

Course Specification of Introduction to Computation Theory

I. Course Identification and General Information:								
1.	Course Title:	Introdu	uction to Co	omputation	n Theory			
2.	Course Code & Number:	CCE142						
			C.	Н		Total		
3.	Credit hours:	Th.	Tu.	Pr	Tr.	Total		
		2	-	2	-	3		
4.	Study level/ semester at which this course is offered:	Second level / First Semester						
5.	Pre –requisite (if any):	Programming Language II, Data Structures & Algorithms						
6.	Co –requisite (if any):							
7.	Program (s) in which the course is offered:	Computer & Control Engineering						
8.	Language of teaching the course:	English						
9.	Location of teaching the course:	Electrical Engineering Classes & Lab.						
10.	Prepared By:	Assoc. Prof. Dr. Farouk Al-Fuhaidy						
11.	Date of Approval	2020						

II. Course Description:

This course is an introductory to the theory of computation, to introduce students with basic principles pertaining to the modeling and analysis of computational problems and their solving. Topics to be covered by this course including models of computation such as Turing machines; theory of programming languages including, Automata, grammars, parsing, syntax and semantics. Upon successful completion of the course, students will be able for modeling many important kinds of hardware and software, like software for designing and checking behavior of digital circuits, lexical analyzer as a component of the Compiler, ... etc. This course supports students with basic principles

Prepared by Assoc. Prof. Dr. Farouk Al-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

and concepts required to study the advanced computation theory course for designing and implementing of compilers.

III	. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Demonstrate knowledge of basic mathematical models for computation and describe how they relate to formal languages	A1
a2	Describe the principles of machine language modeling and analysis using Regular Expressions, Finite Automata deterministic and non-deterministic, Context Free Grammars, Pushdown Automata, and Turing Machines.	A2
b1	Formulate problems related to model of computation and theory of programming using appropriate computation and programming modelling methods.	B1
b2	Analyze computation and programming models using FA, RE, CFG, PDA, and TM.	В3
c1	Use suitable computing tools to solve/design different automata machines related to computation and programming models	C4
d1	Work effectively within team while constructing and designing computing models.	D1

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies:

Cou	rse Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
a1-	Demonstrate knowledge of					
	basic mathematical models	Lectures, laboratory,	Examinations, laboratory			
	for computation and describe	seminars. computer-based	reports, homework			
	how they relate to formal	programs	presentations			
	languages					

Prepared by	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Assoc. Prof. Dr.	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality Assurance
Farouk Al-	Ahmed Al-Shakiri	Mohammad Algorafi	AL-Bukhaiti	Assoc. Prof. Dr. Huda Al-Emad
Fuhaidy				

a2-	Describe and understand principles of machine language modelling and analysis using Decular Expressions Finite	Lectures Lebenstern merk	Examinations, how events
	Regular Expressions, Finite	Lectures, Laboratory work,	Examinations, nomework
	Automata deterministic and	projects, computer-based	presentations, individual and
	non-deterministic, Context Free	programs	group project reports
	Grammars, Pushdown		
	Automata, and Turing		
	Machines.		

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies:

10 01 0000	8							
Co	urse Intended Learning Outcomes	Teaching strategies	Assessment Strategies					
b1-	Formulate problems related to model of computation and theory of programming using appropriate computation and programming modeling methods.	Lectures, Laboratory Computing tools, , Seminars, Projects	Examinations, homework, laboratory reports presentations, individual and group project reports					
b2-	Analyze computation and programming models using FA, RE, CFG, PDA, and TM.	Lectures, Laboratory Computing tools, , Seminars, Projects	Examinations, homework, laboratory reports presentations, individual and group project reports					

© Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies:

Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies
c1- Use suitable computing tools to solve/design different automata machines related to computation and programming models	Lectures, laboratory, seminars, projects, small group, computer-based programs	Examinations, laboratory reports, presentations, individual and group project reports.

