

Course Specification of Digital Control Systems

Course Code (BE352)

I. C	I. Course Identification and General Information:					
1	Course Title:	Digital Control Systems				
2	Course Code & Number:	BE352				
			С.Н			τοται
3	Credit hours:	Th.	Seminar	Pr	Tr.	TOTAL
		2		2	2	4
4	Study level/ semester at which this course is offered:	4 th Lev	el / 1 st Seme	ester		
5	Pre –requisite (if any):	Analog Control Systems (BE251)				
6	Co –requisite (if any):	Microprocessor and Microcontrollers (BE353).				
7	Program (s) in which the course is offered:	Biomedical Engineering Program				
8	Language of teaching the course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Dr. Mohammed Al-Olofi				
11	Reviewed by:	Dr. Waleed Al-talabi				
12	Date of Approval:					

II. Course Description:

The Digital Control Systems course aims to give the student knowledge of the basic concepts and Theories of modeling, development, analysis, design and implement of modern and digital control

Academy Development Center	Dean of Engineering	Quality Insurance Unite	Prepared By
& Quality Insurance			
	1		

systems. This course includes the basic principles of digital control systems, quantization and quantization errors, data acquisitions, Z-transform and its applications to solve difference equations, Z plane analysis for discrete time control systems, impulse sampling, pulse transfer function, PID digital controllers realization and implementation, mapping between continuous -time control systems and discrete-time control systems, stability analysis, transient and steady state response, conventional and modern design methods of digital control systems, root-locus and bode plot design methods, analytical design methods, state space representation, controllability, observability, and servo-controllers. The practical part allows students to practice different digital control approaches studied in theoretical classes.

	III. (Course Intended learning outcomes (CILOs) of the COURSE (maximum 8CILOs)	Referenced PILOS (Only write code number of referenced Program Intended learning outcomes)
	Knowle Eng	edge and Understanding: Upon successfu gineering Program, the graduates will be ab	l completion of the undergraduate Biomedical ble to:
تعليق عليه [1]] تعليق عليه [1]	al	Understand the concepts, theories, and mathematical modeling of Digital systems in pulse transfer function model and state variable model.	A1 Describe and explain the underlying mathematical methods and theories; life scientific-principles; and engineering core concepts related to the Biomedical Engineering context.
	a2	Explain how different analysis techniques are used to determine the specifications of digital control systems, and common design methods for design a digital controllers.	A4 Understand and give examples of design methods, knowledge tools, analytical skills, measurement techniques and methodologies for innovative and creative engineering solutions applied to healthcare problems and quality of life issues.
	B. Cogr Eng	nitive/ Intellectual Skills: Upon successful or gineering Program, the graduates will be ab	completion of the undergraduate Biomedical ole to:
هذا الفعل يستدم للتعبير عن المهارات العملية لذلك :[21] تعليق عليه المغارات الذهنية	b1	Apply common conventional and	B1 Apply engineering principles; basic of life-
	Academ	v Development Center Dean of Engine	ering Quality Insurance Unite Prepared By

& Quality Insurance 2

		modern engineering methods to model, analyze, and organize the digital biomedical systems.	science; mathematical theories; and modern tools professionally in modelling, analyzing, designing, and constructing physical digital systems; devices and/or processes relevant to Biomedical Engineering fields.
استخدم فعل واحد فقط للتعبير عن مخرج المقرر :[3]] تعليق عليه	b2	Analysis, and evaluate the biomedical engineering systems using the modern control engineering tools, then select a suitable digital controller for biomedical systems.	B2 Identify, formulate and solve the complex problems related to the Biomedical Engineering fields in a creative and innovative manner by using a systematic and analytical thinking methods.
هذا الفعل يستدم للتعبير عن المهارات العملية لذلك [14] تعليق عليه المهارات الذهنية المعادية المعارات الذهنية المعادية ا	b3	Design the digital controllers, and others components of the medical devices by using the control system design methods.	B3 Design the biomedical systems or processes within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.
	C. Profes Engin	sional and Practical Skills: Upon succe seering Program, the graduates will be ab	essful completion of the undergraduate Biomedical ble to:
	c1	Use the modern engineering tools, and analytical techniques to evaluate performance characteristics of different types of plant and process, and applying the knowledge to design, and implement a digital control systems.	C2 Use a wide range of analytical tools, techniques, IT, modern engineering tools, software packages and develop required computer programs to solve, modeling and analyzing Biomedical Engineering problems.
	c2	Conduct appropriate experimentation related to a digital	C3 Use computational facilities and techniques, measuring instruments, workshops and laboratory equipment to design and conduct

