

Course Specification of Biomedical Systems Design

Course Code (BE367)

I. C	I. Course Identification and General Information:					
1	Course Title:	Biomedical Systems Design				
2	Course Code & Number:	BE367				
		С.Н ТОТАІ			TOTAL	
3	Credit hours:	Th.	Seminar	Pr	Tr.	_
		2		2		3
4	Study level/ semester at which this course is offered:	4 th Level / 2 nd Semester				
5	Pre –requisite (if any):	BE244, BE263, BE364				
6	Co –requisite (if any):	BE365				
7	Program (s) in which the course is offered:	Biomedical Engineering Program				
8	Language of teaching the course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Associate Prof. Dr. Khalil Al-Hatab				
11	Reviewed by:	Dr				
12	Date of Approval:					

I. Course Description:

Biomedical Systems Design is a project-based course that expose students to the entire biomedical product design and development process from an idea to a product. The course material includes:

generic design and development process, design team management, product definition, concept generation and selection, product architecture, product documentation, product development, design for quality and robustness, human factors and industrial design, evaluation and miscellaneous issues. Through the class lectures, assignments, case studies, project and seminar, students will develop an intense, immersive, experiential opportunity to develop professional-level skills to adopt an interdisciplinary and integrated approach in the design and development of medical systems and assistive devices.

III	. Course Intended learning outcomes (CILOs) of the COURSE (maximum 8CILOs)	Referenced PILOS (Only write code number of referenced Program Intended learning outcomes)			
Kno	Knowledge and Understanding: Upon successful completion of the undergraduate Biomedical Engineering Program, the graduates will be able to:				
a1	Explain the generic design and developments process and how it is relevant to the design and developments of a biomedical systems and associative devices.	A2 Clarify the design principles and techniques and the engineering materials characteristics and how these are relevant to the developments and technologies in a biomedical systems context.			
a2	Understand the phases, procedures, concepts, principles, methodologies, tools and techniques applied to design and develop a biomedical product in a creative and innovative manner.	A4 Understand and give examples of design methods, knowledge tools, analytical skills, measurement techniques and methodologies for innovative and creative engineering solutions applied to healthcare problems and quality of life issues.			
В. С	B. Cognitive/ Intellectual Skills: Upon successful completion of the undergraduate Biomedical Engineering Program, the graduates will be able to:				

b1	Review research literature, identify, formulate and analyze a real world problem statement, requirement to develop creative and innovative design solutions as a member of an engineering design team.	B2 Identify, formulate and solve the complex problems related to the Biomedical Engineering fields in a creative and innovative manner by using a systematic and analytical thinking methods.
b2	Conceptualize a certain biomedical system and product to be launched in the market within realistic constraints such as environmental, health and safety, ethical and professional behavior, societal political, manufacturability and sustainability.	B3 Design the biomedical systems or processes within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.
	Professional and Practical Skills: Upon successful Engineering Program, the graduates will be able t	
c1	Recognize the ongoing need for additional knowledge, integrate and apply this knowledge to obtain the innovation solution of the product design and development project.	C1 Apply integrally knowledge of mathematics, life science, IT, design, business context and engineering practice to solve problems and to design systems/processes relevant to Biomedical Engineering.
c2	Use analytical tools, techniques, modern engineering tools, computational software packages for virtual design, including development, validation, and optimization of prototypes.	C2 Use a wide range of analytical tools, techniques, IT, modern engineering tools, software packages and develop required computer programs to solve, modeling and analyzing Biomedical Engineering problems.
c3	Apply industrials rules, standards and regulations and observe the appropriate steps to asses risks concerning biomedical systems practice.	C4 Use rules and regulations of industrial safety as well as safe and diagnose systems at work, evaluate performance and observe the appropriate steps to manage risks concerning biomedical

		systems.
c4	Recognize ethical and professional responsibilities in the development of biomedical products and must consider their impacts in global, economic, environmental, safety, confidentiality and quality of life issues.	C5 Demonstrate basic organizational and project management skills, apply quality assurance procedures, practice neatness and aesthetics and follow codes and standards to improve biomedical products design or services.
D. T	ransferable Skills: Upon successful completion of	of the undergraduate Biomedical Engineering
Prog	ram, the graduates will be able to:	
d1	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	D1 Lead and motivate individuals, show capability to work in stressful environments and within constraints, collaborate effectively within multidisciplinary team.
d2	Manage a design and development project	D2 Acquire entrepreneurial skills and
	tasks from start to finish that establish goals,	effectively manage tasks, time, processes and
	plan tasks and meet deadlines.	resources.
d3	Upgrade knowledge and understanding through Life-long Learning philosophy.	D3 Recognize the needs for, and engage in life-long self-learning.
d4	Utilize technical resources and perform effective background research, observations, and interviews.	D4 Refer to relevant literatures, search for information, use databases, as well as, evaluate information and evidence from various sources in biomedical engineering.
d5	Writing effective reports and design documentation and make effective presentations.	D5 Demonstrate efficient IT capabilities and communicate effectively both orally and in writing technical reports.

(A) Alignment Course Intended Teaching Strategies and Assess	-	ledge and Understanding to
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
a1. Explain the generic design and developments process and how it is relevant to the design and developments of a biomedical systems and associative devices.	 Interactive lectures & examples, Interactive class discussions, Case studies, Exercises and home works, Directed self- study, Problem based learning, Mini/major project. 	 Written tests (mid and final terms and quizzes), Project report Coursework activities assessment, Home works and assignments, Presentations.
a2 . Understand the phases, procedures, concepts, principles, methodologies, tools and techniques applied to design and develop a biomedical product in a creative and innovative manner.	 Interactive lectures & examples, Interactive class discussions, Case studies, Exercises and home works, Directed self- study, Problem based learning, Mini/major project. 	 Written tests (mid and final terms and quizzes), Project report Coursework activities assessment, Home works and assignments, Presentations.

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:			
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
b1. Review research literature, identify, formulate and analyze	• Interactive lectures & examples,	• Written tests (mid and final terms and quizzes),	
a real world problem statement,	• Presentation/seminar,	Project report	
	Interactive class	Coursework activities	

requirement to develop creative and innovative design solutions	discussions,Case studies,	assessment,Home works and assignments,
as a member of an engineering design team.	 Exercises and home works, Directed self- study, Problem based learning, Field visits/training, Mini/major project. 	 Presentations.
b2. Conceptualize a certain biomedical system and product to be launched in the market within realistic constraints such as environmental, health and safety, ethical and professional behavior, societal political, manufacturability and sustainability.	 Interactive lectures & examples, Presentation/seminar, Interactive class discussions, Case studies, Exercises and home works, Directed self- study, Problem based learning, Field visits/training, Mini/major project. 	 Written tests (mid and final terms and quizzes), Project report Coursework activities assessment, Home works and assignments, Presentations.

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1 . Recognize the ongoing need for additional knowledge, integrate	• Interactive lectures & examples,	• Written tests (mid and final terms and quizzes),
and apply this knowledge to	• Presentation/seminar,	• Project report
obtain the innovation solution of	• Interactive class discussions,	• Coursework activities
the product design and	• Case studies,	assessment,
development project.	• Exercises and home works,	Home works and
	• Directed self- study,	assignments,

	Participation of the second se	Land Back	Sand Sand Sand Sand Sand Sand Sand Sand	
--	--	-----------	---	--

		~ .
	• Problem based learning,	• Presentations.
	• Field visits/training,	
	• Mini/major project.	
c2. Use analytical tools, techniques, modern engineering tools, computational software packages for virtual design, including development, validation, and optimization of prototypes.	 Interactive lectures & examples, Presentation/seminar, Interactive class discussions, Case studies, Exercises and home works, Computer laboratory-based sessions Directed self- study, Problem based learning, Field visits/training, 	 Written tests (mid and final terms and quizzes), Project report Coursework activities assessment, Home works and assignments, Presentations.
c3. Apply industrials rules, standards and regulations and observe the appropriate steps to asses risks concerning biomedical systems practice.	 Mini/major project. Interactive lectures & examples, Presentation/seminar, Interactive class discussions, Case studies, Exercises and home works, Directed self- study, Problem based learning, Field visits/training, Mini/major project 	 Written tests (mid and final terms and quizzes), Project report Coursework activities assessment, Home works and assignments, Presentations.
c4. Recognize ethical and professional responsibilities in the development of biomedical products and must consider their	 Mini/major project. Mini/major project. 	 Lab\Project report Coursework activities assessment, Home works and assignments,

impacts in global, economic,	• Presentations.
environmental, safety,	
confidentiality and quality of	
life issues.	

(D) Alignment Course Intended Lear Strategies and Assessment Strategies:	ning Outcomes of Transferable S	Skills to Teaching
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
d1. Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.	 Case studies, Workshops practices, Problem based learning, Team work (cooperative learning), Field visits/training, Mini/major project. 	 Project report Coursework activities assessment, Presentations.
d2 Manage a design and development project tasks from start to finish that establish goals, plan tasks and meet deadlines.	() officially practices,	 Project report Coursework activities assessment, Presentations.
d3. Upgrade knowledge and understanding through Life-long Learning philosophy.	 Case studies, Exercises and home works, Directed self- study, Problem based learning, Field visits/training, Mini/major project. 	 Written tests (mid and final terms and quizzes), Project report Coursework activities assessment, Home works and

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared & Quality Insurance

Prepared By: Dr. Khalil Al-Hatab

		assignments,
		• Presentations.
d4. Utilize technical resources and perform effective background research, observations, and interviews.		 Written tests (mid and final terms and quizzes), Project report Coursework activities assessment, Home works and assignments, Presentations.
d5 . Writing effective reports and design documentation and make effective presentations.	• Presentation/seminar,	 Project report Coursework activities assessment, Home works and assignments, Presentations.