Prepared by	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Assoc. Prof. Dr.	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality Assurance
Farouk Al-	Ahmed Al-Shakiri	Mohammad Algorafi	AL-Bukhaiti	Assoc. Prof. Dr. Huda Al-Emad
Fuhaidy				

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching						
Strategies and Assessment Strategies:						
Course Intended Learning Outcomes Teaching strategies Assessment Strategies						
d1- Work effectively within team while constructing and designing computing models.	Seminars, Laboratory Sessions, Projects.	Presentations, Reports				

IV. Course Content:						
	A – Theoreti	cal Aspect:				
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours	
1.	Course Orientations & Introduction	a1, a2	 Course overview & Orientations, Introduction to Computations and discrete mathematics, basic concepts, Set theory, strings and language definitions, finite specification of languages. 	1	2	
2.	Language, Recursive, and Proof Techniques	a1, a2, b1	 Formal vs. non-formal language, Chomsky definition for language, examples of finite language Recursive definition, concepts of modeling series using recursion with examples, Proof Techniques, different proof techniques, induction and contradictions. 	1 & 1/2	3	
3.	Regular Expressions	a1, a2, b1	 Introduction to regular language and their Regular expressions 	1 & 1/2	3	

Prepared by
Assoc. Prof. Dr.
Farouk Al-
Fuhaidy

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	(RE's) & Language		representation illustrated with many examples for empty, finite and infinite regular expressions.		
4.	Finite Automata (FA) & Language	a1, a2, b1, b2	 Introduction to graph theory, basic concepts, Directed and undirected graph, Finite Automata and Regular Expressions, Conversion from FA and regular expressions Deterministic finite automata (DFA), Non-deterministic finite automata (NFA), Kleene's theorem and non-determinism, Equivalence of DFA and NFA, and regular expressions, Regular expression and regular languages, Non-regular languages and pumping Lemma, and closure properties, Optimal DFA. 	3	6
5.	Context Free Grammars (CFG's) and Languages	a1, a2, b1, b2	 Context Free Languages and Grammars; basic concepts, characteristics and applications of CFG's. Context-Free grammar; Regular grammars, leftmost derivation, and ambiguity, 	2 & 1/2	5

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

			 Parse Trees; Ambiguity in Grammars and Languages, Standard Form, Chomsky normal form and pumping lemma for context-free languages Greibach normal Forms Minimization of CFG's 		
6.	Pushdown Automata (PDA)	a1, a2, b1, b2	 Pushdown Automata, Deterministic and Non-Deterministic (PDA); Formal definition of NPDA, Transition functions of NPDA; NPDA Execution Accepting Strings with NPDA; Equivalence of PDAs and CFG 	1 & 1/2	3
7.	The Turing Machines (TM)	a1, a2, b1, b2	 Turing machines, Formal definition of TM's. and basic concepts, Programming Techniques for Turing Machines, TM's as acceptors; TM's as transducers; Recognizing Languages with TM's.; Sorting with TM's.; Programming in TM's. Church's thesis, and undecidable problems 	2	4
8.	Introduction to Complexity Theory	a1, a2, b1, b2	 Introduction to complexity by distinguishing decidable problems in terms of time and space complexity Time complexity classes P and NP Reduction and NP-completeness 	1	2

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		 Space Complexity 		
Number	r of Weeks /a	and Units Per Semester	16	32

B - Pra	ctical Aspect:			
Order	Tasks/ Experiments	Number of Weeks	contact hours	Learning Outcomes
1.	Installing Computer-based tool for construction and simulation of FA, RE, CFGs, PDA, and TM	1	2	a2, b1, b2, c1
2.	Start by introducing solved examples for Regular expressions and languages, Use Computer based simulation software to construct Regular Expressions to Languages, apply testing of different inputs (letters, words, statements) which belong or not belong to the language	2	4	a2, b1, c1, d1
3.	Finite Automata (FA) and Graph Theory; Construct some Directed & Undirected Graphs and use computer software to simulate the constructed Graphs, Construct and simulate different types of FAs the DFA, NFA to REs, Check Equivalence of DFA and NFA, and regular expressions, Use of FA to Design some Sequential Logic Circuits	3	6	a2, b1, b2, c1, d1
4.	Use of CFG's to represent Regular Expressions, FA, test Ambiguities, Tree Parsing Verify Greibach theorem,	2	4	a2, b1, b2, c1, d1