		control systems, and Locate	experiments, collect, analyse and interpret		
		different type of digital controllers used in real medical equipment.	data and present results in the biomedical systems practice.		
	D. Transf	erable Skills: Upon successful completi	on of the undergraduate Biomedical Engineering		
	Program, t	the graduates will be able to:			
	d1 Lead, and work productively as an		D1 Lead and motivate individuals, show		
individual and as a member of a capabil		individual and as a member of a	capability to work in stressful environments		
		team / multi-disciplinary team.	and within constraints, collaborate effectively within multidisciplinary team.		

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
a1 Understand the concepts, theories, and mathematical modeling of Digital systems in pulse transfer function model and state variable model.	 Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Exercises and home works, Computer laboratory-based sessions, Directed self- study, Problem based learning, 	 Written tests (mid and final terms and quizzes), Short reports, Practical lab performance assessment, Coursework activities assessment, Home works and assignments, Presentations.
a2 Explain how different	• Interactive lectures &	• Written tests (mid and

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite

Prepared By

صحح الفعل :**[16] تعليق عليه**

استخدم فعل واحد فقط للتعبير عن مخرج المقرر :[15] تعليق عليه

analysis techniques are used to	examples,	final terms and
determine the specifications of	• Tutorials,	quizzes),
digital control systems, and	• Videos demonstrations,	Oral exams,
common design methods for	• Presentation/seminar,	• Short reports,
design a digital controllers	Interactive class	 Lab\Project report
design a digital controllers.	discussions,	Practical lab
	• Case studies,	performance
	• Exercises and home	assessment,
	works,	Coursework activities
	Laboratory/Practical	assessment,
	experiments based	• Home works and
	session,	assignments,
	Computer laboratory-	• Presentations.
	based sessions,	
	Workshops practices,	
	• Directed self- study,	
	• Problem based learning,	
	 Mini/major project. 	

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

ina moscosment bu ategies.			
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
b1 Apply common conventional and modern engineering methods to model, analyze, and organize the digital biomedical systems.	 Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, 	 Written tests (mid and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities 	
cademy Development Center Dean of Engineering Quality Insurance Unite Prepared By			

Academy Development Center & Quality Insurance

غير الفعل :**[17] تعليق عليه**

		 Exercises and home works, Laboratory/Practical experiments based session, Workshops practices, Directed self- study, Problem based learning, Mini/major project. 	assessment, • Home works and assignments, • Presentations.
احذف أحد الفعلين :[18] تعليق عليه	b2 Analysis, and evaluate the biomedical engineering systems using the modern control engineering tools, then select a suitable digital controller for biomedical systems.	 Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Exercises and home works, Laboratory/Practical experiments based session, Computer laboratory-based sessions, Workshops practices, Directed self- study, Problem based learning, Mini/major project. 	 Written tests (mid and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment, Home works and assignments, Presentations.
غير الفعل :[9]] تعليق عليه	b3 Design the digital controllers, and others	 Interactive lectures & examples, Tutorials, 	• Written tests (mid and final terms and quizzes),
	Academy Development Center I	Dean of Engineering Quality Ins	surance Unite Prepared By

& Quality Insurance

components of the medical devices by using the control system design methods.	 Interactive class discussions, Case studies, Exercises and home works, Laboratory/Practical experiments based session, Computer laboratory- based sessions, 	 Oral exams, Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment, Home works and assignments,
	 Laboratory/Practical experiments based session, Computer laboratory- 	 assessment, Coursework activities assessment, Home works and
	based sessions,Workshops practices,Directed self- study,	assignments,Presentations.
	 Problem based learning, Team work (cooperative learning), Field visits/training, 	
	 Mini/major project. 	

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:				
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
c1 Use the modern engineering tools, and analytical techniques to evaluate performance characteristics of different types of plant and process, and applying the knowledge to design, and implement a digital control systems.	 Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Laboratory/Practical experiments based 	 Written tests (mid and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment, Home works and 		
Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By				

& Quality Insurance

7

	session,	assignments,
	Computer laboratory- based sessions,	• Presentations.
	Workshops practices,	
	• Directed self- study,	
	• Problem based learning,	
	• Team work (cooperative learning),	
	• Field visits/training,	
	 Mini/major project. 	
c2 Conduct appropriate experimentation related to a	• Interactive lectures & examples,	Short reports,Lab\Project report
digital control systems, and	• Tutorials,	Practical lab
Locate different type of digital	• Videos demonstrations,	performance
controllers used in real medical	• Presentation/seminar,	assessment,
equipment.	• Interactive class discussions,	• Coursework activities assessment,
	• Case studies,	• Home works and
	• Laboratory/Practical experiments based session,	Presentations.
	• Computer laboratory- based sessions,	
	Workshops practices,	
	• Directed self- study,	
	• Problem based learning,	
	• Team work (cooperative learning),	
	• Field visits/training,	
	• Mini/major project.	

Academy Development Center & Quality Insurance

Dean of Engineering

Prepared By

Quality Insurance Unite

	(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:			
	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
احذف أحد الفعلين :[101] تعليق عليه	d1 Lead, and work productively as an individual and as a member of a	Videos demonstrations,Presentation/seminar,	Short reports,Lab\Project report	
	team / multi-disciplinary team.	 Interactive class discussions, Case studies 	• Practical lab performance assessment,	
		 Case studies, Laboratory/Practical experiments based session, 	Coursework activities assessment,	
		• Computer laboratory- based sessions,	• Presentations.	
		Workshops practices,		
		• Problem based learning,		
		• Team work (cooperative learning),		
		• Field visits/training,		

يتم حذف الاختبارين النصفي والنهائي من :[111] تعليق عليه المحتوي ويضافان فقط لخطة المقرر بحيث يصبح هنا عدد الأسابيع 14 وعدد الساعات 28

IV. Course Content:						
	A – Theoretical Aspect:					
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours	
1	Introduction to discrete- time control systems	a1, a2	 Introduction of digital control systems, types of digital control systems, quantization 	1	2	

Mini/major project.

Academy Development Center Dean of Engineering Quality Insurance Unite & Quality Insurance 9

			methods, – data acquisition.		
2	The Z- Transform	a1, a2	 Introduction, Z-transform, Z-transform of elementary function, properties and theorems of z-transform, Inverse Z-transform, solve the difference equations of digital control systems, example problems and solutions. 	1	2
3	The Z-plane analysis of discrete-time control systems	a1, a2, b1, b2, b3	 Impulse sampling and data holding, components of digital control systems, pulse transfer function, reduction block diagram in digital control systems, example problems and solutions. 		2
4	The Z-plane analysis of discrete-time control systems	a1, a2, b1, b2, b3	 PID digital controllers, realization and implementation of digital controllers, microcontroller implementation to digital controllers, select the sampling interval, example problems and 	1	2

Academy Development Center & Quality Insurance

Dean of Engineering

Prepared By

Quality Insurance Unite

			solutions.		
5	Design of discrete-time control systems by the conventional methods	a2, b1, b2, b3, c1, c2	 Introduction to design methods, mapping between s-plane and z-plane, example problems and solutions. 	1	2
6	Design of discrete-time control systems by the conventional methods	a2, b1, b2, b3, c1, c2	 Transient and steady state response analysis of feedback digital control systems, example problems and solutions 	1	2
7	Design of discrete-time control systems by the conventional methods	a2, b1, b2, b3, c1, c2	 Introduction to conventional design methods, the root locus method, design based the root locus method, example problems and solutions 	1	2
8	Mid-Term Theoretical Exam	a1, a2, b1, b2, b3, c1, c2	 Previous Topics 	1	2
9	Design of discrete-time control systems by the conventional methods	a2, b1, b2, b3, c1, c2	 Frequency response methods, bode plot, design based on the Frequency response methods, example problems and 	1	2

