

Course Specification of Hardware Design Language

	I. Course Identification and Gener	ral Info	rmati	on		
1.	Course Title:	Hardwa	re Desigr	n Langua	age	
2.	Course Code &Number:	CCE245	5			
			C.]	Н		Total
3.	Credit hours:	Th. Tu. Pr. Tr.		Total		
		2	-	2	-	3
4.	Study level/ semester at which this course is offered:	Third Year/ First Semester				
5.	Pre –requisite (if any):	Programming Language (II), Logic Circuits (II)			ic Circuits	
6.	Co –requisite (if any):	None.				
7.	Program (s) in which the course is offered:	B.Sc. of Computer and Control Engine		ngineering		
8.	Language of teaching the course:	Arabic & English				
9.	Location of teaching the course:	Class Room (Faculty of Engineering)				
10.	Prepared By:	Prof. Abdul Raqib Abdo Asaad				
11.	Date of Approval					

II. Course Description

This course aims to provide students with basic principles, fundamentals and concepts related to the development of digital integrated circuits based on VHDL programming. Modern practices of HDLs using VHDL or Verilog languages for modeling, timing, events, etc. has raised demands and applications in industrial's digital systems evolution and development. Course topics cover review on logic gates, combinational and sequential logic circuits, FPGA, Verilog & VHDL fundamentals and programming and modeling and simulation of ICs. Based on lectures, practical & computer labs and term projects works, students will be able to develop their problem-solving, programming, modeling and simulation skills related to ICs development.

Prepared by Prof. Abdul Raqib Abdo Asaad. Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

IJ	III. Course Intended learning outcomes (CILOs) of the course				
a1	Define the principles, terminologies, and architectures of HDL and FPGA.	A1			
a2	Explain the different methods of HDL applied in designing of digital circuits and systems.	A2, A3			
b1	Formulate digitals system that serve complex applications.	B1, B4			
b2	Analyze data of HDL simulation results for concluding the correct design.	B2, B3			
c1	Implement digital circuits/systems using the training kit.	C2, C3			
c2	Use HDL editor, simulation and synthesis tools for designing and implementing of digital circuits and systems.	C4			
d1	Work in a group to achieve final course's project and/or for solving specific problems.	D1			
d2	Perform specific tasks individually and present tasks' ideas clearly.	D4			

` ′	(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies						
Cou	rse Intended Learning Outcomes	Teaching strategies	Assessment Strategies				
a1-	Define the principles, terminologies, and architectures of HDL and FPGA.	Lectures Self-learning Dialogue and discussion	Written Test and Quizzes Oral discussion Assignment				
a2-	Explain the different methods of HDL applied in designing of digital circuits and systems.	Lectures Laboratory Self-learning Dialogue and discussion	Written Test and Quizzes Reports evaluation Presentations evaluation Oral discussion Assignment				

Prepared by Prof. Abdul Raqib Abdo Asaad. Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies				
Co	ourse Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
b1-	Formulate digitals system that serve complex applications.	Lectures	Written Test and Quizzes Reports evaluation	
b2-	Analyze data of HDL simulation results for concluding the correct design.	Laboratory Projects	Presentations evaluation Assignment	

` '	(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies					
Cour	rse Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
c1 -	Implement digital circuits/systems using the training kit.	Lectures Laboratory	Written Test and Quizzes Reports evaluation Observation of			
c2-	Use HDL editor, simulation and synthesis tools for designing and implementing digital circuits and systems.	Exercises Simulation tools Projects	performance Presentations evaluation Assignment			

	(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies				
Cour	se Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
d1-	Work in a group to achieve final course's project and/or for solving specific problems.	<u> </u>	Observation Presentations evaluation		
d2-	Perform specific tasks individually and present tasks' ideas clearly.	Laboratory Research	Reports evaluation		

Prepared by
Prof. Abdul
Raqib Abdo
Asaad.

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

IV. Course Content

A - Tl	Theoretical Aspect				
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours
1.	Review	a1, b1	 Logic fundamentals Gates Latches Flip-Flops CLC SLC 		4
2.	FPGA	a1	FPGA architectureTypesSynthesis	1	2
3.	VHDL or Verilog fundamentals	a1, a2, b1	 Operations Constructions Data representation Formatsetc Examples.	4	8
4.	Synthesizable code for basic logic components.	a1, a2, b1	• Examples	2	4
	Modeling and		 Modeling Timing		

• Events

• Propagation delays

• Concurrency

• Examples

Prepared by Prof. Abdul Raqib Abdo Asaad.

