

Course Specification of Biomedical Signals Processing

Course Code (BE225)

I. C	I. Course Identification and General Information:					
1	Course Title:	Biomedical Signals Processing				
2	Course Code & Number:	BE225				
			C.	Н		τοται
3	Credit hours:	Th.	Seminar	Pr	Tr.	TOTAL
		2		2		3
4	Study level/ semester at which this course is offered:	3 rd Level / 2 nd Semester				
	Pre –requisite (if any):	Probab	ility and Sta	tistics for I	Engineers	8
5		(BR23)	1), Biomedic	al Sensors	and	
		Measurements (BE224).				
6	Co –requisite (if any):	Analog Control Systems (BE251).				
7	Program (s) in which the course is offered:	Biomedical Engineering Program				
8	Language of teaching the course:	English	1			
9	Location of Teaching the Course:	Faculty	of Engineer	ring		
10	Prepared by:	Dr. Mohammed Al-olofi				
11	Reviewed by:	Dr. Waleed Al-Talbi				
12	Date of Approval:					

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By

I. Course Description:

The biomedical signals processing course aims to give the student knowledge of the Signal representation: Continuous-time and Discrete-time signals, overview of analog and discrete-time signals properties, Fourier analysis, and time-frequency analysis. Then study discrete-time filter, the Z-transform, and sampling. The convolution theorem for the Fourier and z-transform will be presented. Next, Various estimation, detection and filtering methods are developed and demonstrated on biomedical signals and application on EEG-ECG signals are introduced in detail. Throughout Computer-based lab graduates will develop their programming skills related to the development of algorithms for biomedical signal processing.

III. Course Intended learning outcomes (CILOs) of the COURSE (maximum 8CILOs)		Referenced PILOS (Only write code number of referenced Program Intended learning outcomes)		
Kno	wledge and Understanding: Upon successfu Engineering Program, the graduates will be al	l completion of the undergraduate Biomedical ble to:		
a1	Demonstrate understanding the basic principles, and theories in biomedical signal processing engineering fundamentals.	A1 Describe and explain the underlying mathematical methods and theories; life scientific-principles; and engineering core concepts related to the Biomedical Engineering context.		
a2	Describe the connections between the variety of fields and specialties in biomedical signal processing engineering and the wide range of medical needs, techniques, working principles and instruments associates with signal processing engineering.	A2 Clarify the design principles and techniques and the engineering materials characteristics and how these are relevant to the developments and technologies in a biomedical systems context.		
a3	Illustrate understanding of biomedical signal processing engineering ethics, side by side understanding of the fundamentals of healthcare technology, signal processing	A3 Recognize and explain the need for a high level of management, professional and ethical behavior, responsibility, quality assurance systems, codes of practice, standards, health		

	instrumentation, tissue engineering, biomaterials, biomechanics and clinical engineering.		and safety requirements, and environmental impacts in biomedical systems.	
B. C	ogniti Engin	ve/ Intellectual Skills: Upon successful eering Program, the graduates will be ab	completion of the undergraduate Biomedical le to:	
b1		Design the biomedical signals processing systems which are used in medical equipment to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety.	B3 Design the biomedical systems or processes within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.	
b2		Categorize the biomedical signals processing systems according to their specifications and features.	B5 Distinguish the main characteristics of biomedical systems, apply diagnostic skills and technical knowledge and perform failure analysis to these systems.	
C. P	rofes : Engin	sional and Practical Skills: Upon succe eering Program, the graduates will be ab	ssful completion of the undergraduate Biomedical le to:	
c1		Apply mathematical, simulation models, and IT software packages to design, and implement the biomedical signals processing systems effectively.	C2 Use a wide range of analytical tools, techniques, IT, modern engineering tools, software packages and develop required computer programs to solve, modeling and analyzing Biomedical Engineering problems.	
c2		Evaluate the performance of medical equipment based on the biomedical signals processing systems used in them.	C4 Use rules and regulations of industrial safety as well as safe and diagnose systems at work, evaluate performance and observe the appropriate steps to manage risks concerning biomedical systems.	

D. Transf	D. Transferable Skills: Upon successful completion of the undergraduate Biomedical Engineering			
Program, t	Program, the graduates will be able to:			
d1	Function effectively in different work environments as an individual, and as a member or leader in multi-disciplinary teams.	D1 Lead and motivate individuals, show capability to work in stressful environments and within constraints, collaborate effectively within multidisciplinary team.		

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
al Demonstrate understanding the basic principles, and theories in biomedical signal processing engineering fundamentals.	 Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Laboratory/Practical experiments based session, Computer laboratory-based sessions, Workshops practices, Directed self- study, Problem based learning, Team work (cooperative learning), Eicld exists (texining) 	 Written tests (mid and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment, Presentations.

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite Prepared By

	• Mini/major project.	
a2 Describe the connections between the variety of fields and specialties in biomedical signal processing engineering and the wide range of medical needs, techniques, working principles and instruments associates with signal processing engineering.	 Mini/major project. Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Laboratory/Practical experiments based session, Computer laboratory-based sessions, Workshops practices, Directed self- study, Problem based learning, Team work (cooperative learning), Field visits/training, 	 Written tests (mid and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment, Presentations.
 a3 Illustrate understanding of biomedical signal processing engineering ethics, side by side understanding of the fundamentals of healthcare technology, signal processing instrumentation, tissue engineering, biomaterials, biomechanics and clinical 	 Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Laboratory/Practical experiments based 	 Written tests (mid and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment,

Academy Development Center & Quality Insurance Dean of Engineering Quality Insurance Unite

Prepared By

engineering.	session,	• Presentations.
	• Computer laboratory- based sessions,	
	• Workshops practices,	
	• Directed self- study,	
	• Problem based learning,	
	• Team work (cooperative learning),	
	• Field visits/training,	
	• Mini/major project.	

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies			
and Assessment Strategies: Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
bl Design the biomedical signals processing systems which are used in medical equipment to meet desired needs within realistic constraints such as economic, environmental, social, political, ethical, health and safety.	 Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Laboratory/Practical experiments based session, Computer laboratory-based sessions, Workshops practices, Directed self- study, Problem based learning, 	 Written tests (mid and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment, Presentations. 	

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite Prepared By

b2 Categorize the biomedical	 Team work (cooperative learning), Field visits/training, Mini/major project. Interactive lectures & 	• Written tests (mid and
signals processing systems	examples,	final terms and
according to their specifications	• Tutorials,	quizzes),
and features.	 Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Laboratory/Practical experiments based session, Computer laboratory- 	 Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment, Presentations.
	 based sessions, Workshops practices, Directed self- study, Problem based learning, Team work (cooperative learning), Field visits/training, Mini/major project. 	

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:			
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
c1 Apply mathematical, simulation models, and IT software packages to design, and	 Interactive lectures & examples, Tutorials, 	• Written tests (mid and final terms and quizzes),	

implement the biomedical signals	• Videos demonstrations,	• Short reports,
processing systems effectively.	• Presentation/seminar,	 Lab\Project report
	• Interactive class discussions,	Practical lab performance
	• Case studies,	assessment,
	Laboratory/Practical experiments based session	 Coursework activities assessment, sPresentations
	 Computer laboratory- based sessions, 	• SI resentations.
	• Workshops practices,	
	• Directed self- study,	
	• Problem based learning,	
	• Team work (cooperative learning),	
	• Field visits/training,	
	• Mini/major project.	
c2 Evaluate the performance of	• Interactive lectures &	• Written tests (mid
medical equipment based on the	examples,	and final terms and
biomedical signals processing	• Tutorials,	quizzes),
systems used in them.	• Videos demonstrations,	 Jab/Project report
	• Presentation/seminar,	Practical lab
	Interactive class discussions	performance
	 Case studies. 	assessment,
	 Laboratory/Practical 	• Coursework activities
	experiments based session,	assessment,Presentations.
	• Computer laboratory- based sessions,	
	• Workshops practices,	

• Directed self- study,
• Problem based learning,
• Team work (cooperative learning),
• Field visits/training,
• Mini/major project.

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
d1 Function effectively in different work environments as an individual, and as a member or leader in multi- disciplinary teams.	 Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Laboratory/Practical experiments based session, Computer laboratory-based sessions, Workshops practices, Directed self- study, Problem based learning, Team work (cooperative learning), Field visits/training, Mini/major project. 	 Written tests (mid and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment, Presentations. 				