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite

Prepared By

University of Sana'a Faculty of Engineering Department: Biomedical Engineering Title of the Program: Biomedical Engineering

			solutions.		
10	Design of discrete-time control systems by the conventional methods	a2, b1, b2, b3, c1, c2	 Analytical design methods,, dead beat response design methods, example problems and solutions. 	1	2
11	State Space Analysis	a2, b1, b2, b3, c1, c2	 state space representation of discrete-time control systems, solving the discrete-time state space equations, design example problems and solutions. 	1	2
12	Pole placement and observer design (modern design methods)	a2, b1, b2, b3, c1, c2, d1	 Controllability, observability, useful transformations in state space analysis, design example problems and solutions. 	1	2
13	Pole placement and observer design (modern design methods)	a2, b1, b2, b3, c1, c2, d1	 Pole placement design method, example problems and solutions 	1	2
14	Pole placement and observer design (modern design methods)	a2, b1, b2, b3, c1, c2, d1	 observer design method, example problems and solutions 	1	2
15	Pole placement and observer design (modern design methods)	a2, b1, b2, b3, c1, c2, d1	 Servo-controller design method, example problems and 	1	2

			solutions		
16	Final Theoretical Exam	a1, a2, b1, b2, b3, c1, c2	- All Topics	1	2
Number of Weeks /and Units Per Semester		16	32		

28 & 14 **[12]] تعليق عليه**

يتم حذف الاختبارين النصفي والنهائي من :[13] تعليق عليه المحتوي ويضافان فقط لخطة المقرر بحيث يصبح هذا عدد الأسابيع 14 و عدد الساعات 28

B - Practical Aspect: (if any)					
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes	
1	Introduction of digital control systems with matlab software.	1	2	a1, a2	
2	Discrete-time control systems simulation and Simulink.	1	2	a1, a2, b1, b2	
3	Discrete-time control systems simulation and Simulink.	1	2	a1, a2, b1, b2, b3, c1, c2, d1	
4	Time-domain digital controller emulation.	1	2	a1, a2, b1, b2, b3, c1, c2, d1	
5	Frequency-domain digital controller emulation.	1	2	a1, a2, b1, b2, b3, c1, c2, d1	
6	Sampling, aliasing, zero-order hold (simulink).	1	2	a1, a2, b1, b2, b3, c1, c2, d1	
7	Midterm Practical Exam	1	2	a1, a2, b1, b2, b3, c1, c2	
8	Discrete-time plant modeling.	1	2	a1, a2, b1, b2, b3, c1, c2, d1	
9	Root-locus, frequency response design methods for digital controllers.	1	2	a1, a2, b1, b2, b3, c1, c2, d1	
10	Numerical optimal PID digital controller design in matlab program.	1	2	a1, a2, b1, b2, b3, c1, c2, d1	

Academy Development Center Dean of Engineering Quality Insurance Unite & Quality Insurance

	matlab program. State-space digital controllers design in			c2, d1 a1, a2, b1, b2, b3, c1,
12	matlab program.	1	2	c2, d1
13	Introduction to arduino IDE.	1	2	a1, a2, b1, b2, b3, c1, c2, d1
14	Implementation the digital controller with microcontroller by using the mikroc and proteus simulation software.	1	2	a1, a2, b1, b2, b3, c1, c2, d1
15	Final Practical Exam	1	2	a1, a2, b1, b2, b3, c1, c2
	Number of Weeks /and Units Per Semester			30

28 & 14 **: [14]] تعليق عليه**

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Tutorials,
- Videos demonstrations,
- Presentation/seminar,
- Interactive class discussions,
- Case studies,
- Exercises and home works,
- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Workshops practices,
- Directed self- study,
- Problem based learning,
- Team work (cooperative learning),
- Field visits/training,
- Mini/major project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Oral exams,
- Short reports,
- Lab\Project report
- Practical lab performance assessment,
- Coursework activities assessment,
- Home works and assignments,
- Presentations.

VII. A	VII. Assignments:						
No	No Assignments Aligned Week Due CILOs(symbols)		Mark				
1	Problems, and advance problems, and computer problems of the Chapter 2	a1, a2	2	6			
2	Problems, and advance problems, and computer problems of the Chapter 3	a1, a2	3	6			
3	Problems, and advance problems, and computer problems of the Chapter 4	a1, a2, b1, b2, b3	5	6			
4	Problems, and advance problems, and computer problems of the Chapter 5	a1, a2, b1, b2, b3	9	6			
5	Problems, and advance problems, and computer problems of the Chapter 6	a1, a2, b1, b2, b3, c1, c2	10	6			
Total							

Academy Development Center & Quality Insurance Dean of Engineering

Quality Insurance Unite

VIII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1	Assignments	15	30	15%	a1, a2, b1, b2, b3, c1, c2	
2	Quiz 1	6	10	5%	a1, a2, b1, b2, b3	
3	Midterm Theoretical Exam	8	30	15%	a1, a2, b1, b2, b3	
4	Midterm Theoretical Exam	9	20	10%	a1, a2, b1, b2, b3	
5	Quiz 2	12	10	5%	a1, a2, b1, b2, b3, c1, c2	
6	Final Practical Exam	15	30	15%	a1, a2, b1, b2, b3, c1, c2	
7	Final Theoretical Exam	16	70	35%	a1, a2, b1, b2, b3, c1, c2	
	Total		200	100%		

IX. Learning Resources	3:
------------------------	----

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).				
	1- Katsuhiko Ogata, 2010, Discrete-time control systems, 2 nd Edition, Prentice Hall.			
	 Dogan Ibrahim, 2006, microcontroller based applied a digital controller, 1st Edition, john wiley & sons Inc., 			

2- Essential References.

	1-	M. Sam Fadali, 2009, Digital control systems analysis and design , 1 st Edition, Elsevier Inc.
	2-	FARIDGOLNARAGHI, BENJAMINC.KUO, 2010, Automatic Control Systems, ninth Edition, John Wiley & Sons, Inc.
3- Ele	ectronio	Materials and Web Sites etc.
	W	ebsites:
	1-	National Instruments
		https://learn.ni.com/teach/resources/1221/digital-control
	2-	The National Program on Technology Enhanced Learning (NPTEL), Automatic Control
		https://nptel.ac.in/courses/112/107/112107240/
	Jo	urnals:
	3-	IEEE Transactions on control systems technology: Peer reviewed academic journal
		https://www.ieeexplore.ieee.org/xpl
	4-	International Journal of control, automation and systems: The leading peer reviewed academic journal
		. https://www.springer.com/Journal
	Ot	her Web Sources:
	5-	MIT Open Course Ware, Analysis and Design of Digital Control Systems
		https://ocw.mit.edu/courses/mechanical-engineering/2-171-analysis-and-design-of- digital-control-systems-fall-2006/
	6-	Purdue University Purdue Online Learning, College of Engineering, Digital Control
		https://engineering.purdue.edu/ProEd/courses/digital-control

X. Course Policies:

1	Class Attendance:
	A student should attend not less than 75 % of total hours of the subject; otherwise
	he/she will not be able to take the exam and will be considered as exam failure. If the
	student is absent due to illness, he/she should bring a proof statement from university
	Clinic. If the absent is more than 25% of a course total contact hours, student will be

	required to retake the entire course again.
2	Tardy:
	For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality:
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour
	from exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam
4	Assignments & Projects:
	In general one assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
	If the examination committee proofed a plagiarism of a student, he/she will be
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university or according to the university roles.
7	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed;
	otherwise the student will be asked to leave the lecture room.
	- Mobile phones are not allowed in class during the examination.
	- Lecture notes and assignments might be given directly to students using soft or
	hard copy.

Template for Course Plan (Syllabus)

Digital Control Systems- BE352

	I. Course Identification and General Information:					
1	Course Title:	Digital Control Systems				
2	Course Code & Number:	BE352				
3	Credit Hours:	Credit	Theory Hours		T . L. TT	
		Hours	Lecture	Exercise	Lab. Hours	
		4	2	2	2	
4	Study Level/ Semester at which this Course is offered:	4 th Level / 1 st Semester				
5	Pre –Requisite (if any):	Analog Control Systems (BE251)				
6	Co –Requisite (if any):	Microprocessor and Microcontrollers (BE353).				
7	Program (s) in which the Course is Offered:	Bachelor of Biomedical Engineering				
8	Language of Teaching the Course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Dr. Mohammed Al-Olofi				
11	Reviewed by:	Dr. Waleed Al-talabi				
12	Date of Approval:					

II. Course Description:

The Digital Control Systems course aims to give the student knowledge of the basic concepts and Theories of modeling, development, analysis, design and implement of modern and digital control

systems. This course includes the basic principles of digital control systems, quantization and quantization errors, data acquisitions, Z-transform and its applications to solve difference equations, Z plane analysis for discrete time control systems, impulse sampling, pulse transfer function, PID digital controllers realization and implementation, mapping between continuous –time control systems and discrete-time control systems, stability analysis, transient and steady state response, conventional and modern design methods of digital control systems, root-locus and bode plot design methods, analytical design methods, state space representation, controllability, observability, and servo-controllers. The practical part allows students to practice different digital control approaches studied in theoretical classes.

	المغرجات تعلم المفرر) : (مخرجات تعلم المفرر) III. Course Intended Learning Outcomes (CILOS): (مخرجات	
	A. Knowledge and Understanding: Upon successful completion of the course, students will be able to:	
صدح الفل :[15]] تعليق عليه	al Understand the concepts, theories, and mathematical modeling of Digital systems in pulse transfer function model and state variable model.	
	a2 Explain how different analysis techniques are used to determine the specifications of digital control systems, and common design methods for design a digital controllers.	
	B. Intellectual Skills: Upon successful completion of the course, students will be able to:	
غیر الفد :[161] تعلیق علیه	b1 Apply common conventional and modern engineering methods to model, analyze, and organize the digital biomedical systems.	
احذف حد الفعلين :[171] تعليق عليه	b2 Analysis, and evaluate the biomedical engineering systems using the modern control engineering tools, then select a suitable digital controller for biomedical systems.	
غير الفعل :[18]] تعليق عليه	b3 Design the digital controllers, and others components of the medical devices by using the control system design methods.	
	C. Professional and Practical Skills: Upon successful completion of the course, students will be able to:	
	c1 Use the modern engineering tools, and analytical techniques to evaluate performance	

III.	(مخرجات تعلم المقرر) : (مخرجات تعلم المقرر)			
	characteristics of different types of plant and process, and applying the knowledge to design,			
	and implement a digital control systems.			
c2	Conduct appropriate experimentation related to a digital control systems, and Locate different			
	type of digital controllers used in real medical equipment.			
D. Tra). Transferable Skills: Upon successful completion of the course, students will be able to:			

Lead, and work productively as an individual and as a member of a team / multi-disciplinary

احذف أحد الفعلين: [19] تعليق عليه

المطلوب تحديد رقم الأسبوع الذي ستنفذ فيه :[20] تعليق عليه المحاضرة وليس عدد الأسابيع: W1-W2-W3....W16

IV. Course Contents:					
А.	A. Theoretical Aspect:				
 No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
1	Introduction to discrete- time control systems	 Introduction of digital control systems, types of digital control systems, quantization methods, data acquisition. 	1	2	
2	2 The Z-Transform - Introduction, - Z-transform, Z-transform of elementary function, - properties and theorems of z- transform, - Inverse Z-transform, - solve the difference equations of digital control systems, - example problems and solutions.		1	2	

Academy Development Center & Quality Insurance

d1

team

Dean of Engineering Quality Insurance Unite

IV. Course Contents:					
A.	A. Theoretical Aspect:				
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
3	The Z-plane analysis of discrete-time control systems	 Impulse sampling and data holding, components of digital control systems, pulse transfer function, reduction block diagram in digital control systems, example problems and solutions. 	1	2	
4	The Z-plane analysis of discrete-time control systems	 PID digital controllers, realization and implementation of digital controllers, microcontroller implementation to digital controllers, select the sampling interval, example problems and solutions. 	1	2	
5	Design of discrete- time control systems by the conventional methods	 Introduction to design methods, mapping between s-plane and z-plane, example problems and solutions. 	1	2	
6	Design of discrete- time control systems by the	 Transient and steady state response analysis of feedback digital control systems, 	1	2	

Academy Development Center & Quality Insurance

Dean of Engineering

Prepared By

Quality Insurance Unite

المطلوب تحديد رقم الأسبوع الذي ستنفذ فيه :[20] تعليق عليه المحاضرة وليس عدد الأسابيع : W1-W2-W3....W16

IV. Course Contents:					
A.	A. Theoretical Aspect:				
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
	conventional methods	 example problems and solutions 			
7	Design of discrete- time control systems by the conventional methods	 Introduction to conventional design methods, the root locus method, design based the root locus method, example problems and solutions 	1	2	
8	Mid-Term Theoretical Exam	 Previous Topics 	1	2	
9	Design of discrete- time control systems by the conventional methods	 Frequency response methods, bode plot, design based on the Frequency response methods, example problems and solutions. 	1	2	
10	Design of discrete- time control systems by the conventional methods	 Analytical design methods,, dead beat response design methods, example problems and solutions. 	1	2	
11	State Space Analysis	 state space representation of discrete-time control systems, solving the discrete-time state 	1	2	

المطلوب تحديد رقم الأسبوع الذي ستنفذ فيه . [[120]] تعليق عليه المحاضرة وليس عدد الأسابيع : W1-W2-W3....W16

Academy Development Center & Quality Insurance

Dean of Engineering

Prepared By

Quality Insurance Unite

IV. Course Contents:				
A.	Theoretical Aspect:			
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
		space equations,design example problems and solutions.		
12	Pole placement and observer design (modern design methods)	 Controllability, observability, useful transformations in state space analysis, design example problems and solutions. 	1	2
13	Pole placement and observer design (modern design methods)	 Pole placement design method, example problems and solutions 	1	2
14	Pole placement and observer design (modern design methods)	 observer design method, example problems and solutions 	1	2
15	Pole placement and observer design (modern design methods)	 Servo-controller design method, example problems and solutions 	1	2
16	Final Theoretical Exam	- All Topics	1	2
	Number of Weeks /and Units Per Semester1632			

المطلوب تحديد رقم الأسبوع الذي ستنفذ فيه . [[120]] تعليق عليه المحاضرة وليس عدد الأسابيع . W1-W2-W3....W16

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By

University of Sana'a Faculty of Engineering Department: Biomedical Engineering Title of the Program: Biomedical Engineering

B.	B. Case Studies and Practical Aspect:			
No.	Tasks/ Experiments	Number of Weeks	Contact Hours	
1	Introduction of digital control systems with matlab software.	1	2	
2	Discrete-time control systems simulation and Simulink.	1	2	
3	Discrete-time control systems simulation and Simulink.	1	2	
4	Time-domain digital controller emulation.	1	2	
5	Frequency-domain digital controller emulation.	1	2	
6	Sampling, aliasing, zero-order hold (simulink).	1	2	
7	Midterm Practical Exam	1	2	
8	Discrete-time plant modeling.	1	2	
9	Root-locus, frequency response design methods for digital controllers.	1	2	
10	Numerical optimal PID digital controller design in matlab program.	1	2	
11	State-space digital controllers design in matlab program.	1	2	
12	State-space digital controllers design in matlab program.	1	2	
13	Introduction to arduino IDE.	1	2	
14	Implementation the digital controller with microcontroller by using the mikroc and proteus simulation software.	1	2	
15	Final Practical Exam	1	2	
	Number of Weeks /and Units Per Semester	15	30	

المطلوب تحديد رقم الأسبوع الذي ستنفذ فيه :[21] تعليق عليه المحاضرة وليس عدد الأسابيع W1-W2-W3....W16

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Tutorials,
- Videos demonstrations,
- Presentation/seminar,
- Interactive class discussions,
- Case studies,
- Exercises and home works,
- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Workshops practices,
- Directed self- study,
- Problem based learning,
- Team work (cooperative learning),
- Field visits/training,
- Mini/major project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Oral exams,
- Short reports,
- Lab\Project report
- Practical lab performance assessment,
- Coursework activities assessment,
- Home works and assignments,
- Presentations.

VII. Assignments:					
No.	Assignments	Week Due	Mark		
1	Problems, and advance problems, and computer problems of the Chapter 2	2	6		
2	Problems, and advance problems, and computer problems of the Chapter 3	3	6		
3	Problems, and advance problems, and computer problems of the Chapter 4	5	6		
4	Problems, and advance problems, and computer problems of the Chapter 5	9	6		
5	Problems, and advance problems, and computer problems of the Chapter 6	10	6		
	Total		30		

VIII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	
1	Assignments	15	30	15%	
2	Quiz 1	6	10	5%	
3	Midterm Theoretical Exam	8	30	15%	
4	Midterm Theoretical Exam	9	20	10%	
5	Quiz 2	12	10	5%	
6	Final Practical Exam	15	30	15%	
7	Final Theoretical Exam	16	70	35%	
	Total			100%	

Academy Development Center Dean of H & Quality Insurance

Dean of Engineering Quality Insurance Unite

IX. Learning Resources:
Written in the following order:
• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).
1- Required Textbook(s) (maximum two):
 Katsuhiko Ogata, 2010, Discrete-time control systems, 2nd Edition, Prentice Hall. Dogan Ibrahim, 2006, microcontroller based applied a digital controller, 1st Edition, john wiley & sons Inc.,
2- Essential References:
 3- M. Sam Fadali, 2009, Digital control systems analysis and design, 1st Edition, Elsevier Inc. 4- FARIDGOLNARAGHI, BENJAMINC.KUO, 2010, Automatic Control Systems, ninth Edition, John Wiley & Sons, Inc.
3- Electronic Materials and Web Sites etc.:
Websites:
1- National Instruments
https://learn.ni.com/teach/resources/1221/digital-control
2- The National Program on Technology Enhanced Learning (NPTEL), Automatic Control
https://nptel.ac.in/courses/112/107/112107240/
Journals:
3- IEEE Transactions on control systems technology: Peer reviewed academic journal
https://www.ieeexplore.ieee.org/xpl
 International Journal of control, automation and systems: The leading peer reviewed academic journal
. https://www.springer.com/Journal
Other Web Sources:
5- MIT Open Course Ware, Analysis and Design of Digital Control Systems
https://ocw.mit.edu/courses/mechanical-engineering/2-171-analysis-and-design-of-digital-control-systems-fall-2006/
6- Purdue University Purdue Online Learning, College of Engineering, Digital Control
Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance

IX. Learning Resources:

https://engineering.purdue.edu/ProEd/courses/digital-control

X. Course Policies:

1	Class Attendance:
	A student should attend not less than 75 % of total hours of the subject; otherwise
	he/she will not be able to take the exam and will be considered as exam failure. If the
	student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be
	required to retake the entire course again.
2	Tardy:
	For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality:
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour
	from exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam
4	Assignments & Projects:
	In general one assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.

	If the examination committee proofed a plagiarism of a student, he/she will be
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university or according to the university roles.
7	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed;
	otherwise the student will be asked to leave the lecture room.
	- Mobile phones are not allowed in class during the examination.
	- Lecture notes and assignments might be given directly to students using soft or
	hard copy.

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite