

Course Specification of Medical Image Processing

Course Code (BE453)

I. C	. Course Identification and General Information:					
1	Course Title:	Medical Image Processing				
2	Course Code & Number:	BE453				
			C.	Н		ΤΟΤΑΙ
3	Credit hours:	Th.	Seminar	Pr	Tr.	
		2		2		3
4	Study level/ semester at which this course is offered:	5 th Lev	el / 1 st Seme	ster		
5	Pre —requisite (if any):	BE152	(Computer	Programm	ing 2) &	BE225
		(Biomedical Digital Signals Processing)				
6	Co –requisite (if any):	None				
7	Program (s) in which the course is offered:	Biomedical Engineering Program				
8	Language of teaching the course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Assoc. Prof. Dr. Farouk Al-Fahaidy				
11	Reviewed by:	Assoc. Prof. Dr. Radwan AL Bouthigy			7	
12	Date of Approval:					

II. Course Description:

This course provides students with fundamentals, concepts and theories related to digital image processing in biomedical imaging systems. Digital image processing (DIP) field has wide range

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance

applications in biomedical devices such as, diseases diagnostics & classification. Course topics include, an introduction to Vision Systems & DIP in biomedical, Image Representation & Processing, image enhancement in spatial & frequency domains, Images Restoration & Segmentation and Image Compression. Throughout Computer-based lab & term-project works, students will verify learned theories and develop their problem-solving skills related to the DIP and the analysis & design of algorithms to meet biomedical imaging systems issues.

III	. Course Intended learning outcomes (CILOs) of the COURSE (maximum 8CILOs)	Referenced PILOS (Only write code number of referenced Program Intended learning outcomes)			
Kno	wledge and Understanding: Upon successf Engineering Program, the graduates will be a	ul completion of the undergraduate Biomedical ble to:			
a1	Understand concepts, fundamentals and theories related to digital image processing in biomedical imaging system.	A1 Describe and explain the underlying mathematical methods and theories; life scientific-principles; and engineering core concepts related to the Biomedical Engineering context.			
a2	Explain different DIP methods & techniques such as, trivial images processing, image filtering, image restoration and image segmentation.	A2 Clarify the design principles and techniques and the engineering materials characteristics and how these are relevant to the developments and technologies in a biomedical systems context.			
B. C	B. Cognitive/ Intellectual Skills: Upon successful completion of the undergraduate Biomedical Engineering Program, the graduates will be able to:				
b1	Apply well-organized DIP steps to the design and development of DIP software applicable to biomedical imaging field.	B1 Apply engineering principles; basic of life- science; mathematical theories; and modern tools professionally in modelling, analyzing, designing, and constructing physical digital systems; devices and/or processes relevant to			
Acad	demy Development Center Dean of Engin	eering Quality Insurance Unite Prepared By			

		Biomedical Engineering fields.
b2	Evaluate different filtering, segmentation and restoration techniques & methods, based on their features, capabilities and key- design parameters.	B2 Identify, formulate and solve the complex problems related to the Biomedical Engineering fields in a creative and innovative manner by using a systematic and analytical thinking methods.
C. Profess Engin	sional and Practical Skills: Upon succe eering Program, the graduates will be ab	essful completion of the undergraduate Biomedical ble to:
c1	Write inventive MATLAB/Python programs for solving biomedical engineering problems related to digital images processing.	C2 Use a wide range of analytical tools, techniques, IT, modern engineering tools, software packages and develop required computer programs to solve, modeling and analyzing Biomedical Engineering problems.
c2	Use MATLAB software and/or Python programming language for modeling & analyzing of DI enhancement, segmentation and restoration algorithms.	C3 Use computational facilities and techniques, measuring instruments, workshops and laboratory equipment to design and conduct experiments, collect, analyse and interpret data and present results in the biomedical systems practice.
D. Transf	erable Skills: Upon successful completi	on of the undergraduate Biomedical Engineering
Program, t	he graduates will be able to:	
d1	Function effectively in performing individual duty & team responsibilities.	D1 Lead and motivate individuals, show capability to work in stressful environments and within constraints, collaborate effectively within multidisciplinary team.
d2	Recognize the influence of DIP science to the biomedical imaging systems & devices used in health	D3 Recognize the needs for, and engage in life- long self-learning.

Academy Development Center & Quality Insurance

Dean of Engineering

ng Quality Insurance Unite

Prepared By

diagnosing, when compared to	
conventional methods.	

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
a1. Understand concepts, fundamentals and theories related to digital image processing in biomedical imaging system.	 Interactive lectures & examples, Interactive class discussions, Exercises and home works. 	 Written tests (mid and final terms and quizzes), Coursework activities assessment, Home works and assignments. 			
a2. Explain different DIP methods & techniques such as, trivial images processing, image filtering, image restoration and image segmentation.	 Interactive lectures & examples, Interactive class discussions, Exercises and home works. 	 Written tests (mid and final terms and quizzes), Coursework activities assessment, Home works and assignments. 			

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
b1. Apply well-organized DIP steps to the design and development of DIP software	 Interactive lectures & examples, Interactive class 	 Written tests (mid and final terms and quizzes), Coursework activities 			
Academy Development Center D	ean of Engineering Quality I	nsurance Unite Prepared By			

Academy Development Center & Quality Insurance

Assoc. Prof. Dr.

Farouk Al-Fahaidy

applicable to biomedical imaging	discussions,	assessment,
field.	• Exercises and home works,	• Home works and assignments,
b2. Evaluate different filtering, segmentation and restoration techniques & methods, based on their features, capabilities and key-design parameters.	 Interactive lectures & examples, Interactive class discussions, Exercises and home works, 	 Written tests (mid and final terms and quizzes), Coursework activities assessment, Home works and assignments.

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
c1. Write inventive MATLAB/Python programs for solving biomedical engineering problems related to digital images processing.	 Exercises and home works, Computer laboratory-based sessions, Directed self- study, Mini/major project. 	 Practical lab performance assessment, Coursework activities assessment, Home works and assignments. 			
c2. Use MATLAB software and/or Python programming language for modeling & analyzing of DI enhancement, segmentation and restoration algorithms.	 Interactive lectures & examples, Computer laboratory-based sessions, Mini/major project. 	 Practical lab performance assessment, Coursework activities assessment. 			

Dean of Engineering

Quality Insurance Unite

Prepared By

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
d1. Function effectively in performing individual duty & team responsibilities.	 Computer laboratory- based sessions, Workshops practices, Directed self- study, Problem based learning, Team work (cooperative learning), Mini/major project. 	 Lab\Project report Practical lab performance assessment, Coursework activities assessment, Presentations. 			
d2. Recognize the influence of DIP science to the biomedical imaging systems & devices used in health diagnosing, when compared to conventional methods.	 Computer laboratory- based sessions, Directed self- study, Problem based learning, Mini/major project. 	 Short reports, Lab\Project report Coursework activities assessment, Presentations. 			

IV. O	IV. Course Content:						
	A – Theoretica	al Aspect:					
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours		
1	Introduction & Course Orientations	a1	 Course Orientations: Course Topics, Aims & Objectives, Tools and Applications, Machine Vision, Computer Vision, Fields of Computer Vision. 	1	2		

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite

Prepared By

And State State	Landader IV	Salt Ball	W
-----------------	----------------	-----------	---

2	Introduction to DIP & Medical Images	a1, a2	 Digital Image Processing: Steps, Fundamentals, Image Sampling & Quantization, Image Representations & Transformations, and DIP System Elements, Medical Image: Fundamentals, Types, History & Applications. 	1	2
3	Digital Image Acquisition & Basic Operations	a1, a2, b1	 Digital Image Acquisition System, Basic Image Operations: Image Elements & Basic Operations, Image Pixels, Relationships between Image's Pixels, Image Pixels & Regions Adjacency, Distances and Paths. 	1	2
4	Image Enhancement	a2, b1, b2	 Spatial Domain Enhancement Methods: Histogram Processing, Fundamentals of Spatial Filtering, Smoothing Filters, Sharpening Filters, Frequency Domain Enhancement Methods: Fundamentals of Frequency Domain Findamentals of Frequency Domain Filtering, Image 	3	6

Academy Development Center Dean of Engineering & Quality Insurance

Prepared By

Assoc. Prof. Dr. Farouk Al-Fahaidy

Quality Insurance Unite

rifed land Water part of the first first part of the first first part of the first first	A A A A A A A A A A A A A A A A A A A	2000 0002	W
	14%	and brand	

			Smoothing (Low-Pass Filter), Image Sharpening (High-Pass Filter), Selective Filters (Band- Pass/Block Filters).		
5	Digital Image Programming	a2, c2	 Digital Image Programming: Use of MATLAB and/or Python Programming, Basic DI manipulation Function, Image Representation, Transformation, and Plotting. 	1	2
6	Mid-Term Theoretical Exam	a1, a2, b1, b2	 All Previous Topics 	1	2
7	Image Segmentation	a2, b1, b2	 Introduction to image segmentation, Point, Line and Edge Detection, Region based segmentation., Classification of segmentation techniques, Region approach to image segmentation, clustering techniques, Image segmentation based on thresholding, Edge based segmentation, Edge detection and linking, Hough transform and Active contour. 	2	4
8	Image	a1, a2, b1, b2	- Introduction to Image	2	2

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance

tle	e of the Program: Biomedical Engineering				
	Restoration		 restoration, Image degradation, Types of image blur, Classification of image restoration techniques, Image restoration model, Linear and Nonlinear image restoration techniques, and Blind deconvolution. 		
9	Image Registration & Shape Analysis	b1, b2	 Image Registration: Definition, Purpose, bases, Similarity Measures, Optimization & Example, Shape Analysis: Area, Perimeter, Axes, Aspect Ratio, Compactness, Convexity, Solidity and Fiber Length. 	1	2
10	Image Compression	b1, b2	 Image Compression: Introduction, Need for image compression, Redundancy in images, Classification of redundancy in images, image compression scheme, Classification of image compression schemes, Fundamentals of information theory, Run 	2	4

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By

11	Final Theoretical Exam	a1, a2, b1, b2	 coding, Predictive coding, Transformed based compression, Image compression standard, Wavelet-based image compression, JPEG Standards. 	1	2
			Standards.		
			 Wavelet-based image compression, JPEG 		
			compression standard,		
			Transformed based compression, Image		
			coding, Predictive coding,		
			length coding, Huffman coding, Arithmetic		

B - Practical Aspect: (if any)				
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes
1	Preparing Software Working Environment: Install either MATLAB of Python Arithmetic and logic Operations: Averaging, Subtraction, Multiplication, Set Operation.	2	4	c2, d1, d2
2	Intensity Transformation functions: Image Negatives, Log, Power-Law, Contrast stretching, Intensity-Level Slicing, Bit-Plane Slicing.	2	4	c1, c2, d1
3	Histogram Processing:PlottingImageHistogram,HistogramEqualization,HistogramSpecification,LocalHistogramProcessing using statistics.	1	2	b1, c1, c2, d1
4	Spatial Filtering: Smoothing Linear Filters, Order-Static (Nonlinear) Filters, Sharpening Filters.	3	6	b1, b2, c1, c2, d1

Academy Development Center Dean of Engineering Quality Insurance Unite P & Quality Insurance

Prepared By

	Frequency Domain Filtering: Low-Pass & High-Pass,			
5	Band-Pass & Band-Stop Filters.	1	2	o1_o2
5		l	2	01, 02
6	Image Segmentation, Demonstration of the Following: Detection of Isolated Points, Line Detection, Edges detection, Global Thresholding using Iterative Algorithm, Global Thresholding using Iterative Algorithm using Otsu's method, Optimum Global Thresholding Using Otsu's Method, Using Edge to Improve Global Thresholding, Multiple Thresholding, Region Growing, Region Splitting and Merging.	2	4	b1, b2, c1, c2, d1
7	Image Restoration: Image restoration model, Linear and Nonlinear image restoration techniques, and Blind deconvolution	1	2	b2, c1, c2, d1
8	Image Registration & Shape Analysis, Image Compressions	1	2	c1, c2, d1
9	Project Presentations (Students work in teams of 2 or 3 members since the 4 th week)	1	2	a2, b1, b2, c1, c2, d1, d2
10	Final Practical Exam	1	2	c1, c2
	Number of Weeks /and Units Per Semester		15	30

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By

C . 1	C. Tutorial Aspect:			
No.	Tutorial	Number of Weeks	Contact Hours	Learning Outcomes (<u>C</u> ILOs)
1	NONE			
	Number of Weeks /and Units Per Semester			

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Interactive class discussions,
- Exercises and home works,
- Computer laboratory-based sessions,
- Problem based learning,
- Directed self- study,
- Team work (cooperative learning),
- Mini/major project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Short reports,
- Practical lab performance assessment,
- Coursework activities assessment,
- Home works and assignments,
- Presentations.

Academy Development Center & Quality Insurance Dean of Engineering

Quality Insurance Unite

Prepared By

VII. /	VII. Assignments & Reports:				
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark	
1	Assignment 1: Image Processing & Transformations and Basic Image Operations	a1, a2, d1	4 th	1	
2	Assignment 2: Image Enhancement	a1, a2, b2, c2, d1	$6^{th} \& 7^{th}$	1	
3	Assignment 3: Image Segmentation & RestorationShort Report: The Impact of DIP in Biomedical Disease' Diagnostic Devices and New Technologies in the Field.	b1, b2, c1, d1, d2	9 th to 12 th	3	
4	Assignment 4: Image Compression	b1, b2, c2, d1	14 th	1	
5	Lab Reports	b1, b2, c1, c2, d1	4^{th} to 12^{th}	4	
	Total			10	

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1	Assignments & Reports	4^{th} to 14^{th}	10	6.67%	a1, a2, b1, b2, c2, d1, d2
2	Quizzes	6 th & 12 th	10	6.67%	a1, a2, b1, b2
3	Midterm Theoretical Exam	8 th	20	13.33%	a1, a2, b1, b2,
4	Midterm Practical Exam	9 th	20	13.33%	b1, b2, c1, c2
5	Final Practical Exam (including Project Evaluation)	15 th	30	20%	a2, b1, b2, c1, c2, d1, d2

Academy Development Center & Quality Insurance Quality Insurance Unite

Prepared By

Assoc. Prof. Dr. Farouk Al-Fahaidy

Dean of Engineering

6	Final Theoretical Exam	16^{th}	60	40%	a1, a2, b1, b2
Total			150	100%	

IX. Learning Resources:
 Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher). Example
1- Niku, Saeed B., 2011, Introduction to Robotics: Analysis, Control, Applications, 2nd Edition, USA, Wiley.
1- Required Textbook(s) (maximum two).
 Rafael C. Gonzalez, Richard E. Woods 2017, Digital Image Processing, 4th edition, Pearson.
2- Stan Birchfield, 2017, Image Processing and Analysis, 1st edition,
2- Essential References.
 S.Jayaraman, S.Esakkirajan and T.VeeraKumar, 2009, Digital Image processing, TataMcGraw Hill publisher.
 Atam Dhawan, Medical Image Analysis, second edition, WILEYISBN: 978-0-470- 62205-6.
3. J. Prince and J. Links, Medical Imaging, Signals and Systems, ISBN: 0-13-065353-5
4. Vipula Singh, Digital Image Processing with MATLAB and Labview, Elsevier.
3- Electronic Materials and Web Sites <i>etc</i> .
Websites:
1- Some Images & Data are taken from:
http://www.mips.stanford.edu/public/video_lectures/index.adp
http://www.math.ucla.edu/~gilboa/PDE-based_image_filtering.html
2- Some Materials and Data:
http://www.cs.sunysb.edu/~mueller/
3- Other Web Sources:
Documentation on Matlab and the Image Processing Toolbox can be found on the

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance

Mathworks' Web site at https://www.mathworks.com/help/

X. Co	ourse Policies:
1	Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality: A student should attend the exam on time. He/she is permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam
4	Assignments & Projects: In general one assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating: For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism: Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he/she will be

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance

	disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university or according to the university roles.			
7	Other policies:			
	- Mobile phones are not allowed to use during a class lecture. It must be closed;			
	otherwise the student will be asked to leave the lecture room.			
	- Mobile phones are not allowed in class during the examination.			
	- Lecture notes and assignments might be given directly to students using soft or			
	hard copy.			

Academy Development Center & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By

Template for Course Plan (Syllabus)

Medical Image Processing BE453

	I. Course Identification and General Information:					
1	Course Title:	Medical Image Processing				
2	Course Code & Number:	BE453				
	Credit Hours:	Credit	Theory Hours		Lab Haung	
3		Hours	Lecture	Exercise	Lab. Hours	
		3	2		2	
4	Study Level/ Semester at which this Course is offered:	5 th Level / 1 st Semester				
5	Pre –Requisite (if any):	BE152 (Computer Programming 2) & BE225 (Biomedical Digital Signals Processing)			2) & 1ls	
6	Co –Requisite (if any):	None				
7	Program (s) in which the Course is Offered:	Bachelor	r of Biomedi	cal Engineer	ring	
8	Language of Teaching the Course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Assoc. Prof. Dr. Farouk Al-Fahaidy				
11	Reviewed by:	Assoc. Prof. Dr. Radwan AL Bouthigy				
12	Date of Approval:					

II. Course Description:

This course provides students with fundamentals, concepts and theories related to digital image

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance

processing in biomedical imaging systems. Digital image processing (DIP) field has wide range applications in biomedical devices such as, diseases diagnostics & classification. Course topics include, an introduction to Vision Systems & DIP in biomedical, Image Representation & Processing, image enhancement in spatial & frequency domains, Images Restoration & Segmentation and Image Compression. Throughout Computer-based lab & term-project works, students will verify learned theories and develop their problem-solving skills related to the DIP and the analysis & design of algorithms to meet biomedical imaging systems issues.

III.	(مخرجات تعلم المقرر) : (Course Intended Learning Outcomes (CILOs)				
A. Kn to:	A. Knowledge and Understanding: Upon successful completion of the course, students will be able to:				
a1	Understand concepts, fundamentals and theories related to digital image processing in biomedical imaging system.				
a2	Explain different DIP methods & techniques such as, trivial images processing, image filtering, image restoration and image segmentation.				
B. Inte	ellectual Skills: Upon successful completion of the course, students will be able to:				
b1	Apply well-organized DIP steps to the design and development of DIP software applicable to biomedical imaging field.				
b2	Evaluate different filtering, segmentation and restoration techniques & methods, based on their features, capabilities and key-design parameters.				
C. Pro to:	ofessional and Practical Skills: Upon successful completion of the course, students will be able				
c1	Write inventive MATLAB/Python programs for solving biomedical engineering problems related to digital images processing.				
c2	Use MATLAB software and/or Python programming language for modeling & analyzing of DI enhancement, segmentation and restoration algorithms.				

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance

III.	(مخرجات تعلم المقرر) : (مخرجات تعلم المقرر)
D. Tra	ansferable Skills: Upon successful completion of the course, students will be able to:
d1	Function effectively in performing individual duty & team responsibilities.
d2	Recognize the influence of DIP science to the biomedical imaging systems & devices used in health diagnosing, when compared to conventional methods.

IV. Course Contents:				
A.	Theoretical Aspect:			
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
1	Introduction & Course Orientations	 Course Orientations: Course Topics, Aims & Objectives, Tools and Applications, Machine Vision, Computer Vision, Fields of Computer Vision. 	1	2
2	Introduction to DIP & Medical Images	 Digital Image Processing: Steps, Fundamentals, Image Sampling & Quantization, Image Representations & Transformations, and DIP System Elements, Medical Image: Fundamentals, Types, History & Applications. 	1	2
3	Digital Image Acquisition & Basic Operations	 Digital Image Acquisition System, Basic Image Operations: Image Elements & Basic Operations, Image Pixels, Relationships 	1	2

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance

IV. Course Contents:				
A.	A. Theoretical Aspect:			
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
		between Image's Pixels, – Image Pixels & Regions Adjacency, Distances and Paths.		
4	Image Enhancement	 Spatial Domain Enhancement Methods: Histogram Processing, Fundamentals of Spatial Filtering, Smoothing Filters, Sharpening Filters, Frequency Domain Enhancement Methods: Fundamentals of Frequency Domain Filtering, Image Smoothing (Low-Pass Filter), Image Sharpening (High- Pass Filter), Selective Filters (Band-Pass/Block Filters). 	3	6
5	Digital Image Programming	 Digital Image Programming: Use of MATLAB and/or Python Programming, Basic DI manipulation Function, Image Representation, Transformation, and Plotting. 	1	2
6	Mid-Term Theoretical Exam	 All Previous Topics 	1	2
7	Image Segmentation	 Introduction to image segmentation, Point, Line and Edge Detection, Region based segmentation., 	2	4

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance

Γ	IV. Course Contents:			
A.	Theoretical Aspect:			
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
		 Classification of segmentation techniques, Region approach to image segmentation, clustering techniques, Image segmentation based on thresholding, Edge based segmentation, Edge detection and linking, Hough transform and Active contour. 		
8	Image Restoration	 Introduction to Image restoration, Image degradation, Types of image blur, Classification of image restoration techniques, Image restoration model, Linear and Nonlinear image restoration techniques, and Blind deconvolution. 	2	2
9	Image Registration & Shape Analysis	 Image Registration: Definition, Purpose, bases, Similarity Measures, Optimization & Example, Shape Analysis: Area, Perimeter, Axes, Aspect Ratio, Compactness, Convexity, Solidity and Fiber Length. 	1	2
10	Image Compression	 Image Compression: Introduction, Need for image compression, Redundancy in images, 	2	4

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance

IV. Course Contents:				
A.	Theoretical Aspect:			
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours
		 Classification of redundancy in images, image compression scheme, Classification of image compression schemes, Fundamentals of information theory, Run length coding, Huffman coding, Arithmetic coding, Predictive coding, Transformed based compression, Image compression standard, Wavelet-based image compression, JPEG Standards. 		
11	Final Theoretical Exam	ALL Topics	1	2
	Number of Weel	ks /and Units Per Semester	16	32

B. Case Studies and Practical Aspect:			
No.	Tasks/ Experiments	Number of Weeks	Contact Hours
1	Preparing Software Working Environment: Install either MATLAB of Python Arithmetic and logic Operations: Averaging, Subtraction, Multiplication, Set Operation.	2	4
2	Intensity Transformation functions: Image Negatives, Log, Power-Law, Contrast stretching, Intensity-Level Slicing, Bit-Plane Slicing.	2	4

Academy Development Center Dean of Engineering Quality Insurance Unite & Quality Insurance

Prepared By

B.	B. Case Studies and Practical Aspect:			
No.	Tasks/ Experiments	Number of Weeks	Contact Hours	
3	Histogram Processing:Plotting Image Histogram, Histogram Equalization,Histogram Specification, Local Histogram Processing usingstatistics.	1	2	
4	Spatial Filtering: Smoothing Linear Filters, Order-Static (Nonlinear) Filters, Sharpening Filters. Frequency Domain Filtering: Low-Pass & High-Pass, Band-Pass & Band-Stop Filters.	3	6	
5	Midterm Practical Exam	1	2	
6	Image Segmentation, Demonstration of the Following: Detection of Isolated Points, Line Detection, Edges detection, Global Thresholding using Iterative Algorithm, Global Thresholding using Iterative Algorithm using Otsu's method, Optimum Global Thresholding Using Otsu's Method, Using Edge to Improve Global Thresholding, Multiple Thresholding, Region Growing, Region Splitting and Merging.	2	4	
7	Image Restoration: Image restoration model, Linear and Nonlinear image restoration techniques, and Blind deconvolution	1	2	
8	Image Registration & Shape Analysis, Image Compressions	1	2	
9	Project Presentations (Students work in teams of 2 or 3 members since the 4 th week)	1	2	

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance

B. Case Studies and Practical Aspect:			
No.	Tasks/ Experiments	Number of Weeks	Contact Hours
10	Final Practical Exam	1	2
	Number of Weeks /and Units Per Semester	15	30

C.	C. Tutorial Aspect:			
No.	Tutorial	Number of Weeks	Contact Hours	
1	NONE			
	Number of Weeks /and Units Per Semester			

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Interactive class discussions,
- Exercises and home works,
- Computer laboratory-based sessions,
- Problem based learning,
- Directed self- study,
- Team work (cooperative learning),
- Mini/major project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Short reports,
- Practical lab performance assessment,

Academy Development Center	Dean of Engineering	Quality Insurance Unite	Prepared By
& Quality Insurance			

VI. Assessment Methods of the Course:

- Coursework activities assessment,
- Home works and assignments,
- Presentations.

VII. Assignments & Reports:			
No.	Assignments	Week Due	Mark
1	Assignment 1: Image Processing & Transformations and Basic Image Operations	4 th	1
2	Assignment 2: Image Enhancement	$6^{ m th}$ & $7^{ m th}$	1
3	Assignment 3: Image Segmentation & RestorationShort Report: The Impact of DIP in Biomedical Disease' Diagnostic Devices and New Technologies in the Field.	9 th to 12 th	3
4	Assignment 4: Image Compression	14^{th}	1
5	Lab Reports	4 th to 12 th	4
	Total		

VIII.	I. Schedule of Assessment Tasks for Students During the Semester:			
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment
1	Assignments & Reports	4 th to 14 th	10	6.67%

Academy Development Center L & Quality Insurance

Dean of Engineering

Quality Insurance Unite

Prepared By

VIII. Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment
2	Quizzes	6 th & 12 th	10	6.67%
3	Midterm Theoretical Exam	8 th	20	13.33%
4	Midterm Practical Exam	9 th	20	13.33%
5	Final Practical Exam (including Project Evaluation)	15 th	30	20%
6	Final Theoretical Exam	16 th	60	40%
	Total		150	100%

IX. Learning Resources:

• Written in the following order:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

Example

1- Niku, Saeed B., 2011, **Introduction to Robotics: Analysis, Control, Applications**, 2nd Edition, USA, Wiley.

1- Required Textbook(s) (maximum two):

- 1- Rafael C. Gonzalez, Richard E. Woods 2017, **Digital Image Processing**, 4th edition, Pearson.
- 2- Stan Birchfield, 2017, Image Processing and Analysis, 1st edition.

2- Essential References:

- 1- S.Jayaraman, S.Esakkirajan and T.VeeraKumar, 2009, **Digital Image processing**, TataMcGraw Hill publisher.
- 2- Atam Dhawan, Medical Image Analysis, second edition, WILEYISBN: 978-0-470-62205-6.

Academy Development Center Dean of Engineering Quality Insurance Unite Prepared By & Quality Insurance

IX. Learning Resources:

3- J. Prince and J. Links, Medical Imaging, Signals and Systems, ISBN: 0-13-065353-5...

4- Vipula Singh, Digital Image Processing with MATLAB and Labview, Elsevier.

3- Electronic Materials and Web Sites etc.:

Websites:

- 1- Some Images & Data are taken from: <u>http://www.mips.stanford.edu/public/video_lectures/index.adp</u> <u>http://www.math.ucla.edu/~gilboa/PDE-based_image_filtering.html</u>
- 2- Some Materials and Data: http://www.cs.sunysb.edu/~mueller/
- 3- Other Web Sources:

Documentation on Matlab and the Image Processing Toolbox can be found on the Mathworks' Web site at <u>https://www.mathworks.com/help/</u>

X. Co	X. Course Policies:		
1	Class Attendance:		
	A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.		
2	Tardy:		
	For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.		
3	Exam Attendance/Punctuality:		
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour		
Acade & Qua	my Development Center Dean of Engineering Quality Insurance Unite Prepared By ality Insurance		

	from exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam
4	Assignments & Projects:
	In general one assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
	If the examination committee proofed a plagiarism of a student, he/she will be
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university or according to the university roles.
7	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed;
	otherwise the student will be asked to leave the lecture room.
	- Mobile phones are not allowed in class during the examination.
	- Lecture notes and assignments might be given directly to students using soft or
	hard copy.

Dean of Engineering

Quality Insurance Unite

Prepared By