5.

6.

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

and

Modeling and

Synthesizable

hardware/HDL

code

Simulating

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

a1, a2, b1

a1, a2, b1

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

4

6

Rector of Sana'a University Prof. Dr. Al-Qassim Mohammed Abbas

2

3

	mapping (CLC, SLC).				
Number of Weeks /and Units Per Semester			14	28	

B - Pra	ctical Aspect			
Order	Topics List	Number of Weeks	Contact hours	Learning Outcomes
1	Identify the editor and simulation programs	1	2	b2, c1, c2
2	FPGA and synthesis methods	1	2	a1, c1, c2
3	VHDL or Verilog fundamentals		6	a1, a2, b1, b2, c1, c2, d1
4	Synthesizable code for basic logic components	2	4	a1, a2, b1, b2, c1, c2, d1
5	5 Modeling and Simulating		4	a1, a2, b1, b2, c1, c2, d1
6	Synthesizable code and hardware/HDL mapping (CLC, SLC)	3	6	a1, a2, b1, b2, c1, c2, d1
Term Project Presentation and Discussion (Designing and implementing a digital system to serve digital application using HDL) starting from the 3 rd week		1	2	a1, a2, b1, b2, c1, c2, d1, d2
8 Final Lab. Exam.		1	2	a1, a2, b1, b2, c1, c2, d2
Nur	nber of Weeks /and Units Per Semester	14	28	

V. Teaching strategies of the course

- Lectures
- Laboratory
- Self-learning
- Dialogue and discussion
- Projects

Prepared by Prof. Abdul Raqib Abdo Asaad. Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

- Exercises
- Simulation tools
- Coursework
- Research

VI.	VI. Assignments & Reports					
No	Assignments	Aligned CILOs	Week Due	Mark		
1.	VHDL & Verilog Programming	a2, b1, c1, c2, d2	3 rd to 6 th	3		
2.	Search Report on FPGA, VHDL Simulation and Modeling of Digital Circuits/Systems	a1, a2, b1, c1, c2, d1, d2	8 th to 13 th	4		
3.	Laboratory reports	a2, b1, c1, c2, d2	Weekly	8		
	Total			15		

VI	VII. Schedule of Assessment Tasks for Students during the Semester						
No.	Assessment Method	ment Method Week Due Mark Final Assessment		Aligned Course Learning Outcomes			
1.	Assignments & Reports	Weekly	15	10%	a1, a2, b1, c1, c2, d1, d2		
2.	Quizzes	3 rd , 6 th , and 13 th	10	6.67%	a1, a2, b1, b2, c1		
3.	Midterm Exam (Theoretically)	8 th	20	13.33%	a1, a2, b1, b2, c1		
4.	Final Lab. Exam (including Term Project Evaluation)	13 th & 14 th	30	20%	a1, a2, b1, b2, c1, c2, d1, d2		
5.	Final Exam	16 th	75	50%	a1, a2, b1, b2		
	Total	150	100%				

Prepared by Prof. Abdul Raqib Abdo Asaad. Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VIII. Learning Resources

Written in the following order: (Author - Year of publication - Title - Edition - Place of publication - Publisher).

1- Required Textbook(s) (maximum two)

- 1) D. J. Smith (1998), HDL chip design: a practical guide for designing, synthesizing and simulating ASICs and FPGAs using VHDL or Verilog, Latest Edition, Doone Publications.
- 2) Weng Fook Lee (2000), VHDL Coding and Logic Synthesis with Synopsys, First Edition, Academic Press.

2- Essential References

- 1) Michael D. Ciletti (1999), Modeling, Synthesis, and Rapid Prototyping with the Veriog HDL, First Edition. Pearson Prentice Hall.
- 2) D. Naylor and S. Jones, VHDL: A Logic Synthesis Approach, Chapman & Hall, UK.
- 3) Thomas L. Floyd, (2006), Digital Fundamentals, Ninth Edition, Pearson Prentice Hall, United States of America.

3- Electronic Materials and Web Sites etc.

Software and Programs: -

- 1) Quartus program.
- 2) Mentro Graphics program.

IX	K.Course Policies:
1.	Class Attendance: - The students should have more than 75% of attendance according to rules and regulations of the faculty.
2.	Tardy: - The students should respect the timing of attending the lectures. They should attend within 15 minutes from starting of the lecture.
3.	Exam Attendance/Punctuality: - The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.

Prepared by Prof. Abdul Raqib Abdo Asaad. Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

4.	Assignments & Projects: - The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.
5.	Cheating: - If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquires.
6.	Plagiarism: - If one student attends the exam on another behalf; he will be dismissed from the faculty according to the policy, rules and regulations of the university.
7.	Other policies: - All the teaching materials should be kept out the examination hall and mobile phones are not allowed. - Mutual respect should be maintained between the student and his teacher and also among students. Failing in keeping this respect is subject to the policy, rules and regulations of the university.

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr.						
By	Tarek A. Barakat						
	President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi						
	Name of Reviewer from the Department: Assoc. Prof. Dr. Farouk Al-Fuhaidy						
	Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa						
	Assoc. Prof. Dr. Ahmed Mujahed						
	Asst. Prof. Dr. Munasar Alsubri						

Prepared by Prof. Abdul Raqib Abdo Asaad. Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Course Plan of Hardware Design Language

I. Information about Faculty Member Responsible for the Course							
Name of Faculty Member	Prof. Abdul Raqib Abdo Asaad	Office Hours					
Location&Telephone No.		SAT	SUN	MON	TUE	WED	THU
E-mail							

IJ	II. Course Identification and General Information						
1.	Course Title:	Hardwa	Hardware Design Language				
2.	Course Number & Code:	CCE24	5				
			C.I	I		TD 4 1	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total	
		2	-	2	-	3	
4.	Study level/year at which this course is offered:	Third Year/ First Semester					
5.	Pre –requisite (if any):	Programming Language (II), Logic Circuits (I), Logic Circuits (II)					
6.	Co –requisite (if any):	None.					
7.	Program (s) in which the course is offered	B.Sc. of Computer and Control Engineering					
8.	Language of teaching the course:	Arabic & English					
9.	System of Study:	Semesters					
10.	Mode of delivery:	Lecture					
11.	Location of teaching the course:	Class R	Class Room (Faculty of Engineering)				

Prepared by Prof. Abdul Raqib Abdo Asaad. Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description

This course aims to provide students with basic principles, fundamentals and concepts related to the development of digital integrated circuits based on VHDL programming. Modern practices of HDLs using VHDL or Verilog languages for modeling, timing, events, etc. has raised demands and applications in industrial's digital systems evolution and development. Course topics cover review on logic gates, combinational and sequential logic circuits, FPGA, Verilog & VHDL fundamentals and programming and modeling and simulation of ICs. Based on lectures, practical & computer labs and term projects works, students will be able to develop their problem-solving, programming, modeling and simulation skills related to ICs development.

IV. Intended learning outcomes (ILOs) of the course:

- 1. Define the principles, terminologies, and architectures of HDL and FPGA.
- 2. Explain the different methods of HDL applied in designing of digital circuits and systems.
- **3.** Formulate digitals system that serve complex applications.
- **4.** Analyze data of HDL simulation results for concluding the correct design.
- 5. Implement digital circuits/systems using the training kit.
- **6.** Use HDL editor, simulation and synthesis tools for designing and implementing of digital circuits and systems.
- 7. Work in a group to achieve final course's project and/or for solving specific problems.
- **8.** Perform specific tasks individually and present tasks' ideas clearly.

V.	V. Course Content				
A – Tl	neoretical Aspect				
Order	Units/Topics List	Sub Topics List Number of Weeks		Contact hours	
1.	Review	Logic fundamentalsGatesLatchesFlip-Flops	1 st ,2 nd	4	

Prepared by Prof. Abdul Raqib Abdo Asaad. Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

		• CLC • SLC		
2.	FPGA	FPGA architectureTypesSynthesis	3 rd	2
3.	VHDL or Verilog fundamentals	 Operations Constructions Data representation Formatsetc Examples. 	4 th ,5 th ,6 th ,7 th	8
4.	Midterm		8 th	2
5.	Synthesizable code for basic logic components.	• Examples	9 th ,10 th	4
6.	Modeling and Simulating	 Modeling Timing Events Propagation delays Concurrency	11 th ,12 th	4
7.	Synthesizable code and hardware/HDL mapping (CLC, SLC).	• Examples	13 th ,14 th ,15 th	6
8.	Final exam	•	16 th	2
Numbe	r of Weeks /and Un	its Per Semester	16	32

Prepared by Prof. Abdul Raqib Abdo Asaad. Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

B - Pr	actical Aspect		
Order	Topics List	Number of Weeks	Contact hours
1	Identify the editor and simulation programs	1 st	2
2	FPGA and synthesis methods	2 nd	2
3	VHDL or Verilog fundamentals	3 rd ,4 th ,5 th	6
4	Synthesizable code for basic logic components	6 th ,7 th	4
5	Modeling and Simulating	8 th ,9 th	4
6	Synthesizable code and hardware/HDL mapping (CLC, SLC)	10 th ,11 th ,12 th	6
7	Term Project Presentation and Discussion (Designing and implementing a digital system to serve digital application using HDL) starting from the 3 rd week	13 th	2
8	Final Lab. Exam.	14 th	2
	Number of Weeks /and Units Per Semester	14	28

VI. Teaching strategies of the course

- Lectures
- Laboratory
- Self-learning
- Dialogue and discussion
- Projects
- Exercises
- Simulation tools
- Coursework
- Research

Prepared by Prof. Abdul Raqib Abdo Asaad. Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

VII.	VII. Assignments & Reports					
No	Assignments	Aligned CILOs	Week Due	Mark		
1.	VHDL & Verilog Programming	a2, b1, c1, c2, d2	3 rd to 6 th	3		
2.	Search Report on FPGA, VHDL Simulation and Modeling of Digital Circuits/Systems	a1, a2, b1, c1, c2, d1, d2	8 th to 13 th	4		
3.	Laboratory reports	a2, b1, c1, c2, d2	Weekly	8		
	Total			15		

VII	VIII. Schedule of Assessment Tasks for Students during the Semester					
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes	
1.	Assignments & Reports	Weekly	15	10%	a1, a2, b1, c1, c2, d1, d2	
2.	Quizzes	3^{rd} , 6^{th} , and 13^{th}	10	6.67%	a1, a2, b1, b2, c1	
3.	Midterm Exam (Theoretically)	8 th	20	13.33%	a1, a2, b1, b2, c1	
4.	Final Lab. Exam (including Term Project Evaluation)	13 th & 14 th	30	20%	a1, a2, b1, b2, c1, c2, d1, d2	
5.	Final Exam	16 th	75	50%	a1, a2, b1, b2	
	Total		150	100%		

IX. Learning Resources

Written in the following order: (Author - Year of publication - Title - Edition - Place of publication - Publisher).

1- Required Textbook(s) (maximum two)

Prepared by Prof. Abdul Raqib Abdo Asaad. Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

- 1. D. J. Smith (1998), HDL chip design: a practical guide for designing, synthesizing and simulating ASICs and FPGAs using VHDL or Verilog, Latest Edition, Doone Publications.
- 2. Weng Fook Lee (2000), VHDL Coding and Logic Synthesis with Synopsys, First Edition, Academic Press.

2- Essential References

- 1. Michael D. Ciletti (1999), Modeling, Synthesis, and Rapid Prototyping with the Veriog HDL, First Edition. Pearson Prentice Hall.
- 2. D. Naylor and S. Jones, VHDL: A Logic Synthesis Approach, Chapman & Hall, UK.
- 3. Thomas L. Floyd, (2006), Digital Fundamentals, Ninth Edition, Pearson Prentice Hall, United States of America.

3- Electronic Materials and Web Sites etc.

Software and Programs: -

- 1. Quartus program.
- 2. Mentro Graphics program.

X	X.Course Policies:
1.	Class Attendance: - The students should have more than 75% of attendance according to rules and regulations of the faculty.
2.	Tardy: - The students should respect the timing of attending the lectures. They should attend within 15 minutes from starting of the lecture.
3.	Exam Attendance/Punctuality: - The student should attend the exam on time. The punctuality should be implemented according to rules and regulations of the faculty for mid-term exam and final exam.
4.	Assignments & Projects: - The assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time.

Prepared by Prof. Abdul Raqib Abdo Asaad. Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

5.	Cheating: - If any cheating occurred during the examination, the student is not allowed to continue and he has to face the examination committee for enquires.
6.	Plagiarism: - If one student attends the exam on another behalf; he will be dismissed from the faculty according to the policy, rules and regulations of the university.
7.	Other policies: - All the teaching materials should be kept out the examination hall and mobile phones are not allowed. - Mutual respect should be maintained between the student and his teacher and also among students. Failing in keeping this respect is subject to the policy, rules and regulations of the university.

Prepared by Prof. Abdul Raqib Abdo Asaad. Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad