

1- Course Specification of Engineering Mathematics

I. Course Identification and General Information:						
1.	Course Title:	Engineering Mathematics.				
2.	Course Code & Number:	BR223	3.			
			C.]	Н.		Total
3.	Credit hours:	Th.	Tu.	Pr	Tr.	C.R.
		2	-	-	2	3
4.	Study level/ semester at which this course is offered:	Therd Level (First Semester).				
5.	Pre –requisite (if any):	Mathematics 1 (FR001), Mathematics 2 (FR003), Linear Algebra (BR121), Differential Equations (BR122).				s 2
6.	Co –requisite (if any):	None				
7.	Program (s) in which the course is offered:	Electri	cal Enginee	ring Depa	rtments.	
8.	Language of teaching the course:	English /Arabic.				
9.	Location of teaching the course:	Faculty of Engineering,				
10.	Prepared By:	Associate Prof. Dr. Yasser ALhuri.				
11.	Date of Approval:					

II. Course Description:

This course deals with topics which provide students to relevant mathematical tools required in the analysis of problems in engineering and scientific professions.

The focus of the course is the numerical methods using the following computational techniques: error analysis, numerical solutions to nonlinear equations, solution methods for linear system, interpolation, numerical differentiation, numerical integration, the numerical solutions of differential equations (ODEs and PDE) that arise in engineering and the physical sciences and Fourier transforms with it's applications in PDEs.

III.	Course Intended learning outcomes (CILOs) of	Referenced
	the course	PILOs
a1.	Know the concept of Numerical Analysis Methods and Error Analysis.	A1, A3
a2.	Identify some Numerical Methods and appropriate techniques for solving Nonlinear Equations, Linear system and finding the Interpolation relevent to Electrical engineering prosesses.	A1, A3
a3.	Establish Numerical Analysis to approximate Integration, Differentiation and Ordinary Differential Equations Problems.	A1
a4.	Define Fourier series, Complex and Integral and how use it to solve (PDEs) for Electrical engineering problems.	A1
b1.	Examine different Numerical Methods to solve Applied engineering Problems.	B1,B3
c1.	Apply various techniques of numerical methods to approximate the solution of some mathematics problems which haven't exact or analytical solution for Electrical Engineering practices.	C1,C4
d1.	Co-operate with team members to share different knowledges.	D1
d2.	Assess to tasks with the support of the different resources.	D2

(A) Alignment Course Intended Learning Outcomes of Knowledge and UndeA1rstanding to Teaching Strategies and Assessment Strategies:					
Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
a1. Know the concept of Numerical Analysis Methods and Error Analysis.	-Active LecturesTutorials.	-Written Assessmen. -Final exam			
a2. Identify some Numerical Methods and appropriate techniques for solving Nonlinear Equations, Linear system and finding the Interpolation relevent to Electrical engineering prosesses.	-Active Lectures. -Tutorials.	-Written AssessmentFinal exam.			

Head of Department Dr. Mohammed A. Al-Olofi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

a3. Establish Numerical Analysis to approximate Integration, Differentiation and Ordinary Differential Equations Problems.	-Active Lectures. -Tutorials.	-Written AssessmentFinal exam
a4. Define Fourier series, Complex and Integral and how use it to solve (PDEs) for Electrical engineering problems.	-Active LecturesTutorials.	-Written Assessment.

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:					
	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
b1. Examine different Numerical Methods to		-Active Lectures.	-Written Assessment.		
	solve Applied engineering Problems.	-Tutorials.	-Final exam		

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:					
Cours	se Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
metho some exact	y various techniques of numerical ods to approximate the solution of mathematics problems which haven't or analytical solution for Electrical neering practices.	-Active Lectures	-Written AssessmentFinal exam		

	(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies:					
	Course Intended Learning Outcomes Teaching strategies Assessment Strategies					
d1.	Co-operate with team members to share different knowledges.	- Case Studies.	-Written Assessment.			
d2.	Assess to tasks with the support of the	- Case Studies.	-Written			

Head of Department Dr. Mohammed A. Al-Olofi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

different	resources.	Assessment.