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite Prepared By

IV. Course Content:							
	A – Theoretical	Aspect:					
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours		
1	Introduction	a1, a2, a3	 Overview of digital signal processing (DSP). Overview of biomedical applications of DSP. 	1	2		
2	Discrete-Time Signals and Systems	a1, a2, a3	 Sampling and discrete form of signals. Discrete systems Convolution Difference equations 	1	2		
3	Discrete-Time Fourier Analysis	a1, a2, a3, b1,b2	 Review of Continuous Fourier transform (CFT) Discrete-time Fourier transform (DTFT). Frequency domain analysis of linear time invariant systems Analysis of sampling and reconstruction of analog signals. 	1	2		
4	The z-Transform	a1, a2, a3, b1,b2	 Definition and of forward z- transform 	1	2		
5	The z-Transform	a1, a2, a3, b1,b2	 Inversion of z-transform Solution of difference equations 		2		
6	Sampling	a1, a2, a3, b1,b2, c1, c2	 Representation of sampling in the frequency domain 	1	2		

			 Recovery of continuous domain signals from discrete samples Discrete-time processing of continuous signals Quantization errors and other sources of error. 		
7	The Discrete Fourier Transform (DFT)	a1, a2, a3, b1,b2, c1, c2	 The discrete Fourier series analysis Sampling and reconstruction in the z-domain The discrete Fourier transform (DFT) Linear and circular convolution using DFT The Fast Fourier Transform (FFT) 		2
8	Mid-Term Theoretical Exam	a1, a2, a3, b1,b2, c1, c2	- All Previous Topics	1	2
9	Introduction to Digital Filters	a1, a2, a3, b1,b2, c1, c2	 FIR vs. IIR filters Implementation/realization structures 	1	2
10	FIR Filter Design	a1, a2, a3, b1,b2, c1, c2	 Properties of linear phase FIR filters Window design techniques Frequency sampling design techniques Optimal equi-ripple design technique 	1	2
11	IIR Filter Design	a1, a2, a3, b1,b2, c1, c2	 Characteristics of classical analog filters 	1	2

Academy Development Center Dean of Engineering Quality Insurance Unite Pre & Quality Insurance

11

Prepared By

			 Design using transformation methods 		
12	Report & Presentation	a1, a2, a3, b1,b2, c1, c2, d1	 3 to 4 students make report and present the seminar on the one biomedical signal processing. 	1	2
13	Application in medical signals.	a1, a2, a3, b1,b2, c1, c2, d1	 ECG Artifact Removal 	1	2
14	Application in medical signals.	a1, a2, a3, b1,b2, c1, c2	– ECG Arrhythmia detection	1	2
15	Application in medical signals.	a1, a2, a3, b1,b2, c1, c2	 Brain-Computer Interface Signal Processing 	1	2
16	Final Theoretical Exam	a1, a2, a3, b1,b2, c1, c2	- All Topics	1	2
Number	of Weeks /and Units Pe	er Semester		16	32

B - Pra	B - Practical Aspect: (if any)						
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes			
1	- Introduction to Signal Processing and Matlab software	1	2	a1, a2, a3			
2	 Discrete-Time Signals and Operations by using Matlab software 	1	2	a1, a2, a3, b1,b2, c1, c2			
3	 Continuous-Time Signals and Operations by using Matlab software 	1	2	a1, a2, a3, b1,b2, c1, c2			
4	- Frequency Analysis of Discrete-Time Signals by using Matlab software	1	2	a1, a2, a3, b1,b2, c1, c2			
5	- Frequency Analysis of Continuous-	1	2	a1, a2, a3, b1,b2, c1, c2			

	Time Signals by using Matlab software			
6	- Sampling Theory and Practice by using Matlab software	1	2	a1, a2, a3, b1,b2, c1, c2
7	- Midterm Practical Exam	1	2	a1, a2, a3, b1,b2, c1, c2
8	- Frequency Analysis of Discrete-Time Systems by using Matlab software	1	2	a1, a2, a3, b1,b2, c1, c2
9	 Frequency Analysis of Continuous- Time Systems by using Matlab software 	1	2	a1, a2, a3, b1,b2, c1, c2
10	- Applications of biomedical signals processing (ECG Artifact Removal).	1	2	a1, a2, a3, b1,b2, c1, c2
11	- Applications of biomedical signals processing (ECG Arrhythmia detection).	1	2	a1, a2, a3, b1,b2, c1, c2
12	- Applications of biomedical signals processing (Brain-Computer Interface Signal Processing).	1	2	a1, a2, a3, b1,b2, c1, c2
13	- Applications of biomedical signals processing (Brain-Computer Interface Signal Processing).	1	2	a1, a2, a3, b1,b2, c1, c2, d1
14	- Practical Project	1	2	a1, a2, a3, b1,b2, c1, c2, d1
15- Final Practical Exam1			2	a1, a2, a3, b1,b2, c1, c2
	Number of Weeks /and Units Per Semeste	15	30	

Academy Development Center & Quality Insurance

Dean of Engineering

ng Quality Insurance Unite

Prepared By

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Tutorials,
- Videos demonstrations,
- Presentation/seminar,
- Interactive class discussions,
- Case studies,
- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Workshops practices,
- Directed self- study,
- Problem based learning,
- Team work (cooperative learning),
- Field visits/training,
- Mini/major project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Short reports,
- Lab\Project report
- Practical lab performance assessment,
- Coursework activities assessment,
- Presentations.

VII. Assignments:						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1						

2				
3				
4				
5				
Total				

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1	Quiz 1	6	5	3.33%	a1, a2, a3, b2,c1, c2		
2	Midterm Practical Exam	7	20	13.33%	a1, a2, a3, b2,c1, c2		
3	Midterm Theoretical Exam	8	10	6.67%	a1, a2, a3, b2,c1, c2		
4	Report, Presentation, and Project	12, 13	20	13.33%	a1, a2, a3, b2,c1, c2, d1		
5	Quiz 2	12	5	3.33%	a1, a2, a3, b2,c1, c2		
6	Final Practical Exam	15	30	20%	a1, a2, a3, b2,c1, c2		
7	Final Theoretical Exam	16	60	40%	a1, a2, a3, b2,c1, c2		
	Total		150	100%			

IX. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

	 John R. Buck, Alan V. V. Oppenheim, Alan V. Oppenheim, and Ronald W. Schafer, 2021, Discrete-Time Signal Processing, 3rd Edition, Prentice-Hall Signal Processing Series C. Sidney Burrus, James C. McClellan, et al., 1993, Computer-Based Exercises for Signal Processing Using Matlab, Prentice Hall.
2- Es	sential References.
	1- ALAN OPPEHIOHN, 2015, "Signal processing", 3 rd Ed, USA, Elsevier Inc.
	2- Hykin., 2017, "Principles of signal processing Engineering", UK, Artech House.
	3- Joseph D. Bronzino, Donald R. Peterson., 2015, "The signal processing Engineering Handbook: .", 4 th Ed, USA, CRC Press.
3- El	ectronic Materials and Web Sites <i>etc</i> .
	Websites:
	 1- The Biomedical Engineering Society (BMES) is the professional society for biomedical engineering and bioengineering. Founded in early 1968. https://www.bmes.org/
	 2- BMES is a Sponsored Student Organization (SSO) comprised of a group of students who are interested in the biomedical engineering field and in networking with industry, peers, faculty, and alumni. http://www.bmes.bme.umich.edu/
	Journals:
	 Biomedical Engineering journal covers recent advances in the growing field of biomedical technology, instrumentation, and administration. https://www.springer.com/journal/10527
	 4- Journal of Biomedical Engineering provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject. https://www.sciencedirect.com/journal/journal-of-biomedical-engineering
	Other Web Sources:
	5- Biomedical engineering forums. https://www.ebme.co.uk/forums/

X. Co	ourse Policies:
1	Class Attendance:
	A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2	Tardy:
	For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality:
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour
	from exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam
4	Assignments & Projects:
	In general one assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
	If the examination committee proofed a plagiarism of a student, he/she will be
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university or according to the university roles.
7	Other policies:

Mobile phones are not allowed to use during a class lecture. It must be closed;
otherwise the student will be asked to leave the lecture room.
Mobile phones are not allowed in class during the examination.
Lecture notes and assignments might be given directly to students using soft or hard copy.

Template for Course Plan (Syllabus)

Biomedical Signals Processing- BE225

	I. Course Identification and General Information:					
1	Course Title:	Biomedical Signals Processing				
2	Course Code & Number:	BE225				
			Theory	Hours	Lah Hours	
3	Credit Hours:	Hours	Lecture	Exercise	Lab. Hours	
		3	2		2	
4	Study Level/ Semester at which this Course is offered:	3 rd Level / 2 nd Semester				
5	Pre –Requisite (if any):	Probability and Statistics for Engineers (BR231), Biomedical Sensors and Measurements (BE224).				
6	Co –Requisite (if any):	Analog Control Systems (BE251).				
7	Program (s) in which the Course is Offered:	Bachelor of Biomedical Engineering				
8	Language of Teaching the Course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Dr. Mohammed Al-olofi				
11	Reviewed by:	Dr. Waleed Al-Talbi				
12	Date of Approval:					

II. Course Description:

The biomedical signals processing course aims to give the student knowledge of the Signal representation: Continuous-time and Discrete-time signals, overview of analog and discrete-time

signals properties, Fourier analysis, and time-frequency analysis. Then study discrete-time filter, the Z-transform, and sampling. The convolution theorem for the Fourier and z-transform will be presented. Next, Various estimation, detection and filtering methods are developed and demonstrated on biomedical signals and application on EEG-ECG signals are introduced in detail. Throughout Computer-based lab graduates will develop their programming skills related to the development of algorithms for biomedical signal processing.

III.	(مخرجات تعلم المقرر) : (Course Intended Learning Outcomes (CILOs)
A. Kn to:	owledge and Understanding: Upon successful completion of the course, students will be able
a1	Demonstrate understanding the basic principles, and theories in biomedical signal processing engineering fundamentals.
a2	Describe the connections between the variety of fields and specialties in biomedical signal processing engineering and the wide range of medical needs, techniques, working principles and instruments associates with signal processing engineering.
a3	Illustrate understanding of biomedical signal processing engineering ethics, side by side understanding of the fundamentals of healthcare technology, signal processing instrumentation, tissue engineering, biomaterials, biomechanics and clinical engineering.
B. Int	ellectual Skills: Upon successful completion of the course, students will be able to:
b1	Design the biomedical signals processing systems which are used in medical equipment to
	meet desired needs within realistic constraints such as economic, environmental, social,
	political, ethical, health and safety.
b2	Categorize the biomedical signals processing systems according to their specifications and features.
C. Pro	ofessional and Practical Skills: Upon successful completion of the course, students will be able
to:	
c1	Apply mathematical, simulation models, and IT software packages to design, and implement
	the biomedical signals processing systems effectively.
c2	Evaluate the performance of medical equipment based on the biomedical signals processing

III.	(مخرجات تعلم المقرر) : (Course Intended Learning Outcomes (CILOs)
	systems used in them.
D. Tra	ansferable Skills: Upon successful completion of the course, students will be able to:
d1	Function effectively in different work environments as an individual, and as a member or leader in multi-disciplinary teams.

I	IV. Course Contents:			
A.	Theoretical Aspect:			
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
1	Introduction	 Overview of digital signal processing (DSP). Overview of biomedical applications of DSP. 	1	2
2	Discrete-Time Signals and Systems	 Sampling and discrete form of signals. Discrete systems Convolution Difference equations 	1	2
3	Discrete-Time Fourier Analysis	 Review of Continuous Fourier transform (CFT) Discrete-time Fourier transform (DTFT). Frequency domain analysis of linear time invariant systems Analysis of sampling and reconstruction of analog signals. 	1	2
4	The z-Transform	 Definition and of forward z- transform 	1	2

Academy Development Center & Quality Insurance Dean of Engineering Quality Insurance Unite Prepared By

Γ	IV. Course Contents:			
A.	A. Theoretical Aspect:			
No.	Units/Topics List Sub Topics List Number of Weeks Contact			
5	The z-Transform	Inversion of z-transformSolution of difference equations	1	2
6	Sampling	 Representation of sampling in the frequency domain Recovery of continuous domain signals from discrete samples Discrete-time processing of continuous signals Quantization errors and other sources of error. 	1	2
7	The Discrete Fourier Transform (DFT)	 The discrete Fourier series analysis Sampling and reconstruction in the z-domain The discrete Fourier transform (DFT) Linear and circular convolution using DFT The Fast Fourier Transform (FFT) 	1	2
8	Mid-Term Theoretical Exam	- All Previous Topics	1	2
9	Introduction to Digital Filters	 FIR vs. IIR filters Implementation/realization structures 	1	2
10	FIR Filter Design	 Properties of linear phase FIR 	1	2

Γ	IV. Course Contents:			
A.	A. Theoretical Aspect:			
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
		 filters Window design techniques Frequency sampling design techniques Optimal equi-ripple design technique 		
11	IIR Filter Design	 Characteristics of classical analog filters Design using transformation methods 	1	2
12	Report & Presentation	 3 to 4 students make report and present the seminar on the one biomedical signal processing. 	1	2
13	Application in medical signals.	 ECG Artifact Removal 	1	2
14	Application in medical signals.	– ECG Arrhythmia detection	1	2
15	Application in medical signals.	 Brain-Computer Interface Signal Processing 	1	2
16	Final Theoretical Exam	- All Topics	1	2
	Number of Weeks /and Units Per Semester1632			

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By

B.	Case Studies and Practical Aspect:		
No.	Tasks/ Experiments	Number of Weeks	Contact Hours
1	- Introduction to Signal Processing and Matlab software	1	2
2	- Discrete-Time Signals and Operations by using Matlab software	1	2
3	 Continuous-Time Signals and Operations by using Matlab software 	1	2
4	 Frequency Analysis of Discrete-Time Signals by using Matlab software 	1	2
5	 Frequency Analysis of Continuous-Time Signals by using Matlab software 	1	2
6	- Sampling Theory and Practice by using Matlab software	1	2
7	- Midterm Practical Exam	1	2
8	 Frequency Analysis of Discrete-Time Systems by using Matlab software 	1	2
9	- Frequency Analysis of Continuous-Time Systems by using Matlab software	1	2
10	- Applications of biomedical signals processing (ECG Artifact Removal).	1	2
11	- Applications of biomedical signals processing (ECG Arrhythmia detection).	1	2
12	- Applications of biomedical signals processing (Brain- Computer Interface Signal Processing).	1	2

B.	B. Case Studies and Practical Aspect:		
No.	Tasks/ Experiments	Number of Weeks	Contact Hours
13	- Applications of biomedical signals processing (Brain- Computer Interface Signal Processing).	1	2
14	- Practical Project	1	2
15	- Final Practical Exam	1	2
	Number of Weeks /and Units Per Semester	15	30

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Tutorials,
- Videos demonstrations,
- Presentation/seminar,
- Interactive class discussions,
- Case studies,
- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Workshops practices,
- Directed self- study,
- Problem based learning,
- Team work (cooperative learning),
- Field visits/training,
- Mini/major project.

VI. Assessment Methods of the Course:

• Written tests (mid and final terms and quizzes),

VI. Assessment Methods of the Course:

- Short reports,
- Lab\Project report
- Practical lab performance assessment,
- Coursework activities assessment,
- Presentations.

VII. Assignments:				
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1				
2				
3				
4				
5				
Total				

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	
1	Quiz 1	6	5	3.33%	
2	Midterm Practical Exam	7	20	13.33%	
3	Midterm Theoretical Exam	8	10	6.67%	
4	Report, Presentation, and Project	12, 13	20	13.33%	

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:			
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment
5	Quiz 2	12	5	3.33%
6	Final Practical Exam	15	30	20%
7	Final Theoretical Exam	16	60	40%
	Total 150 100%			

IX. Learning Resources:

• Written in the following order:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two):

- John R. Buck, Alan V. V. Oppenheim, Alan V. Oppenheim, and Ronald W. Schafer, 2021, Discrete-Time Signal Processing, 3rd Edition, Prentice-Hall Signal Processing Series
- 2- C. Sidney Burrus, James C. McClellan, et al., 1993, **Computer-Based Exercises for Signal Processing Using Matlab**, Prentice Hall.

2- Essential References:

- 3- ALAN OPPEHIOHN, 2015, "Signal processing", 3rd Ed, USA, Elsevier Inc.
- 4- Hykin., 2017, "Principles of signal processing Engineering", UK, Artech House.
- 5- Joseph D. Bronzino, Donald R. Peterson., 2015, "The signal processing Engineering Handbook: .", 4th Ed, USA, CRC Press.

3- Electronic Materials and Web Sites etc.:

Websites:

- The Biomedical Engineering Society (BMES) is the professional society for biomedical engineering and bioengineering. Founded in early 1968. https://www.bmes.org/
- 2- BMES is a Sponsored Student Organization (SSO) comprised of a group of students who are

IX. Learning Resources:

interested in the biomedical engineering field and in networking with industry, peers, faculty, and alumni.

http://www.bmes.bme.umich.edu/

Journals:

- 3- *Biomedical Engineering journal* covers recent advances in the growing field of biomedical technology, instrumentation, and administration. https://www.springer.com/journal/10527
- 4- Journal of Biomedical Engineering provides a forum for the publication of the latest developments in biomedical engineering, and reflects the essential multidisciplinary nature of the subject.

https://www.sciencedirect.com/journal/journal-of-biomedical-engineering

Other Web Sources:

5- Biomedical engineering forums. https://www.ebme.co.uk/forums/

X. Co	ourse Policies:
1	Class Attendance:
	A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2	Tardy:
	For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality:
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour

	from exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam
4	Assignments & Projects:
	In general one assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
	If the examination committee proofed a plagiarism of a student, he/she will be
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university or according to the university roles.
7	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed;
	otherwise the student will be asked to leave the lecture room.
	- Mobile phones are not allowed in class during the examination.
	- Lecture notes and assignments might be given directly to students using soft or
	hard copy.