

Course Specification of Biomechanics

Course Code (BE243)

I. C	I. Course Identification and General Information:					
1	Course Title:	Biomechanics				
2	Course Code & Number:	BE324				
	Credit hours:		C.	H		τοται
3		Th.	Seminar	Pr	Tr.	TOTAL
		2			2	3
4	Study level/ semester at which this course is offered:	3 th Level / 2 nd Semester				
5	Pre –requisite (if any):	Mechanics				
6	Co –requisite (if any):	None				
7	Program (s) in which the course is offered:	Biomedical Engineering Program				
8	Language of teaching the course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Dr. Mushtaq Ali Alazazi				
11	Reviewed by:					
12	Date of Approval:					

II. Course Description:

Biomechanics is one of the most important supporting subjects for the principles and practices of health technology. This course will provide an introduction to the mechanical behavior of biological tissues and systems. The purpose of this course is to introduce students to concepts of mechanics as they apply to human movement.

Academy Development Center

Dean of Engineering

III	Course Intended learning outcomes (CILOs) of the course (maximum 8CILOs)	Referenced PILOs (Only write code number of referenced Program Intended learning outcomes)				
Kno	Knowledge and Understanding: Upon successful completion of the undergraduate Biomedical Engineering Program, the graduates will be able to:					
a1	Describe the essential concepts of biomechanics and their impacts on the behavior of physical bodies subject to forces or displacements.	A1 Describe and explain the underlying mathematical methods and theories; life scientific-principles; and engineering core concepts related to the Biomedical Engineering context.				
a2	Identify the mechanical engineering problems in biomaterials and biomedical devices, explain the problems with critical thinking generated from mechanics concepts, and solve the problems with mechanics theory.	A2 Clarify the design principles and techniques and the engineering materials characteristics and how these are relevant to the developments and technologies in a biomedical systems context.				
B. C	Cognitive/ Intellectual Skills: Upon successfu Engineering Program, the graduates will be at	l completion of the undergraduate Biomedical ble to:				
b1	Illustrate how basic physical principles apply to human motion and the mechanical properties of musculoskeletal tissues.	B1 Apply engineering principles; basic of life-science; mathematical theories; and modern tools professionally in modeling, analyzing, designing, and constructing physical digital systems; devices and/or processes relevant to Biomedical Engineering fields.				
b2	Analyze the optimization of human performance through application of biomechanical principles.	B2 Identify, formulate and solve the Complex problems related to the Biomedical Engineering fields in a Creative and innovative manner by using				

Academy Development Center Dean of Engineering

eering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

		A systematic and analytical thinking			
		methods.			
b3	Propose the use of biomechanical analysis	B3 Design the biomedical systems or			
	in the design of implantable artificial	Processes within realistic constraints			
	prostheses and in the engineering of living	Such as economic, environmental,			
	tissues.	social, political, ethical, health and			
		safety, manufacturability and			
		sustainability.			
С. Р	Professional and Practical Skills: Upon succe Engineering Program, the graduates will be al	essful completion of the undergraduate Biomedical ble to:			
c1	Apply life science and engineering	C1 Apply integrally knowledge of mathematics,			
	concepts in the process of evaluating	life science, IT, design, business context and			
	and understanding normal and abnormal	design systems/processes relevant to			
	movements to theoretically develop	Biomedical Engineering.			
	processes for the production of				
	biomedical physiotherapy devices and				
	artificial limbs .				
C2	Use standards testing procedures to evaluate joint motion at the hip, knee and ankle during a walking and running gait cycle.	C3 Use computational facilities and techniques, measuring instruments, workshops and laboratory equipment to design and conduct experiments, collect, analyze and interpret data and present results in the biomedical systems practice.			
D. T	ransferable Skills: Upon successful completi	on of the undergraduate Biomedical Engineering			
Prog	Program, the graduates will be able to:				
d1	Engage in life-long self-learning to	D3 Recognize the needs for ,and engage in			
Acad	lemy Development Center Dean of Engine	eering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali			

overcome challenges and further development in biomechanics and rehabilitation medicine. life-long self-learning.

