical Exam	1	2		
3	- These will cover similar material to the lectures.	5	10		
4 - Final Practical Exam		1	2		
	Number of Weeks /and Units Per Semester	15	30		

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Presentation/seminar,
- Interactive class discussions,
- Exercises and home works,

V. Teaching Strategies of the Course:

- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Directed self- study,
- Team work (cooperative learning),
- Mini/major project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Short reports,
- Lab\Project report
- Practical lab performance assessment,
- Coursework activities assessment,
- Home works and assignments,
- Presentations.

VII. Assignments:

No.	Assignments	Week Due	Mark
1	Lectures 1,2,3, and 4 Assignment	5	2
2	Lectures 5,6,7, and 9 Assignment	10	2
3	Lectures 10,11,12, and 13 Assignment	14	2
4	Project/ Presentation	15	4
	Total		10

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	
1	Project/ Assignments	5,10,14, 15	10	6.67%	
2	Quiz 1	4	5	3.33%	
3	Midterm Theoretical Exam	8	20	13.33%	
4	Quiz 2	12	5	3.33%	
5	Midterm Practical Exam	9	20	13.33%	
6	Final Practical Exam	15	30	20%	
7	Final Theoretical Exam	16	60	40%	
	Total 150			100%	

IX. L	IX. Learning Resources:				
1- Req	uired Textbook(s) (maximum two).				
	 Andrew G. Webb, 2018, "Principles of Biomedical Instrumentation", 1st Ed., UK, Cambridge University Press. 				
	2- John G. Webster, Amit J. Nimunkar, 2020, "Medical Instrumentation: Application and Design", 5 th Ed., USA, John Wiley & Sons Ltd.				
2- Es	sential References.				
	 Raghbir Singh Khandpur, 2020, "Compendium of Biomedical Instrumentation", 1st Ed., USA, John Wiley & Sons Ltd. 				
	2- R.S. Khandpur, 2014, "Handbook of Biomedical Instrumentation", 3 rd Ed., India, McGraw Hill Education (India) Private Limited.				
3- Ele	ectronic Materials and Web Sites <i>etc</i> .				
	Websites:				
	1- The IEEE Engineering in Medicine and Biology (EMB) Society Wearable Biomedical Sensors and Systems Technical Committee (TC) is comprised of members interested in promoting the field of wearable and implantable body sensors within the biomedical				
Acader	ny Development Center Dean of Engineering Quality Insurance Unite Prepared By				

	community.
	https://www.embs.org/wbss/
2-	BIOPAC offers a wide range of high-quality, precision transducers for life science education and research data acquisition supporting human and animal experiments. https://www.biopac.com/product-category/education/transducers-education/
Jo	urnals:
1-	Biosensors Journal is a peer reviewed journal that includes a wide range of topics in this field including Imaging sensors, DNA Biosensors, Microbial Biosensors, Ozone Biosensors, Bioreceptors, enzyme Interactions, Nucleic acid Interactions, Epigenetics, Surface attachment of the biological elements, Chemical sensors, Optical biosensors, Biomedical sensors, Electrochemical biosensors, <u>Surface plasmon resonance</u> , Graphene biosensors and Biotransducers. https://www.omicsonline.org/scholarly/biomedical-sensor-journals-articles-ppts-list.php
2-	The Biomedical Sensors Section publishes original peer-reviewed papers covering all aspects of Biomedical Sensors. https://www.mdpi.com/journal/sensors/sections/biomedical_sensors
Other Web Sources:	
1-	<i>Embedding Sensors and Motors</i> will introduce you to the design of sensors and motors, and to methods that integrate them into embedded systems used in consumer and industrial products. https://www.coursera.org/specializations/embedding-sensors-motors
	Biomedical Sensors: Types of sensors and How it works https://www.seeedstudio.com/blog/2019/10/14/biomedical-sensors-types-of-sensors- and-how-it-works/

X. Course Policies: 1 Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be

	required to retake the entire course again.	
2	Tardy:	
	For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.	
3	Exam Attendance/Punctuality:	
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour	
	from exam beginning, after that he/she will not be permitted to take the exam and he/she will be	
	considered as absent in exam	
4	Assignments & Projects:	
	In general one assignment is given to the students after each chapter; the student has to submit	
	all the assignments for checking on time, mostly one week after given the assignment.	
5	Cheating:	
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three	
	times during his/her study the student will be disengaged from the Faculty.	
6	Plagiarism:	
	Plagiarism is the attending of a student the exam of a course instead of another student.	
	If the examination committee proofed a plagiarism of a student, he/she will be	
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be	
	confirmed from the Student Council Affair of the university or according to the university roles.	
7	Other policies:	
	- Mobile phones are not allowed to use during a class lecture. It must be closed;	
	otherwise the student will be asked to leave the lecture room.	
	- Mobile phones are not allowed in class during the examination.	
	- Lecture notes and assignments might be given directly to students using soft or hard copy.	