IV. **Course Content: A – Theoretical Aspect:** Learnin Numbe Contact Order **Units/Topics List Sub Topics List** r of Outcom Hours Weeks es - Accuracy, Precision and Error a1,c1,d1 Definitions. **Error Analysis** 1 2 1. d2-Round-Off Errors. -Truncation Errors. -Bisection Method. Numerical a2 - False position Method. Methods for 2 ,b1,c1,d - Fixed – Point iteration. 4 2. solving Nonlinear 1,d2 - Newton – Raphson. Equations of one - Secant Methods. variable -Direct Fit Polynomial. -Newton Interpolating Polynomials. a2,b1,c1 -Lagrange Interpolating Polynomials. **3.** The Interpolation ,d1,d2 2 4 -Newton's Divided-Difference Interpolating Polynomials. -Derivatives of Unequally Spaced Numerical a3,b1,c1 Data. 2 4. 1 Differentiation ,d1,d2 -Derivatives and Integrals for Data with Errors. -The Trapezoidal Rule. Numerical a3,b1,c1 1 2 5. Integration ,d1,d2 -Simpson's Rules. Numerical -Euler's Method. a3,b1,c1 1 6.

Head of Department Dr. Mohammed A. Al-Olofi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

Rector of Sana'a University

	Methods to solve (ODEs)	,d1,d2	- Runge-Kutta methods.		
			-Finite Difference Methods for Parabolic PDEs.	1	2
7.	Numerical Methods to solve (PDEs)	a3,a4,b1 ,c1,d1,d 2	-Finite Difference Methods for Hyperbolic PDEs.	1	2
	(LDLs)		-Finite Difference Methods for Elliptic PDEs	1	2
8.	Fourier Series	a4,b1,c1 ,d1,d2	-Computation of Fourier SeriesFourier cosine and sine Series.	1	2
9.	Complex Fourier and Integral	a4,b1,c1 ,d1,d2	-The complex form of Fourier SeriesThe Fourier Integral.	1	2
10.	Applications of Fourier series to Differential Equations	a4,b1,c1 ,d1,d2	-Applications Fourier series to Ordinary and Partial Differential Equations.	1	2
Numbe	Number of Weeks /and Units Per Semester		14	28	

B - Practical Aspect:						
Order	Tasks/ Experiments	Number of Weeks	Contact hours	Learning Outcomes		
1.	Tutorial_1 Error Analysis	1	2	a1,c1,d1		
2.	Tutorial_2+3 Numerical Methods for solving Nonlinear Equations of one variable	2	4	a2 ,b1,c1,d1,d2		

Head of Department Dr. Mohammed A. Al-Olofi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

3.	Tutorial_4+5 TheInterpolation	2	4	a2,b1,c1,d1,d2
4.	Tutorial_6 Numerical Differentation	1	2	a3,b1,c1,d1,d2
5.	Tutorial_7 Numerical Integrtion	1	2	a3,b1,c1,d1,d2
6.	Tutorial_8 Numerical Solutions of Ordinary Differential Equations	1	2	a3,b1,c1,d1,d2
7.	Tutorials_9+10+11 Numerical Solutions of PDEs	3	6	a3,a4,b1,c1,d1,d2
8.	Tutorials_12 Computation of Fourier Series, Fourier cosine and sine Series.	1	2	a4,b1,c1,d1,d2
9.	Tutorials_13 The complex form of Fourier Series, The Fourier Integral. The Discrete and Fast Fourier Transforms.	1	2	a4,b1,c1,d1,d2
10.	Tutorials_14 Applications Fourier Series to Differential Equation.	1	2	a4,b1,c1,d1,d2
Numbe	r of Weeks /and Units Per Semester	14	28	

V. Teaching strategies of the course:

- Active Lectures.
- Tutorials.
- The use of Computer and Web-Based Learning.
- Design Work and Project.
- Case Studies.
- Independent Learning.
- Directed Self Study.
- Group Learning and Problem Based Learning.

Head of Department Dr. Mohammed A. Al-Olofi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

VI	. Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Tutorial_1 Error Analysis	a1,c1,d1	1 st	2
2.	Tutorial_2+3 Numerical Methods for solving Nonlinear Equations of one variable	a2 ,b1,c1,d1,d2	2 th & 3 th	4
3.	Tutorial_4+5 TheInterpolation	a2,b1,c1,d1,d2	4 th & 5 th	6
4.	Tutorial_6 Numerical Differentation	a3,b1,c1,d1,d2	6 th	2
5.	Tutorial_7 Numerical Integrtion	a3,b1,c1,d1,d2	7 th	2
6.	Tutorial_8 Numerical Solutions of Ordinary Differential Equations	a3,b1,c1,d1,d2	8 th	2
7.	Tutorials_9+10+11 Numerical Solutions of PDEs	a3,a4,b1,c1,d1,d2	9 th -11 th	6
8.	Tutorials_12 Computation of Fourier Series, Fourier cosine and sine Series.	a4,b1,c1,d1,d2	12 th	2
9.	Tutorials_13 The complex form of Fourier Series, The Fourier Integral. The Discrete and Fast Fourier Transforms.	a4,b1,c1,d1,d2	13 th	2
10.	Tutorials_14 Applications Fourier Series to Differential Equation.	a4,b1,c1,d1,d2	14 th	2
	Total			30

Head of Department Dr. Mohammed A. Al-Olofi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

VII	VII. Schedule of Assessment Tasks for Students During the Semester:							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes			
1.	Assessment (Work Sample such as Portfolios).	1-14	45	30 %	all			
2.	Final Exam.	16	105	70 %	all			
	Total		150	100%				

VIII. Learning Resources:

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- **1-** Xin-She Yang., 2007, Applied Engineering Mathematics. University of Cambridge, Cambridge, United Kingdom Pub.
- 2- Richard L.Burden and J.Doyglass Faires. 2011 Numerical Analysis, 9th ed.
- **3-** Brooks /Col, Cengage Learning.

2- Essential References.

- **1-** Sastry S.S., 2004, Engineering Mathematics V.2 Asoke Pub., India.
- **2-** Coddington E. A., 1989, an Introduction to Ordinary Differential Equations, Dover Pub.
- **3-** Chapra S. C. and Canale R. P. (2015) Numerical Methods For Engineers, 7th ed. McGraw-Hill Education.

3- Electronic Materials and Web Sites etc.

- 1. http://ocw.mit.edu/courses/
- 2. http://depts.washington.edu/amath/
- **3.** http://www.esam.northwestern.edu/index.html
- **4.** http://www.seas.harvard.edu/academics/undergraduate/applied-math

IX. Co	ourse Policies:
1.	Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic
2.	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	Exam Attendance/Punctuality: A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam-
4.	Assignments & Projects: The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time-
5.	Cheating: For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty-
6.	Plagiarism: Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university.
7.	Other policies: - Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room - Mobile phones are not allowed in class during the examination. Lecture notes and assignments my given directly to students using soft or hard copy

Head of Department Dr. Mohammed A. Al-Olofi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek A.			
Ву	<u>Barakat</u>			
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi			
	Name of Reviewer from the Department: Assoc. Prof. Dr. Riyad A. Muharram.			
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa			
	Assoc. Prof. Dr. Ahmed Mujahed			
	Asst. Prof. Dr. Munasar Alsubri			

Template for Course Plan (Syllabus)- Engineering <u>Mathematics</u>

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Dr. Yasser Alhuri Office Hours						
Location & Telephone No.	Department of Basic Engineering Science 00967773038653	SAT	SUN	MON	TUE	WED	THU
E-mail							

II.	II. Course Identification and General Information:						
1-	Course Title:	Engineering Mathematics.					
2-	Course Number & Code:	BR223.					
		С.Н		m . 1			
3-	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
		2	-	-	2	3	
4-	Study level/year at which this course is offered:	Third Level (First Semester).					
5-	Pre –requisite (if any):	Mathematics 1 (FR001), Mathematics 2 (FR003), Linear Algebra (BR121), Differential Equations (BR122).			2		
6-	Co –requisite (if any):	None					
7-	Program (s) in which the course is offered	Elecrical Engineering Departments.					
8-	Language of teaching the course:	English/Arabic.					
9-	System of Study:	Credit Hours					
10-	Mode of delivery:	Full Time					
11-	Location of teaching the course:	Faculty	of Engineer	ring			

Head of Department Dr. Mohammed A. Al-Olofi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

III. Course Description:

This course deals with topics which provide students to relevant mathematical tools required in the analysis of problems in engineering and scientific professions.

The focus of the course is the numerical methods using the following computational techniques: error analysis, numerical solutions to nonlinear equations, solution methods for linear system, interpolation, numerical differentiation, numerical integration, the numerical solutions of differential equations (ODEs and PDE) that arise in engineering and the physical sciences and Fourier transforms with it's applications in PDEs.