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:							
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies					
a1. Describe the essential concepts of biomechanics and their impacts on the behavior of physical bodies subject to forces or displacements.	 Interactive lectures & examples, Tutorials Presentation/seminar, Interactive class discussions, Case studies Exercises and home works, Directed self- study. 	 Written tests (mid and final terms and quizzes), Home works and assignments, Presentations. 					
a2. Identify the mechanical engineering problems in biomaterials and biomedical devices, explain the problems with critical thinking generated from mechanics concepts, and solve the problems with mechanics theory.	 Interactive lectures & examples, Presentation/seminar, Interactive class discussions, Directed self- study. 	 Written tests (mid and final terms and quizzes), Home works and assignments, Presentations. 					

Academy Development Center

Dean of Engineering

Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
 b1. Illustrate how basic physical principles apply to human motion and the mechanical properties of musculoskeletal tissues b2. Analyze and explain the optimization of human performance through application of biomechanical 	 Interactive lectures & examples, Interactive class discussions, Tutorial Directed self- study, Exercises and home works, Case studies Mini/major project. Interactive lectures & examples, Presentation/seminar, Interactive class 	 Written tests (mid and final terms and quizzes), Coursework activities assessment, Home works and assignments, Presentations. Written tests (mid and final terms and quizzes), Coursework activities 			
principles.	 discussions, Tutorials, Exercises and home works, Directed self- study, 	 assessment, Home works and assignments, Presentations. 			
b3. Propose the use of biomechanical analysis in the design of implantable artificial prostheses and in the engineering of living tissues.	 Interactive lectures & examples, Presentation/seminar, Interactive class discussions, Case studies, 	 Written tests (mid and final terms and quizzes), Home works and assignments, Presentations. 			

Academy Development Center

Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

• Directed self- study,	
• Team work (cooperative	

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:							
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies					
c1. Apply life science and engineering concepts in the process of evaluating and understanding normal and abnormal movements to theoretically develop processes for the production of biomedical physiotherapy devices and artificial limbs .	 Interactive lectures & examples, Tutorials, Presentation/seminar, Interactive class discussions, Case studies Exercises and home works, Directed self- study, 	 Written tests (mid and final terms and quizzes), Coursework activities assessment, Home works and assignments, Presentations. 					
C2. Use standards testing procedures to evaluate joint motion at the hip, knee and ankle during a walking and running gait cycle.	 Interactive lectures & examples, Tutorials Presentation/seminar, Interactive class discussions, Directed self- study, Case studies Exercises and home works, 	 Written tests (mid and final terms and quizzes), Coursework activities assessment, Home works and assignments, Presentations. 					

Academy Development Center

Dean of Engineering

Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:							
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies					
d1. Engage in life-long self-learning to overcome challenges and further	 Interactive lectures & examples, Tutorials Presentation/seminar, Interactive class discussions, Case studies Exercises and home works, Directed self- study, Problem basedlearning, 	 Written tests (mid and final terms and quizzes), Coursework activities assessment, Home works and assignments, Presentations. 					

IV.	Course Conte	nt:			
	A – Theoretical	Aspect:			
Orde r	Units/Topics List	Sub Topics List	Number of Weeks	contact hours	Learning Outcomes
1	Introduction	 Introduction to the course. Course outlines. The importance of biomechanics Biomechanics applications and examples A brief history of biomechanics 	1	2	a1,a2, b1,b2,b3,c1 ,c2,d1
2	Introduction to Cell	 Introduction to cellular architecture 	1	2	a1,a2, b1,b2,b3,c1 ,c2,d1

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

University of Sana'a Faculty of Engineering **Department:** Biomedical Engineering Ti

itle	of the Program:	Biomedical Engineering			
3	Muscles and movement	 A Framework (the cytoskeleton) Engines (the mitochondria) The cells energy system Adenosine triphosphate (ATP). Types of Muscle Skeletal muscles Smooth muscle Cardiac Muscle The two basic ATP production strategies. Skeletal muscle characteristics Overview of skeletal muscle structure. Sliding Filament Model Myosin cross-bridges Isometric and Isotonic contraction. Muscle constitutive modelling Load–length relationship for skeletal muscle. Load–velocity relationship 	2	4	a1,a2, b1,b2,b3,c1 ,c2,d1
4	Three element model for muscle	 Continuum mechanic Constitutive equation Constitutive models of linear viscoelasticity The elastic components The viscous components Maxwell model Kelvin–Voigt model Three element model for muscle 	1	2	a1,a2, b1,b2,b3,c1 ,c2,d1

Academy Development Center

Prepared By: Quality Insurance Unite

& Quality Insurance

Dean of Engineering

Dr. Mushtaq Ali

5	Whole muscle mechanics	 Muscle Mechanics Parallel versus pinnate muscle types Parallel Arrangement The force generated by Parallel muscle, Pinnate Arrangement the force generated by bipinnate muscle. 	1	2	a1,a2, b1,b2,b3,c1 ,c2,d1
6	Muscle/bone interactions	 Foreleg motion Flexion of the elbow The muscles responsible for elbow flexion The physiological cross- sectional area (PCSA) 	1	2	a1,a2, b1,b2,b3,c1 ,c2,d1
7	Biomechanics of the knee	 Introduction to biomechanics of the knee Bones involved in the knee joint Cruciate ligaments Patellar ligament Quadriceps Meniscus knee flexion Femoro-patellar contact loads Diagram of forces acting in and on the knee during flexion Femoro-patellar contact loads during walking 	1	2	a1,a2, b1,b2,b3,c1 ,c2,d1
8	Skeletal biomechanics	The skeletal systemIntroduction to bone	1	2	a1,a2, b1,b2,b3,c1 ,c2,d1

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

9

		-	Functions of bone			
		-	Distribution of bones			
		-	Composition and structure of			
			bone			
		-	How bone replaced			
		-	Composition of bone			
		-	Types of bone cells			
		-	Bone tissue			
		-	Cortical and trabecular bone			
		-	Density of bone tissue			
		-	Cortical properties			
		-	Trabecular import ants			
		-	Trabecular 3D			
		-	Principal objective of mechanics			
		-	Normal stress and strain			
		-	Solid mechanics			
		-	Deformation			
		-	Modulus of elasticity			
		-	Length scale			
		-	A fiber-reinforced composite			
0	Mechanics of		(FRC)	1	2	a1,a2,
9	materials	-	Young's modulus	1	Ĺ	.c2.d1
		-	Poisson's ratio			, , ,
		-	Tensile strength			
		-	Compressive strength			
		-	Yield strength			
		-	Strain rate			
		-	Relative density			
		-	Linear elasticity			

Academy Development Center

Dean of Engineering

ng Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

10	Biomechanical properties of cortical and trabecular bone	 Introduction Cortical bone mechanics Mechanical properties of cortical bone Trabecular bone mechanics Properties of human trabecular Stress-strain curve Compressive stress-strain curve Density dependence Relationship between relative density and Young's modulus of trabecular bone. Relationship between relative density and compressive strength of trabecular bone. 	1	2	a1,a2, b1,b2,b3,c1 ,c2,d1
11	Unit cell models	 Unit cell models Model of the cytoskeleton Tensegrity Prestressed structure The actin cytoskeleton Idealized models for the microstructure of trabecular bone 	1	2	a1,a2, b1,b2,b3,c1 ,c2,d1
12	Functional adaptation and mechanobiology	 Introduction Functional adaptation Wolff's law Functional adaptation that intrigue researchers 	1	2	a1,a2, b1,b2,b3,c1 ,c2,d1

Academy Development Center

Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

	مندر کلیند کلیر بین میانند کلیر بر ا	Sarahar 1VV	Sub- Contraction of the second	
--	--	----------------	--------------------------------	--

		 Structural optimization Study by Jones. Geom. changes to mechanical properties of the humerus 			
13	The design of bone	 Introduction. Requirements of design for bone Incidence of fracture of various bones Observation from the fracture incidence data 	1	2	a1,a2, b1,b2,b3,c1 ,c2,d1
Number of Weeks /and Units Per Semester			14	28	

С. 1	C. Tutorial Aspect:				
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)	
1	These will cover similar material to the lectures.	14	28	a1, a2,b1, b2, c1, c2	
	Number of Weeks /and Units Per Semester	14	28		

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Tutorials
- Presentation/seminar,
- Interactive class discussions,
- Case studies
- Exercises and home works,
- Directed self- study,

Academy Development Center Dean of Engineering

g Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

V. Teaching Strategies of the Course:

- Problem based learning,
- Interactive lectures & examples,
- Interactive class discussions,
- Tutorial
- Directed self- study,
- Exercises and home
- works,
- Case studies
 - Mini/major project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Coursework activities assessment,
- Home works and assignments,
- Presentations.

VII. A	VII. Assignments:				
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark	
1	Tutorials:#15	a1,a2, b1,b2,b3,c1,c2,d3	Weekly	30	
	Total			30	

Academy Development Center

Dean of Engineering

Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

VIII	VIII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1	Assignments	Weekly	30	20%	a1,a2, b1,b2,b3,c1,c2,d3	
2	Quiz 1	4	10	6.67%	a1,a2, b1,b2,b3,c1,c2,d3	
3	Midterm Exam	8	30	20%	a1,a2, b1,b2,b3,c1,c2,d3	
4	Quiz 2	12	10	6.67%	a1,a2, b1,b2,b3,c1,c2,d3	
5	Final Exam	16	70	46.67%	a1,a2, b1,b2,b3,c1,c2,d3	
	Total		150	100%		

IX. L	IX. Learning Resources:					
1- Rec	1- Required Textbook(s) (maximum two).					
	1.	C. Ross Ethier, Craig A. Simmons , 2007 "Introductory Biomechanics - From Cells to Organisms" , Cambridge University Press				
	2.	Cees Oomens, Marcel Brekelmans, Frank Baaijens, 2009 "Biomechanics Concepts and Computation" Cambridge University Press				
2 - Es	sential	References.				
	1.	Joseph Hamill, Kathleen M., Timothy R., 2015, "Biomechanical Basis of Human Movement" , 4th Ed. USA , University of Massachusetts at Amherst Amherst, Massachusetts.				

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

	2. Susan J. Hall,2015 " Basic Biomechanics", 7th Ed. College of Health Sciences
	University of Delaware.
	3. Duane Knudson ,2007 "Fundamentals of Biomechanics", Springer Science +Business
	Media, LLC
3- El	ectronic Materials and Web Sites <i>etc</i> .
	Websites:
	1- The American Society of Biomechanics (ASB) was founded in October 1977 by a
	group of 53 scientists and clinicians. The mission of the ASB is to foster the
	advancement, communication, and application of biomechanics to benefit society.
	https://asbweb.org/
	2- The International Society of Biomechanics in Sports is composed of members from all
	over the world with a common desire to study and understand human movement,
	especially as it relates to applied sports biomechanics.
	https://isbs.org/
	Journals:
	1- Journal of Applied Biomechanics
	https://journals.humankinetics.com/configurable/content/journal
	2- Russian Journal of Biomechanics
	http://vestnik.pstu.ru/biomech/about/inf/?lang=eng

subject; otherwise
as exam failure. If the ment from university
5

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

	Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2	Tardy:
	For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality:
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour
	from exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam
4	Assignments & Projects
	In general one assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
	If the examination committee proofed a plagiarism of a student, he/she will be
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university or according to the university roles.
7	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed;
	otherwise the student will be asked to leave the lecture room.
	- Mobile phones are not allowed in class during the examination.
	- Lecture notes and assignments might be given directly to students using soft or
	hard copy.

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

Academy Development Center

Dean of Engineering

Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

Template for Course Plan (Syllabus)

Biomechanics BE324

	I. Course Identification and General Information:				
1	Course Title:	Biomechanics			
2	Course Code & Number:	BE243			
		Credit	Theory	Theory Hours	
3	Credit Hours:	Hours	Lecture	Exercise	Lab. Hours
		3	2	2	
4	Study Level/ Semester at which this Course is offered:	3 th Level / 2 nd Semester			
5	Pre –Requisite (if any):	Mechanics			
6	Co –Requisite (if any):	None			
7	Program (s) in which the Course is Offered:	Bachelor of Biomedical Engineering			
8	Language of Teaching the Course:	English			
9	Location of Teaching the Course:	Faculty of Engineering			
10	Prepared by:	Dr. Mushtaq Alazazi			
11	Reviewed by:				
12	Date of Approval:				

Academy Development Center

Dean of Engineering

Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

II. Course Description:

Biomechanics is one of the most important supporting subjects for the principles and practices of health technology. This course will provide an introduction to the mechanical behavior of biological tissues and systems. The purpose of this course is to introduce students to concepts of mechanics as they apply to human movement.