Prepared by	Head of Department	Quality Assurance Unit	Dea
Assoc. Prof. Dr.	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof.
Farouk Al-	Ahmed Al-Shakiri	Mohammad Algorafi	1
Fuhaidy			

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Title of the	Program:	Computer	Engineering	and	Control Eng.
		r			

	Chomsky Normal Form to CFG's			
5.	Pushdown Automata to CFG's DPDA, NPDA	1	2	a2, b1, b2, c1, d1
6.	Verify applications of Turing Machine (TM), Programming with TM, Recognizing language with TM, and Sorting with TMs.	2	4	a2, b1, b2, c1, d1
7.	Project Discussion	2	4	a1, a2, b1, b2, c1, d1
8.	Final Exam	1	2	a1, a2, b1, b2, c1, d1
Nui	mber of Weeks /and Units Per Semester	14	28	

V. Teaching strategies of the course:

- Active Lectures, •
- Laboratory Sessions, •
- Use of Information & Communication Technologies, •
- Projects, •
- Computer-based Programs •
- Seminars •
- small group •

VI.	Assignments:			
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark
1.	Recursion & Proof Techniques	a1, a2, b1, d1	3 rd	1
2.	Regular Expressions	a1, a2, b1, b2, d1	4 th	1
3.	Finite Automata	a1, a2, b1, b2, d1	5^{th} to 7^{th}	2
4.	Context Free Grammars	a1, a2, b1, b2, d1	9 th to 11 th	2 .5

Prepared by Assoc. Prof. Dr. Farouk Al-Fuhaidy

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

5.	PDA	a1, a2, b1, b2, d1	12 th	1.5
6.	Turing Machine	a1, a2, b1, b2, c1, d1	13 th & 14 th	2
	Total			10

VII.	VII. Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	HomeWorks & Assignments	3 rd to 14 th	15	10%	a1, a2, b1, b2, c1, d1	
2.	Laboratory Work	3^{rd} to 11^{th}	15	10%	a2, b1, b2, c1, d1	
3.	Mid-Term Exam (Th.)	8 th	15	10%	a1, a2, b1, b2	
4.	Project Work & Presentations	12 th & 13 th	15	10%	a1, a2, b1, b2, c1, d1	
5.	Final Exam (Pr.)	14 th	15	10%	a1, a2, b1, b2, c1, d1	
6.	Final Exam (Th.)	16 th	75	50%	a1, a2, b1, b2	
	Total		150	100%		

VIII. Learning Resources:
• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).
1- Required Textbook(s) (maximum two).
 Thomas A. Sudkamp (2006). An Introduction to the Theory of Computer Science Languages and Machines. Third Edition, Addison Wesley. Daniel I. A. Cohen- 1997- Introduction to Computer Theory- Second Edition - Prentice-Hall. Dexter C. Kozen- (2006-05-08) - Theory of Computation- 1st Edition- Springer Science & Business Media- ISBN-13 9781846282973
2- Essential References.

Prepared by	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Assoc. Prof. Dr.	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality Assurance
Farouk Al-	Ahmed Al-Shakiri	Mohammad Algorafi	AL-Bukhaiti	Assoc. Prof. Dr. Huda Al-Emad
Fuhaidy				

1- J. E. Hopcroft., R. Motwani, and J. D. Ullman -2007- Introduction to Automata Theory,
Languages, and Computation, Third Edition, Addison Wesley.
2- Peter Linz- 2001- An Introduction to Formal Languages and Automata, Third Edition,
Jones and Bartlett.
3- M. Sipser -2003- Introduction to the Theory of Computation- 2 nd Edition- Prentice Hall.
3- Electronic Materials and Web Sites etc.
1- Sites and Other learning material such as computer-based programs, professional
standards/regulations Will be specified at the course time as needed.

	IX. Course Policies:
1.	Class Attendance: A student should attend not less than 75 % of total hours of the subject; otherwise he will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university Clinic.
2.	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class he will be considered as absent.
3.	Exam Attendance/Punctuality: A student should attend the exam on time. He is Permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam.
4.	Assignments & Project The assignment is given to the students after each chapter; the student must submit all the assignments for checking on time.
5.	Cheating: For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.

Prepared by H Assoc. Prof. Dr. A Farouk Al- Fuhaidy	Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri	Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi	Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti	Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad
--	--	---	--	---

6.	Plagiarism: Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university.
	Other policies:
7.	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the student will be asked to leave the lecture room
	- Mobile phones are not allowed in class during the examination.
	- Lecture notes and assignments my given directly to students using soft or hard copy

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Template for Course Plan of Introduction to Computation

Theory

I. Information about Faculty Member Responsible for the Course:							
Name of Faculty Member	Assoc. Prof. Dr. Farouk AL-Fuhaidy	Office Hours					
Location& Telephone No.	777909815	SAT SUN MON TUE WEI		WED	THU		
E-mail	farouqakh@gmail.com						

II.	II. Course Identification and General Information:								
1.	Course Title:	Introduc	ction to Cor	nputation	Theory				
2.	Course Number & Code:	CCE142	2						
			C.]	H		Total			
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total			
		2	-	2	-	3			
4.	Study level/year at which this course is offered:	Second level / First Semester							
5.	Pre –requisite (if any):	Computer Programming II, Data Structures & Algorithms				tures &			
6.	Co –requisite (if any):	None.							
7.	Program (s) in which the course is offered	Computer Engineering and Control							
8.	Language of teaching the course:	English							
9.	System of Study:	Semester System							
10.	Mode of delivery:	Lecture							
11.	Location of teaching the course:	Electric	al Eng. Dep).					

Prepared by Assoc. Prof. Dr. Farouk Al-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description:

This course is an introductory to the theory of computation, to introduce students with basic principles pertaining to the modeling and analysis of computational problems and their solving. Topics to be covered by this course including models of computation such as Turing machines; theory of programming languages including, Automata, grammars, parsing, syntax and semantics. Upon successful completion of the course, students will be able for modeling many important kinds of hardware and software, like software for designing and checking behavior of digital circuits, lexical analyzer as a component of the Compiler, ... etc. This course supports students with basic principles and concepts required to study the advanced computation theory course for designing and implementing of compilers.

IV.	Int	ended learning outcomes (ILOs) of the course:
•	Brief	f summary of the knowledge or skill the course is intended to develop:
	1.	Demonstrate knowledge of basic mathematical models for computation and describe how
		they relate to formal languages
	2.	Describe the principles of machine language modeling and analysis using Regular
		Expressions, Finite Automata deterministic and non-deterministic, Context Free
		Grammars, Pushdown Automata, and Turing Machines.
	3.	Formulate problems related to model of computation and theory of programming using
		appropriate computation and programming modelling methods.
	4.	Analyze computation and programming models using FA, RE, CFG, PDA, and TM .
	5.	Use suitable computing tools to solve/design different automata machines related to
		computation and programming models

6. Work effectively within team while constructing and designing computing models.

Prepared by
Assoc. Prof. Dr.
Farouk Al-
Fuhaidy

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V. Course Content:									
	A – Theoretical Aspect:								
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact hours					
1.	Course Orientations & Introduction	 Course overview & Orientations, Introduction to Computations and discrete mathematics, basic concepts, set theory, strings and language definitions, finite specification of languages. 	1 st	2					
2.	Language, Recursive, and Proof Techniques	 Formal vs. non-formal language, Chomsky definition for language, examples of finite language Recursive definition, concepts of modeling series using recursion with examples, Proof Techniques, different proof techniques, induction and contradictions. 	2 nd ,3 rd	3					
3.	Regular Expressions (RE's) & Language	 Introduction to regular language and their Regular expressions representation illustrated with many examples for empty, finite and infinite regular expressions. 	3 rd ,4 th	3					
4.	Finite Automata (FA) & Language	 Introduction to graph theory, basic concepts, Directed and undirected graph, Finite Automata and Regular Expressions, Conversion from FA and regular expressions Deterministic finite automata (DFA), Non-deterministic finite automata (NFA), Kleene's theorem and non-determinism, 	5 th ,6 th ,7 th	6					

Prepared by	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Assoc. Prof. Dr.	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality Assurance
Farouk Al-	Ahmed Al-Shakiri	Mohammad Algorafi	AL-Bukhaiti	Assoc. Prof. Dr. Huda Al-Emad
Fuhaidy				

-			-	-			
T 1'/1	C (1	D	\mathbf{C}	г ·	•	10 11	-
I ITIE	of the	Program.	Computer	Engine	ering and	1 Control I	Hnσ
Inn	or the	I IOZIAIII.	Computer	Lingino	ung and	I COMUOI I	ung.
		0	1	0	0		\mathcal{U}

		 Equivalence of DFA and NFA, and regular expressions, Regular expression and regular languages, Non-regular languages and pumping Lemma, and closure properties, Optimal DFA. 		
5.	Mid-Term Exam	 All Previous Topics 	8 th	2
6.	Context Free Grammars (CFG's) and Languages	 Context Free Languages and Grammars; basic concepts, characteristics and applications of CFG's. Context-Free grammar; Regular grammars, leftmost derivation, and ambiguity, Parse Trees; Ambiguity in Grammars and Languages, Standard Form, Chomsky normal form and pumping lemma for context-free languages Greibach normal Forms Minimization of CFG's 	9 th ,10 th ,11 th	5
7.	Pushdown Automata (PDA)	 Pushdown Automata, Deterministic and Non-Deterministic (PDA); Formal definition of NPDA, Transition functions of NPDA; NPDA Execution Accepting Strings with NPDA; Equivalence of PDAs and CFG 	11 th ,12 th	3

Prepared by Assoc. Prof. Dr. Farouk Al- Fuhaidy	Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri	Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi	Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti	Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad
--	--	---	--	---

Title of the Program: Computer Engineering and Control Eng.

10.	Final Exam Number of W	All Topics eeks /and Units Per Semester	16 th	2 32
9.	Introduction to Complexity Theory	 Introduction to complexity by distinguishing decidable problems in terms of time and space complexity Time complexity classes P and NP Reduction and NP-completeness Space Complexity 	15 th	2
8.	The Turing Machines (TM)	 Turing machines, Formal definition of TM's. and basic concepts, Programming Techniques for Turing Machines, TM's as acceptors; TM's as transducers; Recognizing Languages with TM's.; Sorting with TM's.; Programming in TM's. Church's thesis, and undecidable problems 	13 th ,14 th	4

B - Practical Aspect:				
Order	Tasks/ Experiments	Number of Weeks	Contact hours	
1.	Installing Computer-based tool for construction and simulation of FA, RE, CFGs, PDA, and TM	1^{st}	2	
2.	Start by introducing solved examples for Regular expressions and languages, Use Computer based simulation software to construct Regular Expressions to Languages, apply testing of different inputs (letters, words, statements) which belong or not belong to the language	2 nd ,3 rd	4	
3.	Finite Automata (FA) and Graph Theory;	4 th ,5 th ,6 th	6	

Prepared by Assoc. Prof. Dr. Farouk Al- Fubaidy	Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri	Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi	Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti	Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad
Fuhaidy				

Construct some Directed & Undirected Graphs and use computer					
software to simulate the constructed Graphs,					
	Construct and simulate different types of FAs the DFA, NFA to				
	REs,				
	Check Equivalence of DFA and NFA, and regular expressions, Use				
	of FA to Design some Sequential Logic Circuits				
	Use of CFG's to represent Regular Expressions, FA, test				
4	Ambiguities, Tree Parsing	7th oth	4		
4.	Verify Greibach theorem,	7,8	4		
	Chomsky Normal Form to CFG's				
5.	Pushdown Automata to CFG's DPDA, NPDA	9 th	2		
(Verify applications of Turing Machine (TM), Programming with	amming with			
0.	TM, Recognizing language with TM, and Sorting with TMs.	10,11	4		
7.	Project Discussion	12 th ,13 th	4		
8.	Final Exam	14^{th}	2		
	Number of Weeks /and Units Per Semester1428				

VI. Teaching strategies of the course:

- Active Lectures,
- Laboratory Sessions,
- Use of Information & Communication Technologies,
- Projects,
- Computer-based Programs
- Seminars
- small group

Prepared by Assoc. Prof. Dr. Farouk Al-Fuhaidy Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VI	VII. Assignments:					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Recursion & Proof Techniques	a1, a2, b1, d1	3 rd	1		
2.	Regular Expressions	a1, a2, b1, b2, d1	4 th	1		
3.	Finite Automata	a1, a2, b1, b2, d1	5^{th} to 7^{th}	2		
4.	Context Free Grammars	a1, a2, b1, b2, d1	9 th to 11 th	2.5		
5.	PDA	a1, a2, b1, b2, d1	12 th	1.5		
6.	Turing Machine	a1, a2, b1, b2, c1, d1	$13^{\text{th}} \& 14^{\text{th}}$	2		
	Total			10		

VII	VIII.Schedule of Assessment Tasks for Students During the Semester:					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	HomeWorks & Assignments	3^{rd} to 14^{th}	15	10%	a1, a2, b1, b2, c1, d1	
2.	Laboratory Work	3^{rd} to 11^{th}	15	10%	a2, b1, b2, c1, d1	
3.	Mid-Term Exam (Th.)	8 th	15	10%	a1, a2, b1, b2	
4.	Project Work & Presentations	12 th & 13 th	15	10%	a1, a2, b1, b2, c1, d1	
5.	Final Exam (Pr.)	14 th	15	10%	a1, a2, b1, b2, c1, d1	
6.	Final Exam (Th.)	16 th	75	50%	a1, a2, b1, b2	
	Total		150	100%		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

IX. Learning Resources:				
• Wi Publish	ritten in the following order: (Author - Year of publication – Title – Edition – Place of publication – her).			
1- Requir	red Textbook(s) (maximum two).			
	1. Thomas A. Sudkamp (2006). An Introduction to the Theory of Computer Science Languages and Machines. Third Edition, Addison Wesley.			
	2. Daniel I. A. Cohen- 1997- Introduction to Computer Theory- Second Edition - Prentice-Hall.			
	 Dexter C. Kozen- (2006-05-08) - Theory of Computation- 1st Edition- Springer Science & Business Media- ISBN-13 9781846282973 			
2- Esser	ntial References.			
	1. J. E. Hopcroft., R. Motwani, and J. D. Ullman -2007- Introduction to Automata Theory, Languages, and Computation, Third Edition, Addison Wesley.			
	2. Peter Linz- 2001- An Introduction to Formal Languages and Automata, Third Edition, Jones and Bartlett.			
	3. M. Sipser -2003- Introduction to the Theory of Computation- 2 nd Edition- Prentice Hall.			
3- Electronic Materials and Web Sites etc.				
	1. Sites and Other learning material such as computer-based programs, professional			
	standards/regulations Will be specified at the course time as needed.			

	X. Course Policies:
	Class Attendance:
1.	A student should attend not less than 75 % of total hours of the subject; otherwise he will not be
	able to take the exam and will be considered as exam failure. If the student is absent due to illness,
	he/she should bring a proof statement from university Clinic.
	Tardy:
2.	For late in attending the class, the student will be initially notified. If he repeated lateness in
	attending class he will be considered as absent.
3.	Exam Attendance/Punctuality:

5. Exam Attendance/Punctuality:

Prepared by
Assoc. Prof. Dr.
Farouk Al-
Fuhaidy

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	A student should attend the exam on time. He is Permitted to attend an exam half one hour from		
	exam beginning, after that he/she will not be permitted to take the exam and he/she will be		
	considered as absent in exam.		
	Assignments & Project		
4.	The assignment is given to the students after each chapter; the student must submit all the		
	assignments for checking on time.		
	Cheating:		
5.	For cheating in exam, a student will be considered as fail. In case the cheating is repeated three		
	times during his/her study the student will be disengaged from the Faculty.		
	Plagiarism:		
	Plagiarism is the attending of a student the exam of a course instead of another student. If the		
6.	examination committee proofed a plagiarism of a student, he will be disengaged from the Faculty.		
	The final disengagement of the student from the Faculty should be confirmed from the Student		
	Council Affair of the university.		
	Other policies:		
	- Mobile phones are not allowed to use during a class lecture. It must be closed, otherwise the		
7.	student will be asked to leave the lecture room		
	- Mobile phones are not allowed in class during the examination.		
	- Lecture notes and assignments my given directly to students using soft or hard copy		

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad