

Course Specification of Medical Imaging System 1

Course Code (BE468)

I. C	I. Course Identification and General Information:						
1	Course Title:	Medical Imaging System 1					
2	Course Code & Number:	BE468					
			C.			TOTAL	
3	Credit hours:	Th. 2	Seminar	Pr 2	Tr.	3	
4	Study level/ semester at which this course is offered:	5 th Level / 1 st Semester					
5	Pre –requisite (if any):	Biomedical Sensors and Measurements (BE224)					
6	Co –requisite (if any):	Medical image Processing (BE453)					
7	Program (s) in which the course is offered:	Biomedical Engineering Program					
8	Language of teaching the course:	English					
9	Location of Teaching the Course:	Faculty of Engineering					
10	Prepared by:	Dr. Mohammed Al-olofi					
11	Reviewed by:	Dr. Waleed Al-Talbi					
12	Date of Approval:						

I. Course Description:

The medical imaging system 1 course aims to give the student knowledge of the basic concepts of Theory operations, calibrations and maintenance for medical imaging equipment, the block diagrams for a variety medical imaging equipment which used in radiology department, design instruments to

satisfy specific needs, develop skills for analyze, calibration, repair, maintenance, and troubleshooting of medical imaging systems. This course includes the X-ray machine, C-arm, Mammography, fluoroscopy. Methods of obtaining useful medical images, Image formation and display. Projection radiography. Radiation detectors. Automating diagnosis and non-invasive testing. Radiation safety of patients and personnel, and types of digital detectors using in above machines. The co-requisite practical will focus on the practical operations, calibrations, troubleshooting and maintenance for medical imaging equipment.

III. Course Intended learning outcomes (CILOs) of the

Referenced PILOS (Only write code number of referenced Program Intended learning outcomes)

COURSE (maximum 8CILOs)

Knowledge and Understanding: Upon successful completion of the undergraduate Biomedical Engineering Program, the graduates will be able to:

a1	Illustrate the basic concepts, and principles, theories for the medical x-ray radiation which are used in medical imaging systems (x-ray, C-arm, mammography, fluoroscopy).	A1 Describe and explain the underlying mathematical methods and theories; life scientific-principles; and engineering core concepts related to the Biomedical Engineering context.
a2	Identify the techniques, operation, and design principles of medical imaging devices which are relevant to the developments and new technologies.	A2 Clarify the design principles and techniques and the engineering materials characteristics and how these are relevant to the developments and technologies in a biomedical systems context.
a3	Describe the clinical applications of medical imaging systems, their operational theories and their clinical environments.	A3 Recognize and explain the need for a high level of management, professional and ethical behavior, responsibility, quality assurance systems, codes of practice, standards, health and safety requirements, and environmental impacts in biomedical systems.
B. C	ognitive/ Intellectual Skills: Upon successful	completion of the undergraduate Biomedical

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite Prepared By

Engir	neering Program, the graduates will be at	ple to:
b1	Design the medical imaging devices used in radiology department with considerate environmental conditions, health and safety, manufacturability and sustainability.	B3 Design the biomedical systems or processes within realistic constraints such as economic, environmental, social, political, ethical, health and safety, manufacturability and sustainability.
b2	Categorize the medical imaging devices according to their specifications and features.	B5 Distinguish the main characteristics of biomedical systems, apply diagnostic skills and technical knowledge and perform failure analysis to these systems.
	sional and Practical Skills: Upon succenteering Program, the graduates will be at	essful completion of the undergraduate Biomedical ble to:
c1	Apply mathematical, simulation models, and IT software packages to medical imaging systems effectively.	C2 Use a wide range of analytical tools, techniques, IT, modern engineering tools, software packages and develop required computer programs to solve, modeling and analyzing Biomedical Engineering problems.
c2	Install, operate, troubleshooting, and maintenance the medical imaging devices by using rules and regulations of medical safety.	C4 Use rules and regulations of industrial safety as well as safe and diagnose systems at work, evaluate performance and observe the appropriate steps to manage risks concerning biomedical systems.
	Ferable Skills: Upon successful completithe graduates will be able to:	on of the undergraduate Biomedical Engineering
d1	Function effectively in different work environments as an individual, and as a member or leader in multi-disciplinary teams.	D1 Lead and motivate individuals, show capability to work in stressful environments and within constraints, collaborate effectively within multidisciplinary team.

(A) Alignment Course Intended Teaching Strategies and Assess	-	edge and Understanding to
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
a1 Illustrate the basic concepts, and principles, theories for the medical x-ray radiation which are used in medical imaging systems (x-ray, C-arm, mammography, fluoroscopy).	 Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Laboratory/Practical experiments based session, Computer laboratory-based sessions, Workshops practices, Directed self- study, Problem based learning, Team work (cooperative learning), Field visits/training, Mini/major project. 	 Written tests (mid and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment, Presentations.
a2 Identify the techniques, operation, and design principles of medical imaging devices which are relevant to the developments and new technologies.	 Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class 	 Written tests (mid and final terms and quizzes), Short reports, Lab\Project report Practical lab

	 Case studies, Laboratory/Practical experiments based session, Computer laboratory- based sessions, Workshops practices, Directed self- study, Problem based learning, Team work (cooperative learning), Field visits/training, Mini/major project. 	 assessment, Coursework activities assessment, Presentations.
a3 Describe the clinical applications of medical imaging systems, their operational theories and their clinical environments.	 Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Laboratory/Practical experiments based session, Computer laboratory-based sessions, Workshops practices, Directed self- study, Problem based learning, Team work (cooperative 	 Written tests (mid and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment, Presentations.

learning),	
• Field visits/training,	
• Mini/major project.	

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
b1 Design the medical imaging devices used in radiology department with considerate environmental conditions, health and safety, manufacturability and sustainability.	 Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Laboratory/Practical experiments based session, Computer laboratory-based sessions, Workshops practices, Directed self- study, Problem based learning, Team work (cooperative learning), Field visits/training, Mini/major project. 	 Written tests (mid and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment, Presentations. 			
b2 Categorize the medical imaging devices according to their specifications and	 Interactive lectures & examples, Tutorials, 	• Written tests (mid and final terms and quizzes),			

Academy Development Center & Quality Insurance Dean of Engineering Quality Insurance Unite Prepared By

features.	• Videos demonstrations,	• Short reports,
	• Presentation/seminar,	• Lab\Project report
	 Interactive class discussions, Case studies, 	• Practical lab performance assessment,
	 Laboratory/Practical experiments based session, 	 Coursework activities assessment, Presentations.
	• Computer laboratory- based sessions,	
	• Workshops practices,	
	• Directed self- study,	
	• Problem based learning,	
	• Team work (cooperative learning),	
	• Field visits/training,	
	• Mini/major project.	

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning OutcomesTeaching strategiesAssessment Strategiesc1 Apply mathematical, simulation models, and ITInteractive lectures & examples,• Written tests (mid and final terms and quizzes),software packages to medical imaging systems effectively.• Tutorials, • Videos demonstrations, • Presentation/seminar, • Interactive class discussions,• Short reports, • Lab\Project reportInteractive class discussions,• Case studies, • Laboratory/Practical experiments based• Coursework activities assessment,	reaching Strategies and Assessment Strategies.					
 simulation models, and IT software packages to medical imaging systems effectively. Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Laboratory/Practical Winten tests (ind and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment 	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
Å	simulation models, and IT software packages to medical	 examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Laboratory/Practical 	 and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities 			

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite Prepared By

	session,	• sPresentations.
	• Computer laboratory- based sessions,	
	• Workshops practices,	
	• Directed self- study,	
	• Problem based learning,	
	• Team work (cooperative learning),	
	• Field visits/training,	
	• Mini/major project.	
c2 Install, operate, troubleshooting, and maintenance the medical imaging devices by using rules and regulations of medical safety.	 Interactive lectures & examples, Tutorials, Videos demonstrations, Presentation/seminar, Interactive class discussions, Case studies, Laboratory/Practical experiments based session, Computer laboratory-based sessions, Workshops practices, Directed self- study, Problem based learning, 	 Written tests (mid and final terms and quizzes), Short reports, Lab\Project report Practical lab performance assessment, Coursework activities assessment, Presentations.
	 Team work (cooperative learning), Field visits/training, Mini/major project. 	

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite Prepared By

IV.	IV. Course Content:						
	A – Theoretical Aspect:						
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	contact hours		
1	Introduction to Medical Imaging	a1	– Introduction,	1	2		

|--|--|

	Equipment		– medical imaging modalities,		
			 medical imaging properties, 		
			 clinical application of medical imaging. 		
2	X-ray Radiation	a1, a2, a3	 Introduction and medical back ground, physics of x-ray radiation 	1	2
3	X-ray Tube Construction	a1, a2, a3, b1,b2, c1, c2	 Introduction, x-ray tube components, x-ray tube principle, Grid-controlled tubes, Collimators 	1	2
4	X-ray Tube Rating	a1, a2, a3, b1,b2, c1, c2	 Heat units, Tube Rating Chart, Kilowatt Rating, Anode Thermal Characteristics Chart, Tube Damage, Protecting the Anode 	1	2
5	Production of X- rays	a1, a2, a3, b1,b2, c1, c2	 The Atomic Nucleus, kilovolts peak, Binding Energy, X-Ray Production, Characteristic Radiation, Bremsstrahlung, Beam Intensity. 	1	2
6	X-ray Generators	a1, a2, a3, b1,b2, c1, c2	Transformer Construction,Transformer Coil Designations,	1	2

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite Prepared By

			 Transformer Coils, Transformer Theory and Types, Rectification, X-Ray Generator Components, X-ray Circuits, Generator kilowatt (kW) Rating, 		
			 Exposure Time Control 		
7	Basic Interactions Between X-Rays and Matter	a1, a2, a3, b1,b2, c1, c2	 Photons atoms interactions, X-Ray Beam Basic Interactions, Photon Interaction Probabilities, Attenuation. 	1	2
8	Mid-Term Theoretical Exam	a1, a2, a3, b1,b2, c1, c2	- All Previous Topics	1	2
9	X-Ray Beam Characteristics	a1, a2, a3, b1,b2, c1, c2	 X-Ray Beam Characteristics, X-Ray Beam Attenuation Coefficient, Scatter Management, Grids, Filters. 	1	2
10	Mammography	a1, a2, a3, b1,b2, c1, c2	 Introduction and medical back ground, types, principle of operation, design, block diagram, and components, Methods of obtaining useful images of Mammography, 	1	2

Number of Weeks /and Units Per Semester				16	32
16	Final Theoretical Exam	a1, a2, a3, b1,b2, c1, c2	- All Topics	1	2
15	Fluoroscopy (Continuous)	a1, a2, a3, b1,b2, c1, c2	 Methods of obtaining useful images fluoroscopy, maintenance and troubleshooting. 	1	2
14	Fluoroscopy	a1, a2, a3, b1,b2, c1, c2	 Introduction and medical back ground, types, principle of operation, design, block diagram, and components, 	1	2
13	Report & Presentation	a1, a2, a3, b1,b2, c1, c2, d1	 3 to 4 students make report and present the seminar on the one medical x-ray imaging systems. 	1	2
12	Report & Presentation	a1, a2, a3, b1,b2, c1, c2, d1	 3 to 4 students make report and present the seminar on the one medical x-ray imaging systems. 	1	2
11	C-Arm	a1, a2, a3, b1,b2, c1, c2	 maintenance and troubleshooting of Mammography Introduction and medical back ground, types, principle of operation, design, block diagram, and components, Methods of obtaining useful images of C-arm, maintenance and troubleshooting. 	1	2

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite Prepared By

B - Pra	actical Aspect: (if any)			
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes
1	- Review on the radiology department in hospital	1	2	a1, a2
2	 Types of x-ray equipment Components of x-ray equipment Operation of x-ray equipment 	1	2	a1, a2, a3
3	- Detection of errors, troubleshooting, repair, and maintenance of x-ray equipment	1	2	a1, a2, a3, b1,b2, c1, c2
4	Components of c-arm equipmentOperation of c-arm equipment	1	2	a1, a2, a3, b1,b2, c1, c2
5	- Detection of errors, troubleshooting, repair, and maintenance of c-arm equipment	1	2	a1, a2, a3, b1,b2, c1, c2
6	 Components of mammography equipment Operation of mammography equipment 	1	2	a1, a2, a3, b1,b2, c1, c2
7	- Midterm Practical Exam	1	2	a1, a2, a3, b1,b2, c1, c2
8	- Detection of errors, troubleshooting, repair, and maintenance of mammography equipment	1	2	a1, a2, a3, b1,b2, c1, c2
9	- Components of fluoroscopy	1	2	a1, a2, a3, b1,b2, c1, c2

	Number of Weeks /and Units Per Semester			30
15	- Final Practical Exam	1	2	a1, a2, a3, b1,b2, c1, c2
14	- Practical Project (Continue)	1	2	a1, a2, a3, b1,b2, c1, c2, d1
13	- Practical Project	1	2	a1, a2, a3, b1,b2, c1, c2, d1
12	- Detection of errors, troubleshooting, repair, and maintenance of fluoroscopy equipment	1	2	a1, a2, a3, b1,b2, c1, c2
11	- Detection of errors, troubleshooting, repair, and maintenance of fluoroscopy equipment	1	2	a1, a2, a3, b1,b2, c1, c2
10	 Components of fluoroscopy equipment Operation of fluoroscopy equipment 	1	2	a1, a2, a3, b1,b2, c1, c2
	equipmentOperation of fluoroscopy equipment			

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Tutorials,
- Videos demonstrations,
- Presentation/seminar,
- Interactive class discussions,
- Case studies,
- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Workshops practices,

V. Teaching Strategies of the Course:

- Directed self- study,
- Problem based learning,
- Team work (cooperative learning),
- Field visits/training,
- Mini/major project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Short reports,
- Lab\Project report
- Practical lab performance assessment,
- Coursework activities assessment,
- Presentations.

VII. Assignments:

No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1				
2				
3				
4				
5				
	Total			

Academy Development Center & Quality Insurance

Dean of Engineering Quality Insurance Unite Prepa

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:				
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1	Quiz 1	6	5	3.33%	a1, a2, a3, b2,c1, c2
2	Midterm Practical Exam	7	20	13.33%	a1, a2, a3, b2,c1, c2
3	Midterm Theoretical Exam	8	10	6.67%	a1, a2, a3, b2,c1, c2
4	Report, Presentation, and Project	10, 11	20	13.33%	a1, a2, a3, b2,c1, c2, d1
5	Quiz 2	12	5	3.33%	a1, a2, a3, b2,c1, c2
6	Final Practical Exam	15	30	20%	a1, a2, a3, b2,c1, c2
7	Final Theoretical Exam	16	60	40%	a1, a2, a3, b2,c1, c2
Total 150 1009				100%	

IX. Learning Resources:
• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).
1- Required Textbook(s) (maximum two).
 Chris Guy,2005, An Introduction to the Principles of Medical Imaging, imperial college press, 2005.
2- Jerrold T. Bushberg, 2001, The Essential Physics of Medical Imaging, 2 nd Edition, Prentice Hall.
2- Essential References.
 Krzysztof Iniewski, 2009, MEDICAL IMAGING Principles, Detectors, and Electronics, 2009.
2- Andrew Webb, 2003, Introduction to Biomedical Imaging, John Wiley & Sons Inc, 200
3- Electronic Materials and Web Sites etc.

W	ebsites:
3-	The IEEE Transactions on Medical Imaging. Peer reviewed academic journal in the field of Medical Imaging.
	http://www.ieeexplore.ieee.org/
Jo	ournals:
4-	IEEE Transactions on Biomedical Engineering: Peer reviewed academic journal in the field of Biomedical Engineering.
	http://www.ieeexplore.ieee.org/xpl
5-	International Journal of Radiology and Imaging Technology
	https://clinmedjournal.org/International-of-Radiology-and-Imaging-Technology
Ot	ther Web Sources:
6-	Website: Franks Hospital Workshop
	http://www.frankshospitalworkshop.com

X. C	ourse Policies:
1	Class Attendance:
	A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in
	attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality: A student should attend the exam on time. He/she is permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam

Prepared By

4	Assignments & Projects
	In general one assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
	If the examination committee proofed a plagiarism of a student, he/she will be
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university or according to the university roles.
7	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed;
	otherwise the student will be asked to leave the lecture room.
	- Mobile phones are not allowed in class during the examination.
	- Lecture notes and assignments might be given directly to students using soft or
	hard copy.

Template for Course Plan (Syllabus)

Medical Imaging System 1- BE468

I. Course Identification and General Information:						
1	Course Title:	Medical Imaging System 1				
2	Course Code & Number:	BE468				
		Credit	Theory	Hours	Lab. Hours	
3	Credit Hours:	Hours	Lecture	Exercise	Lab. Hours	
		3	2		2	
4	Study Level/ Semester at which this Course is offered:	5 th Level / 1 st Semester				
5	Pre –Requisite (if any):	Biomedical Sensors and Measurements (BE224)				
6	Co –Requisite (if any):	Medical	image Proce	essing (BE45	53)	
7	Program (s) in which the Course is Offered:	Bachelor of Biomedical Engineering				
8	Language of Teaching the Course:	English				
9	Location of Teaching the Course:	Faculty of Engineering				
10	Prepared by:	Dr. Mohammed Al-olofi				
11	Reviewed by:	Dr. Waleed Al-Talbi				
12	Date of Approval:					

II. Course Description:

The medical imaging system 1 course aims to give the student knowledge of the basic concepts of Theory operations, calibrations and maintenance for medical imaging equipment, the block diagrams for a variety medical imaging equipment which used in radiology department, design instruments to

satisfy specific needs, develop skills for analyze, calibration, repair, maintenance, and troubleshooting of medical imaging systems. This course includes the X-ray machine, C-arm, Mammography, fluoroscopy. Methods of obtaining useful medical images, Image formation and display. Projection radiography. Radiation detectors. Automating diagnosis and non-invasive testing. Radiation safety of patients and personnel, and types of digital detectors using in above machines. The co-requisite practical will focus on the practical operations, calibrations, troubleshooting and maintenance for medical imaging equipment.

III.	III. Course Intended Learning Outcomes (CILOs): (مخرجات تعلم المقرر)				
A. Kn to:	owledge and Understanding: Upon successful completion of the course, students will be able				
a1	Illustrate the basic concepts, and principles, theories for the medical x-ray radiation which are used in medical imaging systems (x-ray, C-arm, mammography, fluoroscopy).				
a2	Identify the techniques, operation, and design principles of medical imaging devices which are relevant to the developments and new technologies.				
a3	Describe the clinical applications of medical imaging systems, their operational theories and their clinical environments.				
B. Int	ellectual Skills: Upon successful completion of the course, students will be able to:				
b1	Design the medical imaging devices used in radiology department with considerate environmental conditions, health and safety, manufacturability and sustainability.				
b2	Categorize the medical imaging devices according to their specifications and features.				
C. Pro to:	ofessional and Practical Skills: Upon successful completion of the course, students will be able				
c1	Apply mathematical, simulation models, and IT software packages to medical imaging systems effectively.				
c2	Install, operate, troubleshooting, and maintenance the medical imaging devices by using rules and regulations of medical safety.				

D. Transferable Skills: Upon successful completion of the course, students will be able to:

d1 Function effectively in different work environments as an individual, and as a member or leader in multi-disciplinary teams.

Γ	IV. Course Contents:					
A.	A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
1	Introduction to Medical Imaging Equipment	 Introduction, medical imaging modalities, medical imaging properties, clinical application of medical imaging. 	1	2		
2	X-ray Radiation	 Introduction and medical back ground, physics of x-ray radiation 	1	2		
3	X-ray Tube Construction	 Introduction, x-ray tube components, x-ray tube principle, Grid-controlled tubes, Collimators 	1	2		
4	X-ray Tube Rating	 Heat units, Tube Rating Chart, Kilowatt Rating, Anode Thermal Characteristics Chart, Tube Damage, 	1	2		

IV. Course Contents:					
A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
		 Protecting the Anode 			
5	Production of X- rays	 The Atomic Nucleus, kilovolts peak, Binding Energy, X-Ray Production, Characteristic Radiation, Bremsstrahlung, Beam Intensity. 	1	2	
6	X-ray Generators	 Transformer Construction, Transformer Coil Designations, Transformer Coils, Transformer Theory and Types, 		2	
7	Basic Interactions Between X-Rays and Matter	 Photons atoms interactions, X-Ray Beam Basic Interactions, Photon Interaction Probabilities, Attenuation. 	1	2	
8	Mid-Term Theoretical Exam	- All Previous Topics	1	2	

IV. Course Contents:						
A.	A. Theoretical Aspect:					
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		
9	X-Ray Beam Characteristics	 X-Ray Beam Characteristics, X-Ray Beam Attenuation Coefficient, Scatter Management, Grids, Filters. 	1	2		
10	Mammography	 Introduction and medical back ground, types, principle of operation, design, block diagram, and components, Methods of obtaining useful images of Mammography, maintenance and troubleshooting of Mammography 	1	2		
11	C-Arm	 Introduction and medical back ground, types, principle of operation, design, block diagram, and components, Methods of obtaining useful images of C-arm, maintenance and troubleshooting. 	1	2		
12	Report & Presentation	 3 to 4 students make report and present the seminar on the one medical x-ray imaging systems. 	1	2		



Γ	IV. Course Contents:				
А.	. Theoretical Aspect:				
No.	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours	
13	Report & Presentation	 3 to 4 students make report and present the seminar on the one medical x-ray imaging systems. 	1	2	
14	Fluoroscopy	 Introduction and medical back ground, types, principle of operation, design, block diagram, and components, 	1	2	
15	Fluoroscopy (Continuous)	 Methods of obtaining useful images fluoroscopy, maintenance and troubleshooting. 	1	2	
16	Final Theoretical Exam	- All Topics	1	2	
	Number of Weel	ks /and Units Per Semester	16	32	

B.	B. Case Studies and Practical Aspect:					
No.	Tasks/ Experiments	Number of Weeks	Contact Hours			
1	- Review on the radiology department in hospital	1	2			
2	 Types of x-ray equipment Components of x-ray equipment Operation of x-ray equipment 	1	2			
3	- Detection of errors, troubleshooting, repair, and	1	2			

B.	B. Case Studies and Practical Aspect:					
No.	Tasks/ Experiments	Number of Weeks	Contact Hours			
	maintenance of x-ray equipment					
4	Components of c-arm equipmentOperation of c-arm equipment	1	2			
5	- Detection of errors, troubleshooting, repair, and maintenance of c-arm equipment	1	2			
6	Components of mammography equipmentOperation of mammography equipment	1	2			
7	- Midterm Practical Exam	1	2			
8	- Detection of errors, troubleshooting, repair, and maintenance of mammography equipment	1	2			
9	Components of fluoroscopy equipmentOperation of fluoroscopy equipment	1	2			
10	Components of fluoroscopy equipmentOperation of fluoroscopy equipment	1	2			
11	- Detection of errors, troubleshooting, repair, and maintenance of fluoroscopy equipment	1	2			
12	- Detection of errors, troubleshooting, repair, and maintenance of fluoroscopy equipment	1	2			
13	- Practical Project	1	2			
14	- Practical Project (Continue)	1	2			
15	- Final Practical Exam	1	2			

B.	B. Case Studies and Practical Aspect:					
No.	No. Tasks/ Experiments Number of Weeks Contact Hours					
	Number of Weeks /and Units Per Semester1530					

V. Teaching Strategies of the Course:

- Interactive lectures & examples,
- Tutorials,
- Videos demonstrations,
- Presentation/seminar,
- Interactive class discussions,
- Case studies,
- Laboratory/Practical experiments based session,
- Computer laboratory-based sessions,
- Workshops practices,
- Directed self- study,
- Problem based learning,
- Team work (cooperative learning),
- Field visits/training,
- Mini/major project.

VI. Assessment Methods of the Course:

- Written tests (mid and final terms and quizzes),
- Short reports,
- Lab\Project report
- Practical lab performance assessment,
- Coursework activities assessment,
- Presentations.

VII. Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark	
1					
2					
3					
4					
5					
Total					

VIII.	VIII. Schedule of Assessment Tasks for Students During the Semester:						
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment			
1	Quiz 1	6	5	3.33%			
2	Midterm Practical Exam	7	20	13.33%			
3	Midterm Theoretical Exam	8	10	6.67%			
4	Report, Presentation, and Project	10, 11	20	13.33%			
5	Quiz 2	12	5	3.33%			
6	Final Practical Exam	15	30	20%			
7	Final Theoretical Exam	16	60	40%			
	Total 150 100%						

Academy Development Center & Quality Insurance Dean of Engineering

g Quality Insurance Unite

Prepared By

IX. Learning Resources:

Written in the following order:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two):

- 1- Chris Guy,2005, **An Introduction to the Principles of Medical Imaging**, imperial college press, 2005.
- 2- Jerrold T. Bushberg, 2001, **The Essential Physics of Medical Imaging**, 2nd Edition, Prentice Hall.

2- Essential References:

- 1- Krzysztof Iniewski, 2009, MEDICAL IMAGING Principles, Detectors, and Electronics, 2009
- 2- Andrew Webb, 2003, Introduction to Biomedical Imaging, John Wiley & Sons Inc, 2003.

3- Electronic Materials and Web Sites etc.:

Websites:

1- The IEEE Transactions on Medical Imaging. Peer reviewed academic journal in the field of Medical Imaging.

http://www.ieeexplore.ieee.org/

Journals:

2- IEEE Transactions on Biomedical Engineering: Peer reviewed academic journal in the field of Biomedical Engineering.

http://www.ieeexplore.ieee.org/xpl

3- International Journal of Radiology and Imaging Technology https://clinmedjournal.org/International-of-Radiology-and-Imaging-Technology

Other Web Sources:

4- Website: Franks Hospital Workshop

http://www.frankshospitalworkshop.com

X. C	ourse Policies:
1	Class Attendance:
	A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2	Tardy:
	For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3	Exam Attendance/Punctuality:
	A student should attend the exam on time. He/she is permitted to attend an exam half one hour
	from exam beginning, after that he/she will not be permitted to take the exam and he/she will be
	considered as absent in exam
4	Assignments & Projects:
	In general one assignment is given to the students after each chapter; the student has to submit
	all the assignments for checking on time, mostly one week after given the assignment.
5	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three
	times during his/her study the student will be disengaged from the Faculty.
6	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
	If the examination committee proofed a plagiarism of a student, he/she will be
	disengaged from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university or according to the university roles.
7	Other policies:

Mobile phones are not allowed to use during a class lecture. It must be closed;
otherwise the student will be asked to leave the lecture room.
Mobile phones are not allowed in class during the examination.
Lecture notes and assignments might be given directly to students using soft or hard copy.