III. Course Intended Learning Outcomes (CILOs): (مخرجات تعلم المقرر)

A. Kn to:	owledge and Understanding: Upon successful completion of the course, students will be able
a1	Describe the essential concepts of biomechanics and their impacts on the behavior of physical bodies subject to forces or displacements.
a2	Identify the mechanical engineering problems in biomaterials and biomedical devices, explain the problems with critical thinking generated from mechanics concepts, and solve the problems with mechanics theory.
B. Int	ellectual Skills: Upon successful completion of the course, students will be able to:
b1	Illustrate how basic physical principles apply to human motion and the mechanical properties of musculoskeletal tissues.
b2	Analyze the optimization of human performance through application of biomechanical principles.
b3	Propose the use of biomechanical analysis in the design of implantable artificial prostheses and in the engineering of living tissues.
C. Pro to:	ofessional and Practical Skills: Upon successful completion of the course, students will be able
c1	Apply life science and engineering concepts in the process of evaluating and understanding normal and abnormal movements to theoretically develop processes for the production of biomedical physiotherapy devices and artificial limbs .
c2	Use standards testing procedures to evaluate joint motion at the hip, knee and ankle during a walking and running gait cycle.

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

III. Course Intended Learning Outcomes (CILOs): (مخرجات تعلم المقرر)

D. Transferable Skills: Upon successful completion of the course, students will be able to:

d1 Engage in life-long self-learning to overcome challenges and further development in biomechanics and rehabilitation medicine.

IV. Course Contents:						
A.	A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
1	Introduction	 Introduction to the course. Course outlines. The importance of biomechanics Biomechanics applications and examples A brief history of biomechanics 	W1	2		
2	Introduction to Cell	 Introduction to cellular architecture A Framework (the cytoskeleton) Engines (the mitochondria) The cells energy system Adenosine triphosphate (ATP). 	W2	2		
3	Muscles and movement	 Types of Muscle Skeletal muscles Smooth muscle Cardiac Muscle The two basic ATP production strategies. Skeletal muscle characteristics Overview of skeletal muscle structure. 	W3-W4	4		

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

Γ	IV. Course Contents:				
A	A. Theoretical Aspect:				
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
		 Sliding Filament Model Myosin cross-bridges Isometric and Isotonic contraction. Muscle constitutive modelling Load–length relationship for skeletal muscle. Load–velocity relationship 			
4	Three element model for muscle	 Continuum mechanic Constitutive equation Constitutive models of linear viscoelasticity The elastic components The viscous components Maxwell model Kelvin–Voigt model Three element model for muscle 	W5	2	
5	Whole muscle mechanics	 Muscle Mechanics Parallel versus pinnate muscle types Parallel Arrangement The force generated by Parallel muscle, Pinnate Arrangement the force generated by bipinnate muscle. 	W6	2	
6	Muscle/bone interactions	 Foreleg motion 	W7	2	

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

Γ	IV. Course Contents:				
A.	A. Theoretical Aspect:				
No.	Units/Topics List	Sub Topics List Number of Weeks		Contact Hours	
		 Flexion of the elbow The muscles responsible for elbow flexion The physiological cross-sectional area (PCSA) 			
7	Mid-Term Theoretical Exam	All Preceding Lectures	W8	2	
8	Biomechanics of the knee	 Introduction to biomechanics of the knee Bones involved in the knee joint Cruciate ligaments Patellar ligament Quadriceps Meniscus knee flexion Femoro-patellar contact loads Diagram of forces acting in and on the knee during flexion Femoro-patellar contact loads during walking 	W9	2	
9	Skeletal biomechanics	 The skeletal system Introduction to bone Functions of bone Distribution of bones Composition and structure of bone How bone replaced 	W10	2	

Academy Development Center Dean of Engineering

gineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

IV. Course Contents:						
A	A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List Number of Weeks		Contact Hours		
		 Composition of bone Types of bone cells Bone tissue Cortical and trabecular bone Density of bone tissue Cortical properties Trabecular import ants Trabecular 3D 				
10	Mechanics of materials	 Principal objective of mechanics Normal stress and strain Solid mechanics Deformation Modulus of elasticity Length scale A fiber-reinforced composite (FRC) Young's modulus Poisson's ratio Tensile strength Compressive strength Yield strength Strain rate Relative density Linear elasticity 	W11	2		
11	Biomechanical properties of Cortical and	 Introduction Cortical bone mechanics Mechanical properties of cortical bone 	W12	2		

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

Γ	IV. Course Contents:					
A	A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
	trabecular bone	 Trabecular bone mechanics Properties of human trabecular Stress-strain curve Compressive stress-strain curve Density dependence Relationship between relative density and Young's modulus of trabecular bone. Relationship between relative density and compressive strength of trabecular bone. 				
12	Unit cell models	 Unit cell models Model of the cytoskeleton Tensegrity Prestressed structure The actin cytoskeleton Idealized models for the microstructure of trabecular bone 	W13	2		
13	Functional adaptation and mechanobiology	 Introduction Functional adaptation Wolff's law Functional adaptation that intrigue researchers Structural optimization Study by Jones. Geom. changes to mechanical properties of the humerus 	W14	2		

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

Γ	IV. Course Contents:					
A	. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
14	The design of bone	 Introduction Requirements of design for bone Incidence of fracture of various bones Observation from the fracture incidence data 	W15	2		
15	Final Theoretical Exam	All topics.	W16	2		
	Number of Weeks /and Units Per Semester1632					

C.	C. Tutorial Aspect:				
No.	Tutorial	Number of Weeks	Contact Hours		
1	These will cover similar material to the lectures.	15	30		
	Number of Weeks /and Units Per Semester		30		

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Tutorials
- Presentation/seminar,
- Exercises and home works,
- Case studies
- Directed self- study,

Academy Development Center Dean of Engineering

Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

V. Teaching Strategies of the Course:

- Team work (cooperative learning),
- Problem based learning,

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Coursework activities assessment,
- Home works and assignments,
- Presentations.

V	VII. Assignments:				
No.	Assignments	Week Due	Mark		
1	Tutorials:#15	weekly	30		
	Total		30		

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment		
1	Assignments	weekly	30	20%		
2	Quiz 1	4	10	6.67%		
3	Midterm Exam	8	30	20%		
4	Quiz 2	12	10	6.67%		
5	Final Exam	16	70	46.67%		
	Total			100%		

Academy Development Center

Dean of Engineering

Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

IX. L	earn	ing Resources:
1- Rec	juired T	extbook(s) (maximum two).
	1.	C. Ross Ethier, Craig A. Simmons "Introductory Biomechanics - From Cells to
		Organisms "2007 Cambridge University Press
	2.	Cees Oomens, Marcel Brekelmans, Frank Baaijens "Biomechanics Concepts and Computation "2009 Cambridge University Press
2- Es	sential	References.
	1.	Joseph Hamill, Kathleen M., Timothy R., 2015, "Biomechanical Basis of Human Movement", 4th Ed. USA, University of Massachusetts at Amherst Amherst, Massachusetts.
	2.	Susan J. Hall,2015 "Basic Biomechanics", 7th Ed. College of Health Sciences
		University of Delaware.
	3.	Duane Knudson ,2007 "Fundamentals of Biomechanics", Springer Science +Business Media, LLC
3- El	ectroni	c Materials and Web Sites <i>etc</i> .