IV. Intended learning outcomes (ILOs) of the course:

- Brief summary of the knowledge or skill the course is intended to develop:
 - 1. Know the concept of Numerical Analysis Methods and Error Analysis.
 - 2. Identify some Numerical Methods and appropriate techniques for solving Nonlinear Equations, Linear system and finding the Interpolation relevent to Electrical engineering prosesses.
 - **3.** Establish Numerical Analysis to approximate Integration, Differentiation and Ordinary Differential Equations Problems.
 - **4.** Define Fourier series, Complex and Integral and how use it to solve (PDEs) for Electrical engineering problems.
 - **5.** Examine different Numerical Methods to solve Applied engineering Problems.
 - **6.** Apply various techniques of numerical methods to approximate the solution of some mathematics problems which haven't exact or analytical solution for Electrical Engineering practices.
 - 7. Co-operate with team members to share different knowledges.
 - **8.** Assess to tasks with the support of the different resources.

V	V. Course Content:					
	A – Theoretical Aspect:					
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact Hours		

Head of Department Dr. Mohammed A. Al-Olofi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

1.	Error Analysis	Accuracy, Precision and Error Definitions.Round-Off Errors.Truncation Errors.	1 st	2
2.	-Bisection Method. Numerical -False position Method. Methods for solving -Fixed - Point iteration. Nonlinear Equations of one variable -Bisection Method False position Method Fixed - Point iteration Newton - Raphson Secant Methods.		2 nd ,3 rd	4
3.	The Interpolation	-Direct Fit PolynomialNewton Interpolating PolynomialsLagrange Interpolating PolynomialsNewton's Divided- Difference Interpolating Polynomials.	4 th ,5 th	4
4.	Numerical Differentiation	-Derivatives of Unequally Spaced Data. -Derivatives and Integrals for Data with Errors.	6 th	2
5.	Numerical Integration	-The Trapezoidal RuleSimpson's Rules.	7 th	2
6.	Numerical Methods to solve (ODEs) -Euler's Method Runge-Kutta methods.		8 th	2
7.	Med term exam		9 th	2
		-Finite Difference Methods for Parabolic PDEs.	10 th	2
8.	Numerical Methods to solve (PDEs)	-Finite Difference Methods for Hyperbolic PDEs.	11 th	2
l of Decre	O elite Access II	-Finite Difference Methods for Elliptic PDEs	A J	2

Head of Department Dr. Mohammed A. Al-Olofi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

Rector of Sana'a University

 ${\bf Prof.~Dr.~Al\hbox{-}Qassim~Mohammed~Abbas}$

			12 th	
9.	Fourier Series	Computation of FourierSeries.Fourier cosine and sineSeries.	13 th	2
10.	Complex Fourier and Integral	-The complex form of Fourier SeriesThe Fourier Integral.	14 th	2
11.	Applications of Fourier series to Differential Equations	-Applications Fourier series to Ordinary and Partial Differential Equations.	15 th	2
12.	Final exam		16 th	2
	Number of Weeks /and Un	16	32	

B - Practical Aspect:					
Order	Tasks/ Experiments	Number of Weeks	Contact hours		
1.	Tutorial_1 Error Analysis	1 st	2		
2.	Tutorial_2+3 Numerical Methods for solving Nonlinear Equations of one variable	2 nd ,3 rd	4		
3.	Tutorial_4+5 TheInterpolation	4 th ,5 th	4		
4.	Tutorial_6 Numerical Differentation	6 th	2		
5.	Tutorial_7 Numerical Integrtion	$7^{ m th}$	2		
6.	Tutorial_8 Numerical Solutions of Ordinary Differential	8 th	2		

Head of Department Dr. Mohammed A. Al-Olofi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Ass. Prof. Dr. Huda Al-Emad

Rector of Sana'a University

	Equations		
7.	Tutorials_9+10+11 Numerical Solutions of PDEs	9 th ,10 th ,11 th	6
8.	Tutorials_12 Computation of Fourier Series, Fourier cosine and sine Series.	12 th	2
9.	Tutorials_13 The complex form of Fourier Series, The Fourier Integral. The Discrete and Fast Fourier Transforms.	13 th	2
10.	Tutorials_14 Applications Fourier Series to Differential Equation.	14 th	2
Numbe	er of Weeks /and Units Per Semester	14	28

VI. Teaching strategies of the course:

- Active Lectures.
- Tutorials.
- The use of Computer and Web-Based Learning.
- Design Work and Project.
- Case Studies.
- Independent Learning.
- Directed Self Study.
- Group Learning and Problem Based Learning.

	VII. Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Tutorial_1 Error Analysis	a1,c1,d1	1 st	2		
2.	Tutorial_2+3 Numerical Methods for solving Nonlinear Equations of one variable	a2 ,b1,c1,d1,d2	2 th & 3 th	4		
3.	Tutorial_4+5 TheInterpolation	a2,b1,c1,d1,d2	4 th & 5 th	6		
4.	Tutorial_6 Numerical Differentation	a3,b1,c1,d1,d2	6 th	2		
5.	Tutorial_7 Numerical Integrtion	a3,b1,c1,d1,d2	7 th	2		
6.	Tutorial_8 Numerical Solutions of Ordinary Differential Equations	a3,b1,c1,d1,d2	8 th	2		
7.	Tutorials_9+10+11 Numerical Solutions of PDEs	a3,a4,b1,c1,d1,d2	9 th -11 th	6		
8.	Tutorials_12 Computation of Fourier Series, Fourier cosine and sine Series.	a4,b1,c1,d1,d2	12 th	2		
9.	Tutorials_13 The complex form of Fourier Series, The Fourier Integral. The Discrete and Fast Fourier Transforms.	a4,b1,c1,d1,d2	13 th	2		
10.	Tutorials_14 Applications Fourier Series to Differential Equation.	a4,b1,c1,d1,d2	14 th	2		
	Total			30		

Head of Department Dr. Mohammed A. Al-Olofi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

VII	VIII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment		
1.	Assessment (Work Sample such as Portfolios).	1-14	45	30 %		
2.	Final Exam.	16	105	70 %		
	Total		150	100%		

IX. Learning Resources:

 Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two).

- **1.** Xin-She Yang., 2007, Applied Engineering Mathematics. University of Cambridge, Cambridge, United Kingdom Pub.
- 2. Richard L.Burden and J.Doyglass Faires. 2011 Numerical Analysis, 9th ed.
- 3. Brooks /Col, Cengage Learning.

2- Essential References.

- 1. Sastry S.S., 2004, Engineering Mathematics V.2 Asoke Pub., India.
- **2.** Coddington E. A., 1989, an Introduction to Ordinary Differential Equations, Dover Pub.
- **3.** Chapra S. C. and Canale R. P. (2015) Numerical Methods For Engineers, 7th ed. McGraw-Hill Education.

3- Electronic Materials and Web Sites etc.

- 1. http://ocw.mit.edu/courses/
- 2. http://depts.washington.edu/amath/
- 3. http://www.esam.northwestern.edu/index.html
- **4.** http://www.seas.harvard.edu/academics/undergraduate/applied-math

X. Course Policies:	
1.	Class Attendance:
	A student should attend not less than 75 % of total hours of the subject; otherwise he will
	not be able to take the exam and will be considered as exam failure. If the student is
	absent due to illness, he/she should bring a proof statement from university Clinic
2.	Tardy:
	For late in attending the class, the student will be initially notified. If he repeated lateness
	in attending class he will be considered as absent.
3.	Exam Attendance/Punctuality:
	A student should attend the exam on time. He is Permitted to attend an exam half one
	hour from exam beginning, after that he/she will not be permitted to take the exam and
	he/she will be considered as absent in exam-
4.	Assignments & Projects:
	The assignment is given to the students after each chapter; the student has to submit all
	the assignments for checking on time-
5.	Cheating:
	For cheating in exam, a student will be considered as fail. In case the cheating is repeated
	three times during his/her study the student will be disengaged from the Faculty-
6.	Plagiarism:
	Plagiarism is the attending of a student the exam of a course instead of another student.
	If the examination committee proofed a plagiarism of a student, he will be disengaged
	from the Faculty. The final disengagement of the student from the Faculty should be
	confirmed from the Student Council Affair of the university.
7.	Other policies:
	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise
	the student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	Lecture notes and assignments my given directly to students using soft or hard copy

Head of Department Dr. Mohammed A. Al-Olofi Quality Assurance Unit Ass. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti