

Course Specification of Bioelectronics

I. C	I. Course Identification and General Information:					
1	Course Title:	Bioelectronics				
2	Course Code & Number:	BE227				
			C.			TOTAL
3	Credit hours:	Th. 2	Seminar	Pr 2	Tr.	3
4	Study level/ semester at which this course is offered:	3 rd Level / 2 nd Semester				
5	Pre –requisite (if any):	None				
6	Co –requisite (if any):	None				
7	Program (s) in which the course is offered:	Biomedical Engineering Program				
8	Language of teaching the course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Dr. Waleed Al-talabi				
11	Reviewed by:	Dr. Mohammed Al-olofi				
12	Date of Approval:					

Course Code (BE227)

Academy Development Center & Quality Insurance Dean of Engineering

Quality Insurance Unit

Prepared By

I. Course Description:

The Bioelectronics course aims to introduce students the application of electronics engineering principles and technologies to biology, medicine, and health science. The students will learn, the development of a communication interface between biological materials and electronic components. The course covers the basic concepts of chemical, biochemical, and biophysical, cell and their basic building blocks, spectroscopic techniques, biosensors, interfacing biological molecules with semiconductors for bioelectronic sensing, implantable bioelectronics, stretchable and wearable bioelectronics, and some chosen advanced bioelectronics materials. The course focuses on biomedical applications pertaining to the human body for diagnostics, therapeutics, and advanced invivo systems.

III	Course Intended learning outcomes (CILOs) of the COURSE (maximum 8CILOs)	Referenced PILOS (Only write code number of referenced Program Intended learning outcomes)					
	Knowledge and Understanding: Upon successful completion of the undergraduate Biomedical Engineering Program, the graduates will be able to:						
a1 a2	Explain the physiological measurements and associated transducers characteristics that allow the sensing of clinically and health-related variables such as those relating to vital signs. Extend principles of engineering to the	A1 Describe and explain the underlying mathematical methods and theories; life scientific-principles; and engineering core concepts related to the Biomedical Engineering context.					
	development of biosensors and bioelectronic devices.	A2 Clarify the design principles and techniques and the engineering materials characteristics and how these are relevant to the developments and technologies in a biomedical systems context.					
B. Cognitive/ Intellectual Skills: Upon successful completion of the undergraduate Biomedical Engineering Program, the graduates will be able to:							
b1	Employ the principles of signal	B1 Apply engineering principles; basic of life- science; mathematical theories; and modern					
Academy Development Center Dean of Engineering Quality Insurance Unit Prepared By & Quality Insurance							

	transduction between biology and electronics.	tools professionally in modelling, analyzing, designing, and constructing physical digital systems; devices and/or processes relevant to Biomedical Engineering fields.
b2	Design and implement appropriate electronic instrumentation and software for bio-signal conditioning and extraction within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.	B3 Design the biomedical systems or processes within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.
	Professional and Practical Skills: Upon succe Engineering Program, the graduates will be al	essful completion of the undergraduate Biomedical ble to:
c1	Model and analyze biological systems using the techniques of electronic.	C2 Use a wide range of analytical tools, techniques, IT, modern engineering tools, software packages and develop required computer programs to solve, modeling and analyzing Biomedical Engineering problems.
c2	Use computational facilities and techniques, measuring instruments, workshops and laboratory equipment to design and conduct experiments, as well as measure, analyze, interpret and present data from living systems.	C3 Use computational facilities and techniques, measuring instruments, workshops and laboratory equipment to design and conduct experiments, collect, analyze and interpret data and present results in the biomedical systems practice.
	ransferable Skills: Upon successful completi ram, the graduates will be able to:	on of the undergraduate Biomedical Engineering
d1	Recognize the needs for, and engage in life-long self-learning.	D3 Recognize the needs for, and engage in life- long self-learning.

d2Refer to relevant literatures, latest
researches, and evaluate novel trends in
the bioelectronics field.D4Refer to relevant literatures, search for
information, use databases, as well as,
evaluate information and evidence from
various sources in biomedical engineering.

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

reaching strategies and Assessment strategies.							
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies					
a1. Explain the physiological measurements and associated transducers characteristics that allow the sensing of clinically and health-related variables such as those relating to vital signs.	 Interactive lectures & examples, Presentation/seminar, Directed self- study. 	 Written tests (mid and final terms and quizzes), Home works and assignments, Presentations. 					
a2. Extend principles of engineering to the development of biosensors and bioelectronic devices.	 Interactive lectures & examples, Presentation/seminar, Interactive class discussions, Directed self- study. 	 Written tests (mid and final terms and quizzes), Home works and assignments, Presentations. 					

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:							
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies					
b1 . Employ the principles of signal transduction between biology and electronics.	 Interactive lectures & examples, Presentation/seminar, Interactive class 	 Written tests (mid and final terms and quizzes), Lab\Project report 					

	 discussions, Laboratory/Practical experiments based session, Computer laboratory- based sessions, Workshops practices. 	 Practical lab performance assessment, Home works and assignments, Presentations.
b2 . Design and implement appropriate electronic instrumentation and software for bio-signal conditioning and extraction within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.	 Interactive lectures & examples, Presentation/seminar, Interactive class discussions, Laboratory/Practical experiments based session, Computer laboratory-based sessions, Team work (cooperative learning), Mini/major project. 	 Written tests (mid and final terms and quizzes), Lab\Project report Practical lab performance assessment, Home works and assignments, Presentations.

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning OutcomesTeaching strategiesAssessment Strategiesc1. Model and analyze biologicalInteractive lectures &• Written tests (mid	Teaching Strategies and Assessment Strategies.					
c1. Model and analyze biological Interactive lectures & Written tests (mid	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
systems using the techniques of electronic.• Interactive class discussions,• Interactive class discussions,• Lab\Project report• Laboratory/Practical experiments based session,• Home works and	systems using the techniques of	 Presentation/seminar, Interactive class discussions, Laboratory/Practical experiments based 	 quizzes), Lab\Project report Practical lab performance assessment, 			

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unit

Prepared By

	 Computer laboratory- based sessions, Team work (cooperative learning), Mini/major project. 	assignments,Presentations.
c2. Use computational facilities and techniques, measuring instruments, workshops and laboratory equipment to design and conduct experiments, as well as measure, analyze, interpret and present data from living systems.	 Interactive lectures & examples, Interactive class discussions, Laboratory/Practical experiments based session, Computer laboratory-based sessions, Directed self- study. 	 Written tests (mid and final terms and quizzes), Lab\Project report Practical lab performance assessment, Home works and assignments.

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:						
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
d1. Recognize the needs for, and engage in life-long self-learning.	 Interactive lectures & examples, Presentation/seminar, Directed self- study. 	 Written tests (mid and final terms and quizzes), Home works and assignments, 				
		• Presentations.				
d2 . Refer to relevant literatures, latest researches, and evaluate novel trends in the bioelectronics field.	 Interactive lectures & examples, Presentation/seminar, Interactive class discussions, Directed self- study. 	 Written tests (mid and final terms and quizzes), Home works and assignments, Presentations. 				

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unit

Prepared By

IV. Course Content:						
A – Theoretical Aspect:						
Order	Units/Topics List	Sub Topics List	Number of Weeks	contact hours	Learning Outcomes	
1	Introduction	 Introduction to the course. Course outlines. Project description. What is Bioelectronics? Introduction to bioelectronics. 	1	2	a1, d1	
2	Basic Chemical and Biochemical Concepts	 Energy and chemical reactions. Water and hydrogen bonds. Acids, bases and ph. 	1	2	a1	
3	Cells and their Basic Building Blocks	 Lipids and bio-membranes. Carbohydrates and sugars. Amino acids, polypeptides and proteins. Nucleotides, Nucleic Acids, DNA, RNA and Genes. Cells and pathogenic bioparticles. 	1	2	a1	
4	Basic Biophysical Concepts and Methods	 Electrostatic interactions. Hydrophobic and hydration forces. Osmolarity, tonicity and osmotic pressure. Transport of ions and molecules across cell membranes. Electrochemical gradients and ion distributions across membranes. 	2	4	a1, b1, c1	

		- Osmotic properties of cells.			
		 Probing the electrical properties of cells. 			
		 Membrane equilibrium potentials. 			
		 Nernst potential and Nernst equation. 			
		 The equilibrium (resting) membrane potential. 			
		– Membrane action potential.			
		– Channel conductance.			
		– The voltage clamp.			
		 Patch-clamp recording. 			
		– Electrokinetic effects.			
		– Introduction.			a1, b1, c1
-	Spectroscopic Techniques	- Classes of spectroscopy.	1	2	
5		– The beer-lambert law.			
		– Impedance spectroscopy.			
		– Introduction.			a1, a2, b1,
		– Basic principle of a biosensor.			b2, c2
		– Immobilisation of the biosensing			
		agent.			
6	Biosensors	 Biosensor parameters. 	1	2	
		- Classification of biosensors			
		based on transducers.			
		– Amperometric biosensors.			
		 Potentiometric biosensors. 			1 0 1 1
7	Mid-Term	 All previous topics. 	1	2	a1, a2, b1, b2, c1, c2,
	Theoretical Exam	r · · · · · · · · · · · · · · · · · · ·	-	_	d1

Academy Development Center & Quality Insurance Dean of Engineering Quality Insurance Unit Prepared By

8	Biosensors (Continue)	 Conductometric and impedimetric biosensors. Sensors based on antibody– antigen interaction. Photometric biosensors. Biomimetic sensors. Glucose sensors. Biocompatibility of implantable sensors. 	1	2	a1, a2, b1, b2, c2
9	Interfacing Biological Molecules with Semiconductors for Bioelectronic Sensing	 Introduction. Semiconductor substrates for bioelectronics. Chemical functionalization. Electrical characterization of DNA-modified surfaces. Extension to antibody-antigen detection. 	1	2	a1, a2, b1, b2, c1, c2
10	Implantable Bioelectronics	 Introduction. Biomedical implantable systems: history, design, and trends. Interaction with implanted devices through implanted user interfaces. Neural interfaces: from human nerves to electronics. 	1	2	a1, a2, b1, d1, d2
11	Stretchable and Wearable Bioelectronics	 Introduction. Materials and structural design for flexible/stretchable sensors. Flexible/stretchable sensor devices for wearable 	1	2	a1, a2, b1, d1, d2

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unit Prepared By

		bioelectronics.			
12	Advanced Bioelectronics Materials	 Recent advances in bioelectronics. Micro- and nanoelectrodes. Radio-frequency biosensors. Electropolymerized materials for biosensors. 	1	2	a1, a2, b1, d1, d2
13	Project Presentation	 Student's presentations. 	2	4	b1, b2, c1, c2, d1, d2
14	Final Theoretical Exam	All topics.	1	2	a1, a2, b1, b2, c1, c2, d1, d2
Number of Weeks /and Units Per Semester			16	32	

B - P	B - Practical Aspect:						
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes			
1	A laboratory exercise according to the theory lecture.	6	12	b1, b2, c1, c2, d1			
2	Mid-Term Practical Exam	1	2	b1, b2, c1, c2, d1			
3	3 A laboratory exercise according to the theory lecture.		14	b1, b2, c1, c2, d1			
4	Final Practical Exam	1	2	b1, b2, c1, c2, d1			
	Number of Weeks /and Units Per Semester1530						

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Presentation/seminar,
- Interactive class discussions,
- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Directed self- study,
- Team work (cooperative learning),
- Mini/major project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Lab\Project report
- Practical lab performance assessment,
- Home works and assignments,
- Presentations.

VII. Assignments:

VII. Assignments.						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1	Lectures 1,2,3, and 4 Assignment	a1, b1, c1, d1	5	2		
2	Lectures 5,6,7, and 9 Assignment	a1, a2, b1, b2, c1, c2, d1	10	2		
3	Lectures 10,11,12, and 13 Assignment	a1, a2, b1, b2, c1, c2, d1, d2	14	2		
$\begin{array}{c} 4 \\ 4 \end{array} \begin{array}{c} \text{Project/Presentation} \\ d2 \end{array} \begin{array}{c} b1, b2, c1, c2, d1, \\ d2 \end{array} \begin{array}{c} 15 \\ \end{array}$				4		
Total						

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1	Project/ Assignments	5,10,14,15	10	6.67%	a1, a2, b1, b2, c1, c2, d1, d2		
2	Quiz 1	4	5	3.33%	a1, b1		
3	Midterm Theoretical Exam	8	20	13.33%	a1, a2, b1, b2, c1, c2, d1		
4	Quiz 2	12	5	3.33%	a1, a2, b1, b2		
5 Midterm Practical Exam		9	20	13.33%	b1, b2, c1, c2		
6 Final Practical Exam		15	30	20%	a1, a2, b1, b2, c1, c2		
7 Final Theoretical Exam		16	60	40%	a1, a2, b1, b2, c1, c2, d1, d2		
	Total		150	100%			

IX. L	IX. Learning Resources:						
1- Req	uired T	extbook(s) (maximum two).					
	 Ronald Pethig, Stewart Smith, 2013, "Introductory Bioelectronics for Engineers and Physical Scientists", UK, John Wiley & Sons, Ltd. 						
	2.	Sandro Carrara, Krzysztof Iniewski, 2015, "Handbook of Bioelectronics: Directly Interfacing Electronics and Biological Systems", UK, Cambridge University Press.					
2- Es	sential	References.					
	1.	Itamar Willner, Eugenii Katz, 2005, " Bioelectronics from Theory to Applications ", Germany, WILEY-VCH Verlag GmbH & Co. KGaA Weinheim.					
	2.	Chandran Karunakaran, Kalpana Bhargava, Robson Benjamin, 2015, " Biosensors and Bioelectronics ", USA, Elsevier Inc.					

3.	Kunal Pal, Heinz-Bernhard Kraatz, Anwesha Khasnobish, Sandip Bag, Indranil
	Banerjee, Usha Kuruganti, 2019, "Bioelectronics and Medical Devices: FromMaterials to Devices—Fabrication, Applications, and Reliability", UK, Elsevier Ltd.
3- Electroni	c Materials and Web Sites <i>etc</i> .
W	ebsites:
1-	Our lab works at the interface of materials science, electronics, and neurobiology with the goal of advancing the understanding and treatment of disorders of the nervous system. https://bioelectronics.mit.edu/
2-	We are an interdisciplinary group of scientists, engineers and clinicians interested in interfacing electronics with living systems. https://bioelectronics.eng.cam.ac.uk/
Jo	urnals:
1-	International Journal of Biosensors & Bioelectronics (IJBSBE) is a worldwide peer reviewed journal devoted to design, research, development and application of biosensors and bioelectronics. https://medcraveonline.com/IJBSBE/
2-	Biosensors and Bioelectronics is the principal international journal devoted to research, design development and application of biosensors and bioelectronics.
	https://www.journals.elsevier.com/biosensors-and-bioelectronics
3-	Journal of Biosensors and Bioelectronics (JBSBE) is an Open Access peer reviewed journal covers advancements in bio actuators, bioelectronics, biosensor applications, biosensor packaging and assembly, biosensors clinical validation, biosensors in drug delivery, chemical sensor, immune sensors, integrated nano scale devices and microfluidics biosensors https://www.hilarispublisher.com/biosensors-bioelectronics.html
	https://www.infartspublisher.com/biosensors-bioelectronics.ntmi
X. Course	Policies:
1 Class A	Attendance:

A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university

r	
	Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2	Tardy:
	For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality:
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour
	from exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam
4	Assignments & Projects
	In general one assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
	If the examination committee proofed a plagiarism of a student, he/she will be
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university or according to the university roles.
7	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed;
	otherwise the student will be asked to leave the lecture room.
	- Mobile phones are not allowed in class during the examination.
	- Lecture notes and assignments might be given directly to students using soft or hard copy.

Template for Course Plan (Syllabus)

Bioelectronics BE227

	I. Course Identification and General Information:					
1	Course Title:	Bioelectronics				
2	Course Code & Number:	BE227				
		Credit	Theory	Hours	Lab. Hours	
3	Credit Hours:	Hours	Lecture	Exercise		
		3	2		2	
4	Study Level/ Semester at which this Course is offered:	3 rd Level / 2 nd Semester				
5	Pre –Requisite (if any):	None				
6	Co –Requisite (if any):	None				
7	Program (s) in which the Course is Offered:	Bachelor of Biomedical Engineering				
8	Language of Teaching the Course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Dr. Waleed Al-talabi				
11	Reviewed by:	Dr. Mohammed Al-olofi				
12	Date of Approval:					

Dean of Engineering

Quality Insurance Unit

II. Course Description:

The Bioelectronics course aims to introduce students the application of electronics engineering principles and technologies to biology, medicine, and health science. The students will learn, the development of a communication interface between biological materials and electronic components. The course covers the basic concepts of chemical, biochemical, and biophysical, cell and their basic building blocks, spectroscopic techniques, biosensors, interfacing biological molecules with semiconductors for bioelectronic sensing, implantable bioelectronics, stretchable and wearable bioelectronics, and some chosen advanced bioelectronics materials. The course focuses on biomedical applications pertaining to the human body for diagnostics, therapeutics, and advanced invivo systems.

III. Course Intended Learning Outcomes (CILOs): (مخرجات تعلم المقرر)

A. Kr to:	owledge and Understanding: Upon successful completion of the course, students will be able
a1	Explain the physiological measurements and associated transducers characteristics that allow the sensing of clinically and health-related variables such as those relating to vital signs.
a2	Extend principles of engineering to the development of biosensors and bioelectronic devices.
B. Int	ellectual Skills: Upon successful completion of the course, students will be able to:
b1	Employ the principles of signal transduction between biology and electronics.
b2	Design and implement appropriate electronic instrumentation and software for bio-signal conditioning and extraction within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.
C. Pr oto:	ofessional and Practical Skills: Upon successful completion of the course, students will be able
c1	Model and analyze biological systems using the techniques of electronic.
c2	Use computational facilities and techniques, measuring instruments, workshops and laboratory equipment to design and conduct experiments, as well as measure, analyze, interpret and present data from living systems.

III.	(مخرجات تعلم المقرر) : (Course Intended Learning Outcomes (CILOs)					
D. Tr	D. Transferable Skills: Upon successful completion of the course, students will be able to:					
d1	Recognize the needs for, and engage in life-long self-learning.					
d2	Refer to relevant literatures, latest researches, and evaluate novel trends in the bioelectronics field.					

Γ	IV. Course Contents:					
A.	A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
1	Introduction	 Introduction to the course. Course outlines. Project description. What is Bioelectronics? Introduction to bioelectronics. 	1	2		
2	Basic Chemical and Biochemical Concepts	 Energy and chemical reactions. Water and hydrogen bonds. Acids, bases and ph. 	1	2		
3	Cells and their Basic Building Blocks	 Lipids and bio-membranes. Carbohydrates and sugars. Amino acids, polypeptides and proteins. Nucleotides, Nucleic Acids, DNA, RNA and Genes. Cells and pathogenic bioparticles. 	1	2		
4	Basic Biophysical Concepts and Methods	 Electrostatic interactions. Hydrophobic and hydration forces. Osmolarity, tonicity and osmotic 	2	4		

I	IV. Course Contents:					
A.	A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
		 pressure. Transport of ions and molecules across cell membranes. Electrochemical gradients and ion distributions across membranes. Osmotic properties of cells. Probing the electrical properties of cells. Membrane equilibrium potentials. Nernst potential and Nernst equation. The equilibrium (resting) membrane potential. Membrane action potential. Channel conductance. The voltage clamp. Patch-clamp recording. Electrokinetic effects. 				
5	Spectroscopic Techniques	 Introduction. Classes of spectroscopy. The beer-lambert law. Impedance spectroscopy. 	1	2		
6	Biosensors	 Introduction. Basic principle of a biosensor. Immobilisation of the biosensing 	1	2		

Academy Development Center Dean & Quality Insurance

Dean of Engineering Quality Insurance Unit Prepared By

Γ	IV. Course Contents:			
A.	A. Theoretical Aspect:			
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
		 agent. Biosensor parameters. Classification of biosensors based on transducers. Amperometric biosensors. potentiometric biosensors. 		
7	Mid-Term Theoretical Exam	 All previous topics. 	1	2
8	Biosensors (Continue)	 Conductometric and impedimetric biosensors. Sensors based on antibody-antigen interaction. Photometric biosensors. Biomimetic sensors. Glucose sensors. Biocompatibility of implantable sensors. 	1	2
9	Interfacing Biological Molecules with Semiconductors for Bioelectronic Sensing	 Introduction. Semiconductor substrates for bioelectronics. Chemical functionalization. Electrical characterization of DNA-modified surfaces. Extension to antibody-antigen detection. 	1	2

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unit Prepared By

19

	IV. Course Contents:			
Theoretical Aspect: Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
Implantable Bioelectronics	 Introduction. Biomedical implantable systems: history, design, and trends. Interaction with implanted devices through implanted user interfaces. Neural interfaces: from human nerves to electronics. 	1	2	
Stretchable and Wearable Bioelectronics	 Introduction. Materials and structural design for flexible/stretchable sensors. Flexible/stretchable sensor devices for wearable bioelectronics. 	1	2	
Advanced Bioelectronics Materials	 Recent advances in bioelectronics. Micro- and nanoelectrodes. Radio-frequency biosensors. Electropolymerized materials for biosensors. 	1	2	
Project Presentation	Student's presentations.	2	4	
Final Theoretical Exam	All topics.	1	2	
Number of Weeks /and Units Per Semester1632				
Case Studies and Pr	cactical Aspect:			
Tasks/ Experiments		Number of Weeks	Contact Hours	
	Implantable Bioelectronics Stretchable and Wearable Bioelectronics Advanced Bioelectronics Materials Project Presentation Final Theoretical Exam Number of Weel Case Studies and Ph	Units/Topics ListSub Topics ListImplantable Bioelectronics– Introduction. Biomedical implantable systems: history, design, and trends. Interaction with implanted devices through implanted user interfaces. PolectronicsStretchable and Wearable Bioelectronics– Introduction. Materials and structural design for flexible/stretchable sensors. Prise Flexible/stretchable sensor devices for wearable bioelectronics.Advanced Bioelectronics– Recent advances in bioelectronics. Project PresentationProject Presentation– Radio-frequency biosensors. Electropolymerized materials for biosensors.Final Theoretical ExamAll topics.Number of Weet X-and Units Per SemesterAll topics.	Units/Topics ListSub Topics ListNumber of WeeksImplantable Bioelectronics- Introduction. Biomedical implantable systems: history, design, and trends. - Interaction with implanted devices through implanted user interfaces. - Neural interfaces: from human nerves to electronics.1Stretchable and Wearable Bioelectronics- Introduction. - Materials and structural design for flexible/stretchable sensors. - Flexible/stretchable sensors. - Flexible/stretchable sensor devices for wearable bioelectronics.1Advanced Bioelectronics Materials- Recent advances in bioelectronics. - Micro- and nanoelectrodes. 	

& Quality Insurance

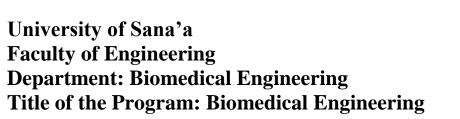
Γ	IV. Course Contents:			
A	A. Theoretical Aspect:			
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
1	- A laboratory exercise according to the theory lecture.		6	12
2	Mid-Term Practical Exam		1	2
3	- A laboratory exercise according to the theory lecture.		7	14
4	Final Practical Exam		1	2
	Number of Weeks /and Units Per Semester1530			30

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Presentation/seminar,
- Interactive class discussions,
- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Directed self- study,
- Team work (cooperative learning),
- Mini/major project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Lab\Project report
- Practical lab performance assessment,
- Home works and assignments,
- Presentations.


VII. Assignments:			
No.	Assignments	Week Due	Mark
1	Lectures 1,2,3, and 4 Assignment	5	2
2	Lectures 5,6,7, and 9 Assignment	10	2
3	Lectures 10,11,12, and 13 Assignment	14	2
4	Project/ Presentation	15	4
	Total		10

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:			
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment
1	Project/ Assignments	5,10,14, 15	10	6.67%
2	Quiz 1	4	5	3.33%
3	Midterm Theoretical Exam	8	20	13.33%
4	Quiz 2	12	5	3.33%
5	Midterm Practical Exam	9	20	13.33%
6	Final Practical Exam	15	30	20%
7	Final Theoretical Exam	16	60	40%
	Total		150	100%

Academy Development Center & Quality Insurance Dean of Engineering

Quality Insurance Unit

Prepared By

IX. Learning Resources:

• Written in the following order:

1- Required Textbook(s) (maximum two):

- 1- Ronald Pethig, Stewart Smith, 2013, "Introductory Bioelectronics for Engineers and Physical Scientists", UK, John Wiley & Sons, Ltd .
- 2- Sandro Carrara, Krzysztof Iniewski, 2015, "Handbook of Bioelectronics: Directly Interfacing Electronics and Biological Systems", UK, Cambridge University Press.

2- Essential References:

- 1- Itamar Willner, Eugenii Katz, 2005, "**Bioelectronics from Theory to Applications**", Germany, WILEY-VCH Verlag GmbH & Co. KGaA Weinheim.
- 2- Chandran Karunakaran, Kalpana Bhargava, Robson Benjamin, 2015, "**Biosensors and Bioelectronics**", USA, Elsevier Inc.
- 3- Kunal Pal, Heinz-Bernhard Kraatz, Anwesha Khasnobish, Sandip Bag, Indranil Banerjee, Usha Kuruganti, 2019, "Bioelectronics and Medical Devices: From Materials to Devices— Fabrication, Applications, and Reliability", UK, Elsevier Ltd.

3- Electronic Materials and Web Sites etc.:

Websites:

- 4- Our lab works at the interface of materials science, electronics, and neurobiology with the goal of advancing the understanding and treatment of disorders of the nervous system. https://bioelectronics.mit.edu/
- 5- We are an interdisciplinary group of scientists, engineers and clinicians interested in interfacing electronics with living systems.

https://bioelectronics.eng.cam.ac.uk/

Journals:

6- International Journal of Biosensors & Bioelectronics (IJBSBE) is a worldwide peer reviewed journal devoted to design, research, development and application of biosensors and bioelectronics.

https://medcraveonline.com/IJBSBE/

7- Biosensors and Bioelectronics is the principal international journal devoted to research, design development and application of biosensors and bioelectronics.

IX. Learning Resources:

https://www.journals.elsevier.com/biosensors-and-bioelectronics

8- Journal of Biosensors and Bioelectronics (JBSBE) is an Open Access peer reviewed journal covers advancements in bio actuators, bioelectronics, biosensor applications, biosensor packaging and assembly, biosensors clinical validation, biosensors in drug delivery, chemical sensor, immune sensors, integrated nano scale devices and microfluidics biosensors... https://www.hilarispublisher.com/biosensors-bioelectronics.html

X. (Course Policies:
1	Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality: A student should attend the exam on time. He/she is permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam
4	Assignments & Projects: In general one assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating: For cheating in exam, a student will be considered as fail. In case the cheating is repeated three

	times during his/her study the student will be disengaged from the Faculty.		
6	Plagiarism:		
	Plagiarism is the attending of a student the exam of a course instead of another student.		
	If the examination committee proofed a plagiarism of a student, he/she will be		
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be		
	confirmed from the Student Council Affair of the university or according to the university roles.		
7	Other policies:		
	- Mobile phones are not allowed to use during a class lecture. It must be closed;		
	otherwise the student will be asked to leave the lecture room.		
	- Mobile phones are not allowed in class during the examination.		
	- Lecture notes and assignments might be given directly to students using soft or hard copy.		