	vv	ebsites:
	vv 1-	ebsites: The American Society of Biomechanics (ASB) was founded in October 1977 by a group of 53 scientists and clinicians. The mission of the ASB is to foster the advancement, communication, and application of biomechanics to benefit society.
	••• 1-	ebsites: The American Society of Biomechanics (ASB) was founded in October 1977 by a group of 53 scientists and clinicians. The mission of the ASB is to foster the advancement, communication, and application of biomechanics to benefit society. <u>https://asbweb.org/</u>
	••• 1- 2-	ebsites:The American Society of Biomechanics (ASB) was founded in October 1977 by a group of 53 scientists and clinicians. The mission of the ASB is to foster the advancement, communication, and application of biomechanics to benefit society. https://asbweb.org/ The International Society of Biomechanics in Sports is composed of members from all over the world with a common desire to study and understand human movement, especially as it relates to applied sports biomechanics.
	•• 1- 2-	ebsites: The American Society of Biomechanics (ASB) was founded in October 1977 by a group of 53 scientists and clinicians. The mission of the ASB is to foster the advancement, communication, and application of biomechanics to benefit society. <u>https://asbweb.org/</u> The International Society of Biomechanics in Sports is composed of members from all over the world with a common desire to study and understand human movement, especially as it relates to applied sports biomechanics. <u>https://isbs.org/</u>
	•• 1- 2- Јо	ebsites: The American Society of Biomechanics (ASB) was founded in October 1977 by a group of 53 scientists and clinicians. The mission of the ASB is to foster the advancement, communication, and application of biomechanics to benefit society. https://asbweb.org/ The International Society of Biomechanics in Sports is composed of members from all over the world with a common desire to study and understand human movement, especially as it relates to applied sports biomechanics. https://isbs.org/ urnals:
	••• 1- 2- Jo 1-	ebsites: The American Society of Biomechanics (ASB) was founded in October 1977 by a group of 53 scientists and clinicians. The mission of the ASB is to foster the advancement, communication, and application of biomechanics to benefit society. <u>https://asbweb.org/</u> The International Society of Biomechanics in Sports is composed of members from all over the world with a common desire to study and understand human movement, especially as it relates to applied sports biomechanics. <u>https://isbs.org/</u> urnals: Journal of Applied Biomechanics
	••• 1- 2- Jo 1-	ebsites: The American Society of Biomechanics (ASB) was founded in October 1977 by a group of 53 scientists and clinicians. The mission of the ASB is to foster the advancement, communication, and application of biomechanics to benefit society. <u>https://asbweb.org/</u> The International Society of Biomechanics in Sports is composed of members from all over the world with a common desire to study and understand human movement, especially as it relates to applied sports biomechanics. <u>https://isbs.org/</u> urnals: Journal of Applied Biomechanics <u>https://journals.humankinetics.com/configurable/content/journal</u>
	••• 1- 2- Jo 1- 2-	ebsites: The American Society of Biomechanics (ASB) was founded in October 1977 by a group of 53 scientists and clinicians. The mission of the ASB is to foster the advancement, communication, and application of biomechanics to benefit society. https://asbweb.org/ The International Society of Biomechanics in Sports is composed of members from all over the world with a common desire to study and understand human movement, especially as it relates to applied sports biomechanics. https://isbs.org/ urnals: Journal of Applied Biomechanics https://journals.humankinetics.com/configurable/content/journal Russian Journal of Biomechanics

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

ourse Policies:
Class Attendance:
A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
Tardy:
For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
Exam Attendance/Punctuality:
A student should attend the exam on time. He/she is permitted to attend an exam half one hour
from exam beginning, after that he/she will not be permitted to take the exam and he/she will be
considered as absent in exam
Assignments & Projects:
In general one assignment is given to the students after each chapter; the student has to submit
all the assignments for checking on time, mostly one week after given the assignment.
Cheating:
For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
times during his/her study the student will be disengaged from the Faculty.
Plagiarism:
Plagiarism is the attending of a student the exam of a course instead of another student.
If the examination committee proofed a plagiarism of a student, he/she will be
disengaged from the Faculty. The final disengagement of the student from the Faculty should be
confirmed from the Student Council Affair of the university or according to the university roles.

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: Dr. Mushtaq Ali

7	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed;
	otherwise the student will be asked to leave the lecture room.
	- Mobile phones are not allowed in class during the examination.
	- Lecture notes and assignments might be given directly to students using soft or
	hard copy.

Academy Development Center

Dean of Engineering

Quality Insurance Unite Prepared By: Dr. Mushtaq Ali