

Course Specification of Digital Computer Design

	I. Course Identification and Genera	l Infor	mation			
1.	Course Title:	Digital Computer Design				
2.	Course Code &Number:	CCE417	1			
		C.H			Tatal	
3.	Credit hours:	Th.	Tu.	Pr.	Tr.	Total
		2	-	2	-	3
4.	Study level/ semester at which this course is offered:	Fifth Year/ First Semester				
5.	Pre –requisite (if any):	Computer Architecture and Organization, Digital Systems Design.			ion,	
6.	Co –requisite (if any):	None.				
7.	Program (s) in which the course is offered:	B.Sc. of	Computer a	and Cont	trol Engin	eering
8.	Language of teaching the course:	Arabic &	& English			
9.	Location of teaching the course:	Class Room (Faculty of Engineering)				
10.	Prepared By:	Prof. Abdul Raqib Abdo Asaad				
11.	Date of Approval					

II. Course Description

This course concerns on providing students with advanced concepts and principles related to the organization and design of a digital computer. The computer hardware technology is growing fast with rapid change and has variant applications to different environments. Course topics include the organization and design of major components of a digital computer including the CPU, memory, input and output units, the integration of components into a system and the simulation by a computer design language. Throughout lab activities and course work project, students will develop their design and simulation skills for the practice of digital computer system and components to real and/or simulation platforms.

1. Prepared by Prof. Abdul Raqib Abdo Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

IJ	I. Course Intended learning outcomes (CILOs) of the course	Referenced PILOs
a1	Clarify the organization and the function of each component in a digital computer as well as their description using RTL.	A1
a2	Define principles and simulation tools applied to the digital computer design.	A2
b1	Compose the CPU and other main units of digital computers.	B1, B4
b2	Analyze data of a VHDL/Verilog simulation results for concluding the correct design.	B2, B3
c1	Design the essential hardware and software components of a digital computer.	C1, C2
c2	Use a VHDL/Verilog editor tool for designing and implementing a digital computer using simulation and synthesis tools.	C3, C4
d1	Work in a group to achieve final course's project or to solve specific problems related to digital computer and component design.	D1
d2	Consider the following of standards to achieve reports and presentations.	D4

(A) Alignment Course Intended Learning Outcomes of Knowledge and Understanding to Teaching Strategies and Assessment Strategies

Cour	se Intended Learning Outcomes	Teaching strategies	Assessment Strategies
a1- Clarify the organization and the		Lectures	Written Test and Quizzes
	function of each component in a	Dialogue and discussion	Reports evaluation
digital computer as well as their		Laboratory work	Presentations evaluation
description using RTL.		Self-learning	Assignment
a2-	Define principles and simulation	Lectures	Written Test and Quizzes
	tools applied to the digital	Laboratory work	Reports evaluation
	computer design.	Laboratory work	Assignment

1. Prepared by Prof. Abdul Raqib Abdo Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

· · ·	(B) Alignment Course Intended Learning Outcomes of Intellectual Skills to Teaching Strategies and Assessment Strategies					
Cou	rse Intended Learning Outcomes	Teaching strategies	Assessment Strategies			
b1-	Compose the CPU and other main units of digital computers.	Lectures Laboratory work Project	Written Test and Quizzes Reports evaluation Presentations evaluation Assignment			
b2-	AnalyzedataofaVHDL/Verilogsimulationresults for concluding the correctdesign.	Lectures Project Laboratory work	Written Test and Quizzes Reports evaluation Presentations evaluation Assignment			

(C) Alignment Course Intended Learning Outcomes of Professional and Practical Skills to Teaching Strategies and Assessment Strategies

Cour	rse Intended Learning Outcomes	Teaching strategies	Assessment Strategies		
		Lectures	Written Test and Quizzes		
c1-	Design the essential hardware	Dialogue and discussion	Coursework assignments		
	and software components of a	Laboratory work	Reports evaluation		
	digital computer.	Project	Presentations evaluation		
		Design exercises	Assignment		
c2-	Use a VHDL/Verilog editor tool	Project	Coursework aggignments		
	for designing and implementing	Laboratory work	Coursework assignments Reports evaluation		
	a digital computer using	Design exercises	Presentations evaluation		
	simulation and synthesis tools.	Self-learning	riesentations evaluation		

(D) Alignment Course Intended Learning Outcomes of Transferable Skills to Teaching Strategies and Assessment Strategies

C	Course Intended Learning Outcomes	Teaching strategies	Assessment Strategies	
d1- Work in a group to achieve final		Project	Coursework assignments	
	course's project or to solve	Design exercises	Reports evaluation	
	specific problems related to	Self-learning	Presentations evaluation	

1. Prepared by Prof. Abdul Raqib Abdo Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Sana'a University Faculty of Engineering Electrical Engineering Department B.Sc. of Computer and Control Engineering

	digital computer and component design.		
d2-	Consider the following of standards to achieve reports and presentations.	Project Laboratory work Self-learning	Reports evaluation Presentations evaluation

IV.	IV. Course Content						
A - Tl	neoretical Aspec	et					
Order	Units/Topics List	Learning Outcomes	Sub Topics List	Number of Weeks	Contact hours		
1.	Digital computer systems	a1, b1	 Type of digital computer systems Component of a digital computer system 	1	2		
2.	An Introduction to high-level synthesis using RTL	a1, a2	 RTL Terminologies RTL symbols RTL rules RTL examples 	2	4		
3.	Instruction set design	a2, c1	 Type of instructions Instruction format Efficiency Completeness Regularity 	1	2		
4.	CPU design	a1, a2, b1, c1	 Data path design, Control unit design, Register unit design.	3	6		
5.	CPU Design (Cont.)	a1, a2, b1, c1	 Clock generator design 	1	2		
6.	Memory & I/O systems design	a1, a2, b1, c1	Memory designInput/output unit design	2	4		
7.	Power supply design	a2, b1, c1	 Power supply design 	1	2		

1. Prepared by Prof. Abdul Raqib Abdo Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Sana'a University **Faculty of Engineering Electrical Engineering Department B.Sc. of Computer and Control Engineering**

8.	Assembler design	a2, c1	a2, c1 • One-pass assembler • Two-pass assembler		4
9.	Course Project Presentation	a1, a2, b1, b2, c1, c2, d1, d2	 Course Project Presentation 	1	2
Numbe	Number of Weeks /and Units Per Semester				28

B - Practical Aspect

HIDI

Based or	Based on Computer and VHDL Labs						
Order	Topics List	Number of Weeks	Contact hours	Learning Outcomes			
1.	Digital computer systems (Type of digital computer systems, Component of a digital computer system)	1	2	a1, b1, d1			
2.	An Introduction to high-level synthesis using RTL (RTL Terminologies, RTL symbols, RTL rules, RTL examples)	2	4	a1, a2, d1			
3.	Instruction set design (Type of instructions, Instruction format, Efficiency, Completeness, Regularity)	1	2	a2, c1, d1			
4.	CPU design (Data path design, Control unit design, Register unit design, Clock generator design)	4	8	a1, a2, b1, b2, c1, c2, d1, d2			
5.	Memory & I/O systems design	2	4	a1, a2, b1, b2, c1, c2, d1			
6.	Power supply design	1	2	a2, b1, b2, c1, c2, d1, d2			
7.	Assembler design (One-pass assembler, Two- pass assembler)	2	4	a2, c1, d1			
8.	8. Final Lab Exam		2	a1, a2, b1, b2, c1, c2			
Nu	mber of Weeks /and Units Per Semester	14	28				

1. Prepared by Prof. Abdul Raqib Abdo Asaad

Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri

Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi

Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti

Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

V. Teaching strategies of the course

- Lectures
- Dialogue and discussion
- Laboratory Work
- Self-learning
- Project
- Design exercises

VI. Assignments & Reports					
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark	
1.	Assignment on RTL	a1, a2, b1, b2, c1, c2, d1	3 rd	2	
2.	Research Report on CPU Design using VHDL and New Trends	a1, a2, b1, b2, c1, c2, d1, d2	7 th	3	
3.	Research Report and Assignment on Memory Design using VHDL and New Technology related to Memory.	a1, a2, b1, b2, c1, c2, d1, d2	11 th	3	
4.	Lab, Problems and Exercises Reports	a1, a2, b1, b2, c1, c2, d1	3 rd to 13 th	7	
	Tota	al Marks		15	

VII. Schedule of Assessment Tasks for Students during the Semester

No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	Aligned Course Learning Outcomes
1.	Course project (designing and simulating a small digital computer using VHDL or Verilog language and tools).	15 th	22.5	15%	a1, a2, b1, b2, c1, c2, d1, d2

1. Prepared by Prof. Abdul Raqib Abdo Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

2.	Assignments & Reports	3^{rd} to 13^{th}	15	10%	a1, a2, b1, b2, c1, c2, d1, d2
3.	Midterm Exam	9 th	22.5	15%	a1, a2, b1, c1
4.	Final Lab Exam	14 th	15	10%	a1, a2, b1, b2, c1, c2
5.	Final Exam	16 th	75	50%	a1, a2, b1, b2, c1
	Total		150	100%	

VIII. Learning Resources

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two)

- 1) Larry L. Wear and others (1991), "Computers: An Introduction to Hardware and Software Design", McGraw Hill Series in Electrical and Computer Engineering.
- 2) Sajjan G. Shiva (2007), "Computer Organization, Design, and Architecture", Fourth Edition, CRC Press.

2- Essential References

- 1) V Rajaraman and T. Radhakrishnan (2008), "An introduction to digital computer design", fifth Edition. Prentice-Hall of India.
- 2) M. Morris R. Mano (1992), "Computer System Architecture", Third Edition, Pearson.
- 3) W. Stalling, (2003), "Computer Organization & Architecture: Designing for Performance", Prentice Hall.

3- Electronic Materials and Web Sites etc.

IX. Course Policies:

Class Attendance:

1. A student should attend not less than 75 % of total hours of the subject; otherwise he/she will not be able to take the exam and will be considered as exam failure. If the student is absent due to illness, he/she should bring a proof statement from university

1. Prepared by Prof. Abdul Raqib Abdo Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	Clinic. If the absent is more than 25% of a course total contact hours, student will be required to retake the entire course again.
2.	Tardy: For late in attending the class, the student will be initially notified. If he repeated lateness in attending class, he/she will be considered as absent.
3.	Exam Attendance/Punctuality: A student should attend the exam on time. He/she is permitted to attend an exam half one hour from exam beginning, after that he/she will not be permitted to take the exam and he/she will be considered as absent in exam
4.	Assignments & Projects: In general one assignment is given to the students after each chapter; the student has to submit all the assignments for checking on time, mostly one week after given the assignment.
5.	Cheating : For cheating in exam, a student will be considered as fail. In case the cheating is repeated three times during his/her study the student will be disengaged from the Faculty.
6.	Plagiarism: Plagiarism is the attending of a student the exam of a course instead of another student. If the examination committee proofed a plagiarism of a student, he/she will be disengaged from the Faculty. The final disengagement of the student from the Faculty should be confirmed from the Student Council Affair of the university or according to the university roles.
7.	 Other policies: Mobile phones are not allowed to use during a class lecture. It must be closed; otherwise the student will be asked to leave the lecture room. Mobile phones are not allowed in class during the examination. Lecture notes and assignments might be given directly to students using soft or hard copy.

Reviewed	Vice Dean for Academic Affairs and Post Graduate Studies: Asst. Prof. Dr. Tarek
By	<u>A. Barakat</u>

1. Prepared by	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Prof. Abdul	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality Assurance
Raqib Abdo	Ahmed Al-Shakiri	Mohammad Algorafi	AL-Bukhaiti	Assoc. Prof. Dr. Huda Al-Emad
Asaad				

President of Quality Assurance Unit: Assoc. Prof. Dr. Mohammed Algorafi
Name of Reviewer from the Department: Assoc. Prof. Dr. Farouk Al-Fuhaidy
Deputy Rector for Academic Affairs Asst. Prof. Dr. Ibrahim AlMutaa
Assoc. Prof. Dr. Ahmed Mujahed
Asst. Prof. Dr. Munasar Alsubri

1. Prepared by Prof. Abdul Raqib Abdo Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Course Plan of Digital Computer Design

I. Information about Faculty Member Responsible for the Course							
Name of Faculty Member	Prof. Abdul Raqib Abdo Asaad						
Location&Telephone No.		SAT	SUN	MON	TUE	WED	THU
E-mail							

II. Course Identification and General Information							
1.	Course Title:	Digital Computer Design					
2.	Course Number & Code:	CCE41	7				
3.	Credit hours:	C.HTh.Tu.Pr.Tr.				Total	
		2	2	-	-	3	
4.	Study level/year at which this course is offered:	Fifth Year/ First Semester					
5.	Pre –requisite (if any):	Computer Architecture and Organization, Digital Systems Design.					
6.	Co –requisite (if any):	None.					
7.	Program (s) in which the course is offered	B.Sc. of Computer and Control Engineering					
8.	Language of teaching the course:	Arabic & English					
9.	System of Study:	Semesters					
10.	Mode of delivery:	Lecture.					
11.	Location of teaching the course:	Class R	oom (Facult	y of Engi	neering)		

1. Prepared by Prof. Abdul Raqib Abdo Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

III. Course Description

This course concerns on providing students with advanced concepts and principles related to the organization and design of a digital computer. The computer hardware technology is growing fast with rapid change and has variant applications to different environments. Course topics include the organization and design of major components of a digital computer including the CPU, memory, input and output units, the integration of components into a system and the simulation by a computer design language. Throughout lab activities and course work project, students will develop their design and simulation skills for the practice of digital computer system and components to real and/or simulation platforms.

IV. Intended learning outcomes (ILOs) of the course:

- 1. Clarify the organization and the function of each component in a digital computer as well as their description using RTL.
- 2. Define principles and simulation tools applied to the digital computer design.
- 3. Compose the CPU and other main units of digital computers.
- 4. Analyze data of a VHDL/Verilog simulation results for concluding the correct design.
- 5. Design the essential hardware and software components of a digital computer.
- 6. Use a VHDL/Verilog editor tool for designing and implementing a digital computer using simulation and synthesis tools.
- 7. Work in a group to achieve final course's project or to solve specific problems related to digital computer and component design.
- 8. Consider the following of standards to achieve reports and presentations.

V. Course Content						
A – Tł	neoretical Aspe	ct				
Order	Units/Topics List	Sub Topics List	Number of Weeks	Contact hours		
1.	Digital computer systems	Type of digital computer systemsComponent of a digital computer system	1 st	2		
2.	An Introduction to high-level	RTL TerminologiesRTL symbolsRTL rules	2 nd ,3 rd	4		

1. Prepared by Prof. Abdul Raqib Abdo Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

Sana'a University Faculty of Engineering Electrical Engineering Department B.Sc. of Computer and Control Engineering

	synthesis using RTL	 RTL examples 		
3.	Instruction set design	 Type of instructions Instruction format Efficiency Completeness Regularity 	4 th	2
4.	CPU design	Data path design,Control unit design,Register unit design.	5 th ,6 th ,7 th	6
5.	Mid-Term Exam	 ALL Previous Topics 	8 th	2
6.	CPU Design (Cont.)	 Clock generator design 	9 th	2
7.	Memory & I/O systems design	Memory designInput/output unit design	10 th ,11 th	4
8.	Power supply design	 Power supply design 	12 th	2
9.	Assembler design	One-pass assemblerTwo-pass assembler	13 th ,14 th	4
10.	Course Project Presentation	 Course Project Presentation 	15 th	2
11.	Final Exam	 ALL Topics 	16 th	2
Numbe	r of Weeks /and U	Inits Per Semester	16	32

1. Prepared by Prof. Abdul Raqib Abdo Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

B - Pra	B - Practical Aspect					
Based o	n Computer and VHDL Labs					
Order	Topics List	Number of Weeks	Contact hours			
1.	Digital computer systems (Type of digital computer systems, Component of a digital computer system)	1^{st}	2			
2.	An Introduction to high-level synthesis using RTL (RTL Terminologies, RTL symbols, RTL rules, RTL examples)	2 nd ,3 rd	4			
3.	Instruction set design (Type of instructions, Instruction format, Efficiency, Completeness, Regularity)	4 th	2			
4.	CPU design (Data path design, Control unit design, Register unit design, Clock generator design)	$5^{th}, 6^{th}, 7^{th}, 8^{th}$	8			
5.	Memory & I/O systems design	9 th ,10 th	4			
6.	Power supply design	11^{th}	2			
7.	Assembler design (One-pass assembler, Two-pass assembler)	12 th ,13 th	4			
8.	Final Lab Exam	14 th	2			
	Number of Weeks /and Units Per Semester	14	28			

VI. Teaching strategies of the course

- Lectures
- Dialogue and discussion
- Laboratory Work
- Self-learning
- Project
- Design exercises

VII. Assignments & Reports						
No	Assignments	Aligned CILOs(symbols)	Week Due	Mark		
1.	Assignment on RTL	a1, a2, b1, b2, c1, c2, d1	3 rd	2		

1. Prepared by	Head of Department	Quality Assurance Unit	Dean of the Faculty	Academic Development
Prof. Abdul	Asst. Prof. Dr. Adel	Assoc. Prof. Dr.	Prof. Dr. Mohammed	Center & Quality Assurance
Raqib Abdo	Ahmed Al-Shakiri	Mohammad Algorafi	AL-Bukhaiti	Assoc. Prof. Dr. Huda Al-Emad
Asaad				

	3.	on Memory Design using VHDL and New Technology related to Memory.	a1, a2, b1, b2, c1, c2, d1, d2	$11^{ m th}$	3	
	4.	Lab, Problems and Exercises Reports	a1, a2, b1, b2, c1, c2, d1	3 rd to 13 th	7	
Ī	Total Marks					

VII	VIII. Schedule of Assessment Tasks for Students during the Semester							
No.	Assessment Method	Week Due	Mark	Proportion of Final Assessment	f Final Learning			
1.	Course project (designing and simulating a small digital computer using VHDL or Verilog language and tools).	15 th	22.5	15%	a1, a2, b1, b2, c1, c2, d1, d2			
2.	Assignments & Reports	3 rd to 13 th	15	10%	a1, a2, b1, b2, c1, c2, d1, d2			
3.	Midterm Exam	8 th	22.5	15%	a1, a2, b1, c1			
4.	Final Lab Exam	14 th	15	10%	a1, a2, b1, b2, c1, c2			
5.	Final Exam	16 th	75	50%	a1, a2, b1, b2, c1			
	Total		150	100%				

IX. Learning Resources

• Written in the following order: (Author - Year of publication – Title – Edition – Place of publication – Publisher).

1- Required Textbook(s) (maximum two)

1. Prepared by Prof. Abdul Raqib Abdo Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	1. Larry L. Wear and others (1991), "Computers: An Introduction to Hardware and					
	Software Design", McGraw Hill Series in Electrical and Computer Engineering.					
	2. Sajjan G. Shiva (2007), "Computer Organization, Design, and Architecture", Fourth					
Edition, CRC Press.						
2- Ess	sential References					
	1. V Rajaraman and T. Radhakrishnan (2008), "An introduction to digital com					
	design", fifth Edition. Prentice-Hall of India.					
	2. M. Morris R. Mano (1992), "Computer System Architecture", Third Edition, Pearson.					
	3. W. Stalling, (2003), "Computer Organization & Architecture: Designing for					
	Performance", Prentice Hall.					
3- El	ectronic Materials and Web Sites etc.					
X	Course Policies:					
	Class Attendance:					
	A student should attend not less than 75 % of total hours of the subject; otherwise					
	he/she will not be able to take the exam and will be considered as exam failure. If the					
1.	student is absent due to illness, he/she should bring a proof statement from university					
	Clinic. If the absent is more than 25% of a course total contact hour, student will be					
	required to retake the entire course again.					
	Tardy:					
2.	For late in attending the class, the student will be initially notified. If he repeated lateness in					
	attending class, he/she will be considered as absent.					
	Exam Attendance/Punctuality:					
3.	A student should attend the exam on time. He/she is permitted to attend an exam half one					
	hour from exam beginning, after that he/she will not be permitted to take the exam and he/she					
	will be considered as absent in exam					
	Assignments & Projects:					
4.	In general one assignment is given to the students after each chapter; the student has to					
5.	submit all the assignments for checking on time, mostly one week after given the assignment. Cheating :					

1. Prepared by Prof. Abdul Raqib Abdo Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad

	For cheating in exam, a student will be considered as fail. In case the cheating is repeated				
	three times during his/her study the student will be disengaged from the Faculty.				
	Plagiarism:				
	Plagiarism is the attending of a student the exam of a course instead of another student.				
6	If the examination committee proofed a plagiarism of a student, he/she will be				
6.	disengaged from the Faculty. The final disengagement of the student from the Faculty should				
	be confirmed from the Student Council Affair of the university or according to the university				
	roles.				
	Other policies:				
	- Mobile phones are not allowed to use during a class lecture. It must be closed; otherwise				
7.	the student will be asked to leave the lecture room.				
	- Mobile phones are not allowed in class during the examination.				
	- Lecture notes and assignments might be given directly to students using soft or hard copy.				

1. Prepared by Prof. Abdul Raqib Abdo Asaad Head of Department Asst. Prof. Dr. Adel Ahmed Al-Shakiri Quality Assurance Unit Assoc. Prof. Dr. Mohammad Algorafi Dean of the Faculty Prof. Dr. Mohammed AL-Bukhaiti Academic Development Center & Quality Assurance Assoc. Prof. Dr. Huda Al-Emad