IV. Course Content:

A – Theoretical Aspect:

Academy Development Center Dean of Engineering & Quality Insurance

Quality Insurance Unite

Prepared By: Dr. Khalil Al-Hatab

Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours
1	Introduction to Biomedical Engineering Design	a1, a2,c1	 Course Overview What Is Design? The Essentials of Design—Overview Biomedical Engineering Design Medical Devices Definitions Classifying Medical Devices Classification and the Design Process An Overview of the Industrial Design Process The Design Life Cycle Characteristics of Successful Product Development 	1	2
2	Development Process and Design Procedures	a1,a2,b1,b2, c1	 Generic Product Development Process Product Development Organizations Opportunity Identification Design Process versus Design Control Design Models Managing Design Cross-Reference with Regulatory Requirements Review of Guidelines Overall Procedure Audit /Review Procedure Design Process and Procedures 	2 & 3	4
3	Design Team and Management	a1,a2,b1,b2, c1	 Design Team Construction and Management Student Design Team Construction and Management Reporting Techniques Design Project Data Management Case Study-1 	4	2
4	Product	a1,a2,b1,b2, c1,c2	 The Product Definition Process 	5&6	4

	Definition		 Identifying Customer Needs Developing the Statement of Need (or Brief) Function Decomposition and Structure Detailed Procedure to Establish Functional Structures Benchmarking Competitive Performance Benchmarking Reverse Engineering and Product Dissection Objective Trees Determining Engineering Characteristics Quality function deployment (QFD) Product Specification Detailed Procedure to Establish Product Specifications Case Study-2 		
5	Concept Generation and Selection	a1,a2,b1,b2, c1,c2	 Creative Space Concept Generation Methods Detailed Procedure to Establish Concept Generation Overview of Methodology for Selecting Concepts and Ideas Elementary Decision-Making Techniques Concept Screening Concept Scoring Detailed Procedure to Establish Concept Testing Prototyping Case Study-3 	7	2
6	Mid-Term Theoretical Exam	a1,a2,b1,b2, c1,c2	 All Preceding Lectures 	8	2
7	Product Architecture	a1,a2,b1,b2, c1,c2	The Process to Design RealizationDefine Product Architecture	9	2

			 Implications of the Architecture Steps in Developing Product Architecture Configuration & Parametric Design Dimensions and Tolerances Biomaterials Performance characteristics, Selection Process and Testing Modeling and Simulation Tools Case Study-4 		
8	Product Development	a1,a2,b1,b2, c1,c2	 Product Requirements Design and Development Planning System Requirements Specification Design Input Design Output Formal Design Review Design Verification Design Validation Design Transfer Role of the Intern 	10	2
10	Design for Quality and Robustness	a1,a2,b1,b2, c1,c2	 Design for Six Sigma (DFSS) DFSS Methodology DFSS Tools Robust Design Quality Function Deployment Robust Design Failure Mode and Effects Analysis Axiomatic Design Design for Variation Design of Experiments Case Study-5 	11	2
11	Industrial Design (ID)	a1,a2,b1,b2, c1,c2,c3	 Definition of Human Factors (HFs) The Human, Hardware and Software Elements in HFs HFs Process Planning and Analysis of HFs Conduct User Studies 	12	2

			 Set Usability Goals Design User Interface (UI) Concepts Model the Test UI Additional HFs Design Considerations Fitts' Law Set Usability Goals Design UI Concepts Model, Test Specify and the UI Additional ID Considerations Case Study-6 Safety and Risk 		
12	Evaluation (Validation and Verification)	a1,a2,b1,b2, c1,c2,c3	 Factors Important for Medical Device Risk Assessment Risk Management Process Tools for Risk Estimation Risk Analysis and Systems Criteria-Based Evaluation Testing Methodology Types of Testing Analysis of Test Data Definitions of: Reliability, Confidence Level, Confidence Limits, Mean Time Between Failures, Minimum Life. Types of Reliability Failure Rate Mean Time Between Failures Graphical analysis 	13	2
13	Miscellaneous Issues	a1,a2,b1,b2, c1,c2,c3,c4	 Design for "X" 1. Design for Manufacturability 2. Design for Assembly and Disassembly 3. Design for Reliability 4. Design for Maintainability 5. Design for Environment Standards and Regulations 1. International Standards 	14 & 15	4

l Engineering omedical Engineering									
	2.	The 510(k) process							
	3.	Pre-market Approval (PMA)							
	4.	Medical Devices Directive (MDD)							
	-		1						

Number	Number of Weeks /and Units Per Semester			16	32
14	Final Theoretical Exam	a1,a2,b1,b2, c1,c2,c3	 All Preceding Lectures 	16	2
			 5. Choosing the Appropriate Directive Intellectual Property: Patents, Copyrights, Trade Secrets, and Licensing Ethics Issues Professional Issues 		
			 Medical Devices Directive (MDD) 		

B –Pi	B – Practical Aspect: (Project)						
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes			
	Semester Project Information and Product						
	Documentation:						
	 Semester Project Information 		2				
	– Documentation						
	1. Business proposal						
1	2. Product specification	1		a1,a2,			
-	3. Design specification	Ĩ	2	c1,c2, d5			
	- Records:						
	1. The DHF						
	2. The DMR						
	3. The DHR						
	4. The TDF						

	 A Comparison of the Medical Device Records Expectations for Student Project Documentation Project Report Template Information Presentation Information 			
2	 Semester Project Selection: Students will also work with a partner to complete a semester project consisting of an in-depth case study of an existing or new medical device related to one of the following general categorized: Orthopedic devices Implantable electronic devices Diagnostics Therapeutic devices Skin closure devices Others Project selection Form a Team They should examine the entire design and development process of a medical device and associative products 	2	2	a1,a2,b1,b2, c1,c2,
3	 SolidWorks module: A computer-aided design software package widely used in engineering in general, and biomedical industry in particular Students will asked to revised their practice on using SolidWorks software. 	3	2	c1,c2
4	 COMSOL module: A modeling package for the simulation of any physical process you can describe with partial differential equations (PDEs). It features state-of-the-art solvers that address complex problems 	4 & 5	4	c1,c2

	 quickly and accurately, while its intuitive structure is designed to provide ease of use and flexibility. Students will asked to revised their practice on using COMSOL software. 			
5	 Problem Definition: Students will be assigned a Case study and expected to identify opportunities and customer needs, generate design specifications, manage and plan out the project and maintain engineering notebooks throughout all phases of the project. 	6	2	a1,a2,b1,b2, c1,c2,c3,c4, d1,d2, d3,d4.d5
6	 Concept Generation and Evaluation: Students will use brainstorming and decision evaluation tools to generate and evaluate solutions to reach a design consensus. 	7	2	a1,a2,b1,b2, c1,c2,c3,c4, d1,d2, d3,d4.d5
7	 First project presentation: Students will be required to describe, explain, and support the progress and solutions of their project at above phases of the design process. 	8	2	a1,a2,b1,b2, c1,c2,c3,c4, d1,d2, d3,d4.d5
8	 Detailed Design: Students will generate a paper design of their proposed prototype including device specifications, key materials and components, detailed drawings, and principle of operation with all choices justified and supported through proof-of-concept. <u>First Project Report:</u> Initial information details about the project will be posted in the first report attached to the syllabus. 	9 &10	4	a1,a2,b1,b2, c1,c2,c3,c4, d1,d2, d3,d4.d5

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: & Quality Insurance

Prepared By: Dr. Khalil Al-Hatab

9	 Prototype Fabrication and Validation: Students will fabricate and conduct testing of their prototype, assess the degree to which the prototype meets the design specifications, and recommend design modifications to improve the prototype. 	11 - 13	6	a1,a2,b1,b2, c1,c2,c3,c4, d1,d2, d3,d4.d5
10	 <u>Second Project Presentation:</u> Students will be required to describe, explain, and support the progress and solutions of their project at all phases of the design process. 	14	2	a1,a2,b1,b2, c1,c2,c3,c4, d1,d2, d3,d4.d5
11	 <u>Final Project Report:</u> – Final design details about the project will be posted in the final report. 	15	2	a1,a2,b1,b2, c1,c2,c3,c4, d1,d2, d3,d4.d5
	Number of Weeks /and Units Per Semester		15	30

C. 1	C. Tutorial Aspect:						
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)			
1	None						
2							
	Number of Weeks /and Units Per Semester00						

V. Teaching Strategies of the Course:

Academy Development Center Dean of Engineering Quality Insurance Unite Prepa & Quality Insurance

Prepared By: Dr. Khalil Al-Hatab

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Presentation/seminar,
- Interactive class discussions,
- Case studies,
- Exercises and home works,
- Computer laboratory-based sessions
- Directed self- study,
- Problem based learning,
- Team work (cooperative learning),
- Field visits/training,
- Mini/major project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Project report
- Coursework activities assessment,
- Home works and assignments,
- Presentations.

VII. Assignments: No Assignments Aligned Week Due Mark

1	 Case study topics: Case studies are conducted in the class on a medical device that is related to one of the following general categorized: Orthopedic devices Implantable electronic devices Diagnostics Therapeutic devices Skin closure devices Others Case studies should examine and will prepare and deliver a class presentation and submit a short written report covering one aspects of the design and development of a medical device and associative products. 	a1,a2,b1,b2,c1, c2,c3,c4,d1,d2, d3,d4	Through course Semester	10	
2	Semester Project: First project presentation	a1,a2,b1,b2,c1, c2,c3,c4,d1,d2, d3,d4	8	2	
3	Semester Project; First project Report	a1,a2,b1,b2,c1, c2,c3,c4,d1,d2, d3,d4	10	3	
4	Semester Project: Final project presentation	a1,a2,b1,b2,c1, c2,c3,c4,d1,d2, d3,d4	14	5	
5	Semester Project: Final project Report	a1,a2,b1,b2,c1, c2,c3,c4,d1,d2, d3,d4	15	10	
Total					

VIII	VIII. Schedule of Assessment Tasks for Students During the Semester:						
No. Assessment Method		Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes		
1	Assignments	Through course	30	20%	a1,a2,b1,b2,c1,c2, c3,c4,d1,d2,d3,d4		

		Semester			
2	Quizzes	6 & 10	20	13.3%	a1,a2,b1, b2, c1,c2
3	Midterm Theoretical Exam	8	30	20%	a1,a2,b1,b2, c1,c2,
4	Final Theoretical Exam	16	70	46.7%	a1,a2,b1,b2, c1,c2, c3,c4
	Total			100%	

IX. L	IX. Learning Resources:					
1- Re	1- Required Textbook(s) (maximum two).					
	 Paul H. King, Richard C. Fries, and Arthur T. Johnson, 2019, Design of Biomedical Devices and Systems, 4th Edition, CRC Press, USA. 					
	 Ulrich, K.T. and Eppringer, S.D., 2012, Product Design and Development, 5th Edition, USA, McGraw-Hill, Inc. 					
2- E	ssential References.					
	 Claudio Becchetti Alessandro Neri, 2013, Medical Instrument Design and Development: From Requirements to Market Placements, 1st Edition, United Kingdom, John Wiley & Sons Ltd Peter J. Ogrodnik, 2013, Medical Device Design Innovation from Concept to Market, 1st Edition, UK, Elsevier. Myer Kutz, 2009, Biomedical Engineering and Design Handbook Volume 1: Fundamentals, 1st Edition, USA, McGraw-Hill. Myer Kutz, 2009, Biomedical Engineering and Design Handbook Volume 2: Applications, USA, McGraw-Hill. 					
3- E	lectronic Materials and Web Sites <i>etc</i> .					
	 Websites: www.ebiodesign.org www.fda.gov www.idsa.org/events/what-id. www.arts.gov/sites/default/files/Industrial-Design-Report-May2017-rev3.pdf. www.medicaldesignandoutsourcing.com/need-know-industrial-design-medtech/. www.mdtmag.com/article/2015/10/3-key-aspects-successful-medical-industrial-design. www.biomaterials.org 					

- www.lib.umich.edu/database/link/10603.
- www.matweb.com/main.htm
- www.valvira.fi
- www.afssaps.fr
- www.sanita.it
- www.imb.ie

X. C	ourse Policies:
1	Class Attendance:
	A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the
	student is absent due to illness, he/she should bring a proof statement from university
	Clinic. If the absent is more than 25% of a course total contact hours, student will be
	required to retake the entire course again.
2	Tardy:
	For late in attending the class, the student will be initially notified. If he repeated lateness in
	attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality:
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour
	from exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam
4	Assignments & Projects:
	In general one assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:

	Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he/she will be					
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university or according to the university roles.					
7	Other policies:					
	 Mobile phones are not allowed to use during a class lecture. It must be closed; otherwise the student will be asked to leave the lecture room. 					
	- Mobile phones are not allowed in class during the examination.					
	- Lecture notes and assignments might be given directly to students using soft or					
	hard copy.					

Template for Course Plan (Syllabus)

Biomedical Systems Design BE367

	I. Course Identification and General Information:						
1	Course Title:	Biomedical Systems Design					
2	Course Code & Number:	BE367					
		Credit	Theory	Hours	Pr.		
3	Credit Hours:	Hours	Lecture	Exercise			
		3	2		2		
4	Study Level/ Semester at which this Course is offered:	4 th Level / 2 nd Semester					
5	Pre –Requisite (if any):	BE244, BE263, BE364					
6	Co –Requisite (if any):	BE365					
7	Program (s) in which the Course is Offered:	Biomedi	cal Engineer	ring Program			
8	Language of Teaching the Course:	English					
9	Location of Teaching the Course:	Faculty of Engineering					
10	Prepared by:	Associate Prof. Dr. Khalil Al-Hatab					
11	Reviewed by:	Dr					
12	Date of Approval:						

II. Course Description:

Biomedical Systems Design is a project-based course that expose students to the entire biomedical product design and development process from an idea to a product. The course material includes:

generic design and development process, design team management, product definition, concept generation and selection, product architecture, product documentation, product development, design for quality and robustness, human factors and industrial design, evaluation and miscellaneous issues. Through the class lectures, assignments, case studies, project and seminar, students will develop an intense, immersive, experiential opportunity to develop professional-level skills to adopt an interdisciplinary and integrated approach in the design and development of medical systems and assistive devices.

III.	(مخرجات تعلم المقرر) : (Course Intended Learning Outcomes (CILOs)
A. Kn to:	owledge and Understanding: Upon successful completion of the course, students will be able
a1	Explain the generic design and developments process and how it is relevant to the design and developments of a biomedical systems and associative devices.
a2	Understand the phases, procedures, concepts, principles, methodologies, tools and techniques applied to design and develop a biomedical product in a creative and innovative manner.
B. Int	ellectual Skills: Upon successful completion of the course, students will be able to:
b1 b2	Review research literature, identify, formulate and analyze a real world problem statement, requirement to develop creative and innovative design solutions as a member of an engineering design team. Conceptualize a certain biomedical system and product to be launched in the market within realistic constraints such as environmental, health and safety, ethical and professional behavior, societal political, manufacturability and sustainability.
C. Pro to:	ofessional and Practical Skills: Upon successful completion of the course, students will be able
c1	Recognize the ongoing need for additional knowledge, integrate and apply this knowledge to obtain the innovation solution of the product design and development project.
c2	Use analytical tools, techniques, modern engineering tools, computational software packages for virtual design, including development, validation, and optimization of prototypes.

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By: Dr. Khalil Al-Hatab & Quality Insurance

III.	(مخرجات تعلم المقرر) : (Course Intended Learning Outcomes (CILOs)
c3	Apply industrials rules, standards and regulations and observe the appropriate steps to asses
	risks concerning biomedical systems practice.
c4	Recognize ethical and professional responsibilities in the development of biomedical products
	and must consider their impacts in global, economic, environmental, safety, confidentiality and
	quality of life issues.
D. Tra	ansferable Skills: Upon successful completion of the course, students will be able to:
d1	Function effectively as an individual, and as a member or leader in diverse teams, and in
	multidisciplinary settings.
d2	Manage a design and development project tasks from start to finish that establish goals, plan
	tasks and meet deadlines.
d3	Upgrade knowledge and understanding through Life-long Learning philosophy.
d4	Utilize technical resources and perform effective background research, observations, and
	interviews.
d5	Writing effective reports and design documentation and make effective presentations.

Γ	IV. Course Contents:					
A.	A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
1	Introduction to Biomedical Engineering Design	 Course Overview What Is Design? The Essentials of Design—Overview Biomedical Engineering Design Medical Devices Definitions Classifying Medical Devices Classification and the Design Process An Overview of the Industrial Design Process 	1	2		

	IV. Course Contents: A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
		 The Design Life Cycle Characteristics of Successful Product Development 				
2	Development Process and Design Procedures	 Generic Product Development Process Product Development Organizations Opportunity Identification Design Process versus Design Control Design Models Managing Design Cross-Reference with Regulatory Requirements Review of Guidelines Overall Procedure Audit /Review Procedure Design Process and Procedures 	2 & 3	4		
3	Design Team and Management	 Design Team Construction and Management Student Design Team Construction and Management Reporting Techniques Design Project Data Management Case Study-1 	4	2		
4	Product Definition	 The Product Definition Process Identifying Customer Needs Developing the Statement of Need (or Brief) Function Decomposition and Structure Detailed Procedure to Establish Functional Structures Benchmarking 	5&6	4		

Academy Development Center Dean of Engineering Quality Insurance Unite & Quality Insurance

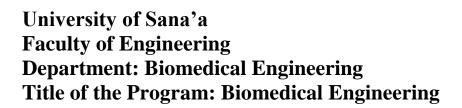
Prepared By: Dr. Khalil Al-Hatab

IV. Course Contents:						
A. Theoretical Aspect:						
No.	Units/Topics List Sub Topics List		Number of Weeks	Contact Hours		
		 Competitive Performance Benchmarking Reverse Engineering and Product Dissection Objective Trees Determining Engineering Characteristics Quality function deployment (QFD) Product Specification Detailed Procedure to Establish Product Specifications Case Study-2 				
5	Concept Generation and Selection	 Creative Space Concept Generation Methods Detailed Procedure to Establish Concept Generation Overview of Methodology for Selecting Concepts and Ideas Elementary Decision-Making Techniques Concept Screening Concept Scoring Detailed Procedure to Establish Concept Testing Prototyping Case Study-3 	7	2		
6	Mid-Term Theoretical Exam	 All Preceding Lectures 	8	2		
7	Product Architecture	 The Process to Design Realization Define Product Architecture Implications of the Architecture Steps in Developing Product Architecture Configuration & Parametric Design 	9	2		

Academy Development Center Dean of Engineering Quality Insurance Unite & Quality Insurance

Prepared By: Dr. Khalil Al-Hatab

Γ	IV. Course Contents:				
A.	A. Theoretical Aspect:				
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
		 Dimensions and Tolerances Biomaterials Performance characteristics, Selection Process and Testing Modeling and Simulation Tools Case Study-4 			
9	Product Development	 Product Requirements Design and Development Planning System Requirements Specification Design Input Design Output Formal Design Review Design Verification Design Validation Design Transfer Role of the Intern 	10	2	
10	Design for Quality and Robustness	 Design for Six Sigma (DFSS) DFSS Methodology DFSS Tools Robust Design Quality Function Deployment Robust Design Failure Mode and Effects Analysis Axiomatic Design Design for Variation Design of Experiments Case Study-5 	11	2	
11	Industrial Design	 Definition of Human Factors (HFs) The Human, Hardware and Software Elements in HFs HFs Process 	12	2	



Γ	IV. Course Contents:					
A.	A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
		 Planning and Analysis of HFs Conduct User Studies Set Usability Goals Design User Interface (UI) Concepts Model the Test UI Additional HFs Design Considerations Fitts' Law Set Usability Goals Design UI Concepts Model, Test Specify and the UI Additional ID Considerations Case Study-6 				
12	Evaluation (Validation and Verification)	 Safety and Risk Factors Important for Medical Device Risk Assessment Risk Management Process Tools for Risk Estimation Risk Analysis and Systems Criteria-Based Evaluation Testing Methodology Types of Testing Analysis of Test Data Definitions of: Reliability, Confidence Level, Confidence Limits, Mean Time Between Failures, Minimum Life. Types of Reliability Failure Rate Mean Time Between Failures Graphical analysis 	13	2		
13	Miscellaneous	 Design for "X" 	14 & 15	4		


Γ	IV. Course Contents:				
А.	Theoretical Aspect:				
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
	Issues	 6. Design for Manufacturability 7. Design for Assembly and Disassembly 8. Design for Reliability 9. Design for Reliability 9. Design for Environment 9. Standards and Regulations 6. International Standards 7. The 510(k) process 8. Pre-market Approval (PMA) 9. Medical Devices Directive (MDD) 10. Choosing the Appropriate Directive Intellectual Property: Patents, Copyrights, Trade Secrets, and Licensing Ethics Issues Professional Issues 			
14	Final Theoretical Exam	 All Preceding Lectures 	16	2	
	Number of Weel	ks /and Units Per Semester	16	32	

B.	B. Case Studies and Project Practical Aspect:							
No.	Tasks/ Experiments	Number of Weeks	Contact Hours					
1	Semester Project Information and Product Documentation:	1	2					
	Semester Project InformationDocumentation							

B.	B. Case Studies and Project Practical Aspect:				
No.	Tasks/ Experiments	Number of Weeks	Contact Hours		
	 4. Business proposal 5. Product specification 6. Design specification – Records: 5. The DHF 6. The DMR 7. The DHR 8. The TDF – A Comparison of the Medical Device Records 				
	 Expectations for Student Project Documentation Project Report Template Information Presentation Information 				
2	 Semester Project Selection: Students will also work with a partner to complete a semester project consisting of an in-depth case study of an existing or new medical device related to one of the following general categorized: Orthopedic devices Implantable electronic devices Diagnostics Therapeutic devices Skin closure devices Others Project selection Form a Team They should examine the entire design and development process of a medical device and associative products 	2	2		
3	SolidWorks module:	3	2		

B.	B. Case Studies and Project Practical Aspect:				
No.	Tasks/ Experiments	Number of Weeks	Contact Hours		
	 A computer-aided design software package widely used in engineering in general, and biomedical industry in particular Students will asked to revised their practice on using SolidWorks software. 				
4	 COMSOL module: A modeling package for the simulation of any physical process you can describe with partial differential equations (PDEs). It features state-of-the-art solvers that address complex problems quickly and accurately, while its intuitive structure is designed to provide ease of use and flexibility. Students will asked to revised their practice on using COMSOL software. 	4 & 5	4		
5	 Problem Definition: Students will be assigned a Case study and expected to identify opportunities and customer needs, generate design specifications, manage and plan out the project and maintain engineering notebooks throughout all phases of the project. 	6	2		
6	 Concept Generation and Evaluation: Students will use brainstorming and decision evaluation tools to generate and evaluate solutions to reach a design consensus. 	7	2		
7	<u>First project presentation:</u> – Students will be required to describe, explain, and	8	2		

B.	B. Case Studies and Project Practical Aspect:				
No.	Tasks/ Experiments	Number of Weeks	Contact Hours		
	support the progress and solutions of their project at above phases of the design process.				
8	 Detailed Design: Students will generate a paper design of their proposed prototype including device specifications, key materials and components, detailed drawings, and principle of operation with all choices justified and supported through proof-of-concept. First Project Report: Initial information details about the project will be posted in the first report attached to the syllabus. 	9 &10	4		
9	 Prototype Fabrication and Validation: Students will fabricate and conduct testing of their prototype, assess the degree to which the prototype meets the design specifications, and recommend design modifications to improve the prototype. 	11 - 13	6		
10	 <u>Second Project Presentation:</u> Students will be required to describe, explain, and support the progress and solutions of their project at all phases of the design process. 	14	2		
11	 Final Project Report: Final design details about the project will be posted in the final report. 	15	2		
	Number of Weeks /and Units Per Semester	15	30		

C.	C. Tutorial Aspect:					
No.	D.TutorialNumber of WeeksContact Hours					
1	None					
	Number of Weeks /and Units Per Semester					

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Presentation/seminar,
- Interactive class discussions,
- Case studies,
- Exercises and home works,
- Computer laboratory-based sessions
- Directed self- study,
- Problem based learning,
- Team work (cooperative learning),
- Field visits/training,
- Mini/major project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Project report
- Coursework activities assessment,
- Home works and assignments,
- Presentations.

1	VII. Assignments:		
No.	Assignments	Week Due	Mark

Academy Development Center Dean & Quality Insurance

Dean of Engineering (

Quality Insurance Unite

١	VII. Assignments:					
No.	Assignments	Week Due	Mark			
1	 Case study topics: Case studies are conducted in the class on a medical device that is related to one of the following general categorized: Orthopedic devices Implantable electronic devices Diagnostics Therapeutic devices Skin closure devices Others Case studies should examine and will prepare and deliver a class presentation and submit a short written report covering one aspects of the design and development of a medical device and associative products. 	Through course Semester	10			
2	Semester Project: First project presentation	8	2			
3	Semester Project: First project Report	10	3			
4	Semester Project: Final project presentation	14	5			
5	Semester Project: Final project Report	15	10			
	Total		30			

VIII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment		
1	Assignments	Through course Semester	30	20%		
2	Quizzes	6 & 10	20	13.3%		
3	Midterm Theoretical Exam	8	30	20%		

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment			
4	Final Theoretical Exam	16	70	46.7%			
	Total 150 100%						

IX. Learning Resources:

Written in the following order:

1- Required Textbook(s) (maximum two):

- 1. Paul H. King, Richard C. Fries, and Arthur T. Johnson, 2019, **Design of Biomedical Devices and Systems**, 4th Edition, CRC Press, USA.
- 2. Ulrich, K.T. and Eppringer, S.D., 2012, **Product Design and Development**, 5th Edition, USA, McGraw-Hill, Inc.

2- Essential References:

- Claudio Becchetti Alessandro Neri, 2013, Medical Instrument Design and Development: From Requirements to Market Placements, 1st Edition, United Kingdom, John Wiley & Sons Ltd
- 2. Peter J. Ogrodnik, 2013, Medical Device Design Innovation from Concept to Market, 1st Edition, UK, Elsevier.
- 3. Myer Kutz, 2009, **Biomedical Engineering and Design Handbook Volume 1:** Fundamentals, 1st Edition, USA, McGraw-Hill.
- 4. Myer Kutz, 2009, **Biomedical Engineering and Design Handbook Volume 2: Applications**, USA, McGraw-Hill.

3- Electronic Materials and Web Sites etc.:

Websites:

- www.ebiodesign.org
- www.fda.gov
- www.idsa.org/events/what-id.
- www.arts.gov/sites/default/files/Industrial-Design-Report-May2017-rev3.pdf.
- www.medicaldesignandoutsourcing.com/need-know-industrial-design-medtech/.
- www.mdtmag.com/article/2015/10/3-key-aspects-successful-medical-industrial-design.
- www.biomaterials.org

IX. Learning Resources:

- www.lib.umich.edu/database/link/10603.
- www.matweb.com/main.htm
- www.valvira.fi
- www.afssaps.fr
- www.sanita.it
- www.imb.ie

X. Course Policies:	
1	Class Attendance:
	A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2	Tardy:
	For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality:
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour
	from exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam
4	Assignments & Projects
	In general one assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.

6	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
	If the examination committee proofed a plagiarism of a student, he/she will be
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university or according to the university roles.
7	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed;
	otherwise the student will be asked to leave the lecture room.
	- Mobile phones are not allowed in class during the examination.
	- Lecture notes and assignments might be given directly to students using soft or
	